메뉴 건너뛰기




Volumn 237, Issue , 2017, Pages 209-214

Decision support systems in cardiology: A systematic review

Author keywords

Artificial intelligence; Heart disease; Prediction and diagnosis systems

Indexed keywords

ARTIFICIAL HEART; ARTIFICIAL INTELLIGENCE; CARDIOLOGY; DIAGNOSIS; DISEASES; FUZZY LOGIC; KNOWLEDGE BASED SYSTEMS; NANOTECHNOLOGY; WEARABLE TECHNOLOGY;

EID: 85019433944     PISSN: 09269630     EISSN: 18798365     Source Type: Book Series    
DOI: 10.3233/978-1-61499-761-0-209     Document Type: Conference Paper
Times cited : (7)

References (44)
  • 2
    • 0031938579 scopus 로고    scopus 로고
    • Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death
    • Hachamovitch R, et al. Incremental Prognostic Value of Myocardial Perfusion Single Photon Emission Computed Tomography for the Prediction of Cardiac Death. Circulation 1998; 97,6.
    • (1998) Circulation , vol.97 , pp. 6
    • Hachamovitch, R.1
  • 3
    • 0028156822 scopus 로고
    • Effects of computer-based clinical decision support systems on clinician performance and patient outcome: A critical appraisal of research
    • Johnston ME, Langton KB, Haynes RB and Mathieu A. Effects of Computer-based Clinical Decision Support Systems on Clinician Performance and Patient Outcome: A Critical Appraisal of Research. Ann Intern Med 1994; 120,2: 135.
    • (1994) Ann Intern Med , vol.120 , Issue.2 , pp. 135
    • Johnston, M.E.1    Langton, K.B.2    Haynes, R.B.3    Mathieu, A.4
  • 4
    • 0032556178 scopus 로고    scopus 로고
    • Effects of computer-based clinical decision support systems on physician performance and patient outcomes
    • Hunt DL, Haynes RB, Hanna SE and Smith K. Effects of Computer-Based Clinical Decision Support Systems on Physician Performance and Patient Outcomes. JAMA 1998; 280,15: 1339.
    • (1998) JAMA , vol.280 , Issue.15 , pp. 1339
    • Hunt, D.L.1    Haynes, R.B.2    Hanna, S.E.3    Smith, K.4
  • 8
    • 84925780713 scopus 로고    scopus 로고
    • Diagnosis of heart disease by using a radial basis function network classification technique on patients' medical records
    • IEEE MTT-S Int. Microw. Work. Ser
    • Alsalamah M, Amin S and Halloran J. Diagnosis of heart disease by using a radial basis function network classification technique on patients' medical records. RF Wirel. Technol. Biomed. Healthc. Appl. (IMWS-Bio), 2014 IEEE MTT-S Int. Microw. Work. Ser., pp. 1-4.
    • (2014) RF Wirel. Technol. Biomed. Healthc. Appl. (IMWS-Bio) , pp. 1-4
    • Alsalamah, M.1    Amin, S.2    Halloran, J.3
  • 10
    • 84911161456 scopus 로고    scopus 로고
    • An intelligent approach based on principal component analysis and adaptive neuro fuzzy inference system for predicting the risk of cardiovascular diseases
    • Bhuvaneswari Amma NG. An Intelligent Approach Based on Principal Component Analysis and Adaptive Neuro Fuzzy Inference System for Predicting the Risk of Cardiovascular Diseases. In: Proc 2013 Fifth International Conference on Advanced Computing (ICoAC), pp. 241-245.
    • Proc 2013 Fifth International Conference on Advanced Computing (ICoAC) , pp. 241-245
    • Bhuvaneswari Amma, N.G.1
  • 12
    • 84992220331 scopus 로고    scopus 로고
    • Improving the heart disease diagnosis by evolutionary algorithm of PSO and Feed Forward Neural Network
    • Feshki MG and Shijani OS. Improving the heart disease diagnosis by evolutionary algorithm of PSO and Feed Forward Neural Network. In: Proc 2016 Artificial Intelligence and Robotics, IRANOPEN 2016, pp. 48-53.
    • (2016) Proc 2016 Artificial Intelligence and Robotics, IRANOPEN , pp. 48-53
    • Feshki, M.G.1    Shijani, O.S.2
  • 14
    • 84862197995 scopus 로고    scopus 로고
    • Heart failure artificial intelligence-based computer aided diagnosis telecare system
    • Guidi G, Iadanza E, Pettenati MC, Milli M, Pavone F and Biffi Gentili G. Heart failure artificial intelligence-based computer aided diagnosis telecare system. LNCS 2012; 7251: 278-281.
    • (2012) LNCS , vol.7251 , pp. 278-281
    • Guidi, G.1    Iadanza, E.2    Pettenati, M.C.3    Milli, M.4    Pavone, F.5    Biffi Gentili, G.6
  • 16
  • 17
    • 84913529070 scopus 로고    scopus 로고
    • A novel hybrid classification model of genetic algorithms, modified k-nearest neighbor and developed backpropagation neural network
    • Salari N, Shohaimi S, Najafi F, Nallappan M and Karishnarajah I. A novel hybrid classification model of genetic algorithms, modified k-nearest neighbor and developed backpropagation neural network. PLoS One 2014; 9,11: E112987.
    • (2014) PLoS One , vol.9 , Issue.11 , pp. e112987
    • Salari, N.1    Shohaimi, S.2    Najafi, F.3    Nallappan, M.4    Karishnarajah, I.5
  • 18
    • 84925309287 scopus 로고    scopus 로고
    • Prediction of heart disease using multilayer perceptron neural network
    • Sonawane JS and Pantil DR. Prediction of Heart Disease Using Multilayer Perceptron Neural Network. Proc Int. Conf. Inf. Commun. Embed. Syst. (ICICES), 2014, pp. 578-582. DOI: 10.1109/ICICES.2014.7033860
    • (2014) Proc Int. Conf. Inf. Commun. Embed. Syst. (ICICES) , pp. 578-582
    • Sonawane, J.S.1    Pantil, D.R.2
  • 19
    • 84927962090 scopus 로고    scopus 로고
    • A novel neural-inspired learning algorithm with application to clinical risk prediction
    • Tay D, Poh CL and Kitney RI."A novel neural-inspired learning algorithm with application to clinical risk prediction. J Biomed Inform 2015; 54: 305-314.
    • (2015) J Biomed Inform , vol.54 , pp. 305-314
    • Tay, D.1    Poh, C.L.2    Kitney, R.I.3
  • 20
    • 84866441990 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy
    • Adaptive neuro-fuzzy inference system for diagnosis of the heart valve diseases using wavelet transform with entropy. Neural Comput & Applic 2012; 21,7: 1617-1628.
    • (