메뉴 건너뛰기




Volumn 40, Issue 13, 2019, Pages 1069-1077

Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: Data from a single tertiary centre including 10 019 patients

Author keywords

Adult congenital heart disease; Deep learning; Machine learning; Mortality; Prognostication

Indexed keywords

ANGIOTENSIN RECEPTOR ANTAGONIST; ANTICOAGULANT AGENT; BETA ADRENERGIC RECEPTOR BLOCKING AGENT; BRAIN NATRIURETIC PEPTIDE; CREATININE; DIPEPTIDYL CARBOXYPEPTIDASE INHIBITOR;

EID: 85063994897     PISSN: 0195668X     EISSN: 15229645     Source Type: Journal    
DOI: 10.1093/eurheartj/ehy915     Document Type: Article
Times cited : (139)

References (20)
  • 6
    • 85086330988 scopus 로고    scopus 로고
    • Fast and accurate view classification of echocardiograms using deep learning
    • Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med 2018;1:6.
    • (2018) NPJ Digit Med , vol.1 , pp. 6
    • Madani, A.1    Arnaout, R.2    Mofrad, M.3    Arnaout, R.4
  • 8
    • 0030966854 scopus 로고    scopus 로고
    • Nonparametric analysis of clustered ROC curve data
    • Obuchowski NA. Nonparametric analysis of clustered ROC curve data. Biometrics 1997;53:567-578.
    • (1997) Biometrics , vol.53 , pp. 567-578
    • Obuchowski, N.A.1
  • 9
    • 84863304598 scopus 로고    scopus 로고
    • R Developement Core Team, Vienna, Austria: R Foundation for Statistical Computing, (17 November 2018)
    • R Developement Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2010. http://www.R-project.org (17 November 2018).
    • (2010) R: A Language and Environment for Statistical Computing
  • 11
    • 84952870078 scopus 로고    scopus 로고
    • Feasibility of using electronic medical record data for tracking quality indicators in adults with congenital heart disease
    • Broberg C, Sklenar J, Burchill L, Daniels C, Marelli A, Gurvitz M. Feasibility of using electronic medical record data for tracking quality indicators in adults with congenital heart disease. Congenit Heart Dis 2015;10:E268-E277.
    • (2015) Congenit Heart Dis , vol.10 , pp. E268-E277
    • Broberg, C.1    Sklenar, J.2    Burchill, L.3    Daniels, C.4    Marelli, A.5    Gurvitz, M.6
  • 12
    • 84888331156 scopus 로고    scopus 로고
    • Building quality indicators to improve care for adults with congenital heart disease
    • Gurvitz M, Marelli A, Mangione-Smith R, Jenkins K. Building quality indicators to improve care for adults with congenital heart disease. J Am Coll Cardiol 2013;62: 2244-2253.
    • (2013) J Am Coll Cardiol , vol.62 , pp. 2244-2253
    • Gurvitz, M.1    Marelli, A.2    Mangione-Smith, R.3    Jenkins, K.4
  • 13
    • 85045094669 scopus 로고    scopus 로고
    • AF classification from a short single lead ECG recording: The PhysioNet/computing in cardiology challenge 2017
    • Epub 2018 April 5
    • Clifford GD, Liu C, Moody B, Lehman LH, Silva I, Li Q, Johnson AE, Mark RG. AF classification from a short single lead ECG recording: the PhysioNet/computing in cardiology challenge 2017. Comput Cardiol (2010) 2017;44. doi: 10.22489/CinC.2017.065-469. Epub 2018 April 5.
    • (2017) Comput Cardiol (2010) , vol.44
    • Clifford, G.D.1    Liu, C.2    Moody, B.3    Lehman, L.H.4    Silva, I.5    Li, Q.6    Johnson, A.E.7    Mark, R.G.8
  • 14
    • 85016122076 scopus 로고    scopus 로고
    • A deep learning network for right ventricle segmentation in short-axis MRI
    • Luo G, An R, Wang K, Dong S, Zhang H. A deep learning network for right ventricle segmentation in short-axis MRI. Comput Cardiol 2016;43:485-488.
    • (2016) Comput Cardiol , vol.43 , pp. 485-488
    • Luo, G.1    An, R.2    Wang, K.3    Dong, S.4    Zhang, H.5
  • 18
    • 85049690743 scopus 로고    scopus 로고
    • An algorithm based on deep learning for predicting in-hospital cardiac arrest
    • Kwon JM, Lee Y, Lee Y, Lee S, Park J. An algorithm based on deep learning for predicting in-hospital cardiac arrest. J Am Heart Assoc 2018;7. pii: e008678. doi: 10.1161/JAHA.118.008678.
    • (2018) J Am Heart Assoc , vol.7 , pp. e008678
    • Kwon, J.M.1    Lee, Y.2    Lee, Y.3    Lee, S.4    Park, J.5
  • 20
    • 85019433944 scopus 로고    scopus 로고
    • Decision support systems in cardiology: A systematic review
    • Dudchenko A, Kopanitsa G. Decision support systems in cardiology: a systematic review. Stud Health Technol Inform 2017;237:209-214.
    • (2017) Stud Health Technol Inform , vol.237 , pp. 209-214
    • Dudchenko, A.1    Kopanitsa, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.