메뉴 건너뛰기




Volumn 7, Issue 13, 2018, Pages

An algorithm based on deep learning for predicting in-hospital cardiac arrest

Author keywords

Artificial intelligence; Cardiac arrest; Deep learning; Machine learning; Rapid response system; Resuscitation

Indexed keywords

ADULT; ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BLOOD PRESSURE; COHORT ANALYSIS; CONTROLLED STUDY; DEEP LEARNING BASED EARLY WARNING SYSTEM; FEMALE; HEART ARREST; HEART RATE; HOSPITAL ADMISSION; HOSPITAL PATIENT; HUMAN; LEARNING; LOGISTIC REGRESSION ANALYSIS; MAJOR CLINICAL STUDY; MALE; PREDICTION; PRIORITY JOURNAL; RANDOM FOREST; RAPID RESPONSE TEAM; RECEIVER OPERATING CHARACTERISTIC; RESUSCITATION; RETROSPECTIVE STUDY; SENSITIVITY ANALYSIS; TRACK AND TRIGGER SYSTEM; VITAL SIGN; AGED; CLINICAL TRIAL; COMPUTER ASSISTED DIAGNOSIS; DECISION SUPPORT SYSTEM; EARLY DIAGNOSIS; MIDDLE AGED; MORTALITY; MULTICENTER STUDY; PREDICTIVE VALUE; PROGNOSIS; REPRODUCIBILITY; RISK ASSESSMENT; RISK FACTOR; SOUTH KOREA; TIME FACTOR;

EID: 85049690743     PISSN: None     EISSN: 20479980     Source Type: Journal    
DOI: 10.1161/JAHA.118.008678     Document Type: Article
Times cited : (216)

References (46)
  • 1
    • 85014375140 scopus 로고    scopus 로고
    • Committee on the Treatment of Cardiac Arrest: Current Status and Future Directions; Board on Health Sciences Policy; Institute of Medicine
    • Washington, DC: National Academic Press
    • Graham R, McCoy MA, Schultz AM; Committee on the Treatment of Cardiac Arrest: Current Status and Future Directions; Board on Health Sciences Policy; Institute of Medicine. Strategies to Improve Cardiac Arrest Survival: A Time to Act. Washington, DC: National Academic Press; 2015.
    • (2015) Strategies to Improve Cardiac Arrest Survival: A Time to Act
    • Graham, R.1    McCoy, M.A.2    Schultz, A.M.3
  • 5
    • 29944442726 scopus 로고    scopus 로고
    • First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults
    • Nadkarni VM. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA. 2006;295:50.
    • (2006) JAMA , vol.295 , pp. 50
    • Nadkarni, V.M.1
  • 6
    • 4344619932 scopus 로고    scopus 로고
    • A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom—the ACADEMIA study
    • Kause J, Smith G, Prytherch D, Parr M, Flabouris A, Hillman K. A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom—the ACADEMIA study. Resuscitation. 2004;62:275-282.
    • (2004) Resuscitation , vol.62 , pp. 275-282
    • Kause, J.1    Smith, G.2    Prytherch, D.3    Parr, M.4    Flabouris, A.5    Hillman, K.6
  • 7
    • 0025605590 scopus 로고
    • Clinical antecedents to in-hospital cardiopulmonary arrest
    • Schein RMH, Hazday N, Pena M, Ruben BH, Sprung CL. Clinical antecedents to in-hospital cardiopulmonary arrest. Chest. 1990;98:1388-1392.
    • (1990) Chest , vol.98 , pp. 1388-1392
    • Schein, R.1    Hazday, N.2    Pena, M.3    Ruben, B.H.4    Sprung, C.L.5
  • 8
    • 0028009153 scopus 로고
    • Developing strategies to prevent inhospital cardiac arrest: Analyzing responses of physicians and nurses in the hours before the event
    • Franklin C, Mathew J. Developing strategies to prevent inhospital cardiac arrest: analyzing responses of physicians and nurses in the hours before the event. Crit Care Med. 1994;22:244-247.
    • (1994) Crit Care Med , vol.22 , pp. 244-247
    • Franklin, C.1    Mathew, J.2
  • 11
    • 84944871671 scopus 로고    scopus 로고
    • European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: Section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015
    • Nolan JP, Soar J, Cariou A, Cronberg T, Moulaert VRM, Deakin CD, Bottiger BW, Friberg H, Sunde K, Sandroni C. European Resuscitation Council and European Society of Intensive Care Medicine guidelines for post-resuscitation care 2015: section 5 of the European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation. 2015;95:202-222.
    • (2015) Resuscitation , vol.95 , pp. 202-222
    • Nolan, J.P.1    Soar, J.2    Cariou, A.3    Cronberg, T.4    Moulaert, V.5    Deakin, C.D.6    Bottiger, B.W.7    Friberg, H.8    Sunde, K.9    Sandroni, C.10
  • 15
    • 41349123234 scopus 로고    scopus 로고
    • Review and performance evaluation of aggregate weighted “track and trigger” systems
    • Smith GB, Prytherch DR, Schmidt PE, Featherstone PI. Review and performance evaluation of aggregate weighted “track and trigger” systems. Resuscitation. 2008;77:170-179.
    • (2008) Resuscitation , vol.77 , pp. 170-179
    • Smith, G.B.1    Prytherch, D.R.2    Schmidt, P.E.3    Featherstone, P.I.4
  • 16
    • 0034781186 scopus 로고    scopus 로고
    • Validation of a modified Early Warning Score in medical admissions
    • Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified Early Warning Score in medical admissions. QJM. 2001;94:521-526.
    • (2001) QJM , vol.94 , pp. 521-526
    • Subbe, C.P.1    Kruger, M.2    Rutherford, P.3    Gemmel, L.4
  • 18
    • 20444443626 scopus 로고    scopus 로고
    • MERIT Study Investigators. Introduction of the medical emergency team (MET) system: A cluster-randomised
    • Hillman K, Chen J, Cretikos M, Bellomo R, Brown D, Doig G, Finfer S, Flabouris A; MERIT Study Investigators. Introduction of the medical emergency team (MET) system: a cluster-randomised controlled trial. Lancet. 2005;365:2091-2097.
    • (2005) Lancet , vol.365 , pp. 2091-2097
    • Hillman, K.1    Chen, J.2    Cretikos, M.3    Bellomo, R.4    Brown, D.5    Doig, G.6    Finfer, S.7    Flabouris, A.8
  • 19
    • 79957794134 scopus 로고    scopus 로고
    • Documenting Rapid Response System afferent limb failure and associated patient outcomes
    • Trinkle RM, Flabouris A. Documenting Rapid Response System afferent limb failure and associated patient outcomes. Resuscitation. 2011;82:810-814.
    • (2011) Resuscitation , vol.82 , pp. 810-814
    • Trinkle, R.M.1    Flabouris, A.2
  • 21
    • 33745127073 scopus 로고    scopus 로고
    • Prevalence and sensitivity of MET-criteria in a Scandinavian University Hospital
    • Bell MB, Konrad D, Granath F, Ekbom A, Martling CR. Prevalence and sensitivity of MET-criteria in a Scandinavian University Hospital. Resuscitation. 2006;70:66-73.
    • (2006) Resuscitation , vol.70 , pp. 66-73
    • Bell, M.B.1    Konrad, D.2    Granath, F.3    Ekbom, A.4    Martling, C.R.5
  • 23
    • 85007524689 scopus 로고    scopus 로고
    • Adapting to artificial intelligence
    • Jha S, Topol EJ. Adapting to artificial intelligence. JAMA. 2016;316:2353.
    • (2016) JAMA , vol.316 , pp. 2353
    • Jha, S.1    Topol, E.J.2
  • 24
    • 84947466043 scopus 로고    scopus 로고
    • Machine learning in medicine
    • Deo RC. Machine learning in medicine. Circulation. 2015;132:1920-1930.
    • (2015) Circulation , vol.132 , pp. 1920-1930
    • Deo, R.C.1
  • 26
    • 2942644510 scopus 로고    scopus 로고
    • Physiological abnormalities in early warning scores are related to mortality in adult inpatients
    • Goldhill DR, McNarry AF. Physiological abnormalities in early warning scores are related to mortality in adult inpatients. Br J Anaesth. 2004;92:882-884.
    • (2004) Br J Anaesth , vol.92 , pp. 882-884
    • Goldhill, D.R.1    McNarry, A.F.2
  • 27
    • 0026021401 scopus 로고
    • Reliability and accuracy of the Glasgow Coma Scale
    • Rowley G, Fielding K. Reliability and accuracy of the Glasgow Coma Scale. Lancet. 1991;337:535-538.
    • (1991) Lancet , vol.337 , pp. 535-538
    • Rowley, G.1    Fielding, K.2
  • 28
    • 84875239334 scopus 로고    scopus 로고
    • The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death
    • Smith GB, Prytherch DR, Meredith P, Schmidt PE, Featherstone PI. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation. 2013;84:465-470.
    • (2013) Resuscitation , vol.84 , pp. 465-470
    • Smith, G.B.1    Prytherch, D.R.2    Meredith, P.3    Schmidt, P.E.4    Featherstone, P.I.5
  • 29
    • 77954693104 scopus 로고    scopus 로고
    • ViEWS—towards a national early warning score for detecting adult inpatient deterioration
    • Prytherch DR, Smith GB, Schmidt PE, Featherstone PI. ViEWS—towards a national early warning score for detecting adult inpatient deterioration. Resuscitation. 2010;81:932-937.
    • (2010) Resuscitation , vol.81 , pp. 932-937
    • Prytherch, D.R.1    Smith, G.B.2    Schmidt, P.E.3    Featherstone, P.I.4
  • 32
    • 84954349720 scopus 로고    scopus 로고
    • Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
    • Churpek MM, Yuen TC, Winslow C, Meltzer DO, Kattan MW, Edelson DP. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med. 2016;44:368-374.
    • (2016) Crit Care Med , vol.44 , pp. 368-374
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3    Meltzer, D.O.4    Kattan, M.W.5    Edelson, D.P.6
  • 33
    • 84960335394 scopus 로고    scopus 로고
    • Prediction of in-hospital mortality in emergency department patients with sepsis: A local big data-driven, machine learning approach
    • Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, Hall MK. Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad Emerg Med. 2016;23:269-278.
    • (2016) Acad Emerg Med , vol.23 , pp. 269-278
    • Taylor, R.A.1    Pare, J.R.2    Venkatesh, A.K.3    Mowafi, H.4    Melnick, E.R.5    Fleischman, W.6    Hall, M.K.7
  • 34
    • 84933177779 scopus 로고    scopus 로고
    • The precision-recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases
    • Ozenne B, Subtil F, Maucort-Boulch D. The precision-recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases. J Clin Epidemiol. 2015;68:855-859.
    • (2015) J Clin Epidemiol , vol.68 , pp. 855-859
    • Ozenne, B.1    Subtil, F.2    Maucort-Boulch, D.3
  • 35
    • 84870568797 scopus 로고    scopus 로고
    • A new evaluation measure for imbalanced datasets. In: Seventh Australasian data mining conference (Aus DM 2008)
    • Weng CG, Poon J. A new evaluation measure for imbalanced datasets. In: Seventh Australasian data mining conference (Aus DM 2008). South Australia: ACS; 2008;87:27-32.
    • (2008) South Australia: ACS , vol.87 , pp. 27-32
    • Weng, C.G.1    Poon, J.2
  • 37
    • 0042744030 scopus 로고    scopus 로고
    • Effect of introducing the Modified Early Warning score on clinical outcomes, cardiopulmonary arrests and intensive care utilisation in acute medical admissions
    • Subbe CP, Davies RG, Williams E, Rutherford P, Gemmell L. Effect of introducing the Modified Early Warning score on clinical outcomes, cardiopulmonary arrests and intensive care utilisation in acute medical admissions. Anaesthesia. 2003;58:797-802.
    • (2003) Anaesthesia , vol.58 , pp. 797-802
    • Subbe, C.P.1    Davies, R.G.2    Williams, E.3    Rutherford, P.4    Gemmell, L.5
  • 38
    • 85049696401 scopus 로고    scopus 로고
    • Accuracy of Modified Early Warning Scores for predicting mortality in hospital: A systematic review and meta-analysis
    • Suwanpasu S, Sattayasomboon Y. Accuracy of Modified Early Warning Scores for predicting mortality in hospital: a systematic review and meta-analysis. J Intensive Crit Care. 2016;02:1-11.
    • (2016) J Intensive Crit Care , vol.2 , pp. 1-11
    • Suwanpasu, S.1    Sattayasomboon, Y.2
  • 41
  • 44
    • 84920273517 scopus 로고    scopus 로고
    • Mortality prediction in the ICU: Can we do better? Results from the Super ICU Learner Algorithm (SICULA) project, a population- based study
    • Pirracchio R, Petersen ML, Carone M, Rigon MR, Chevret S, van der Laan MJ. Mortality prediction in the ICU: can we do better? Results from the Super ICU Learner Algorithm (SICULA) project, a population- based study. Lancet Respir Med. 2015;3:42-52.
    • (2015) Lancet Respir Med , vol.3 , pp. 42-52
    • Pirracchio, R.1    Petersen, M.L.2    Carone, M.3    Rigon, M.R.4    Chevret, S.5    Van Der Laan, M.J.6
  • 45
    • 85041928439 scopus 로고    scopus 로고
    • Interpretable explanations of black boxes by meaningful perturbation
    • Fong RC, Vedaldi A. Interpretable explanations of black boxes by meaningful perturbation. Proc IEEE Int Conf Comput Vis. 2017;1:3449-3457.
    • (2017) Proc IEEE Int Conf Comput Vis , vol.1 , pp. 3449-3457
    • Fong, R.C.1    Vedaldi, A.2
  • 46
    • 85019228440 scopus 로고    scopus 로고
    • InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
    • Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P. InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. Neural Inf Process Syst. 2016;1:2172-2180.
    • (2016) Neural Inf Process Syst , vol.1 , pp. 2172-2180
    • Chen, X.1    Duan, Y.2    Houthooft, R.3    Schulman, J.4    Sutskever, I.5    Abbeel, P.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.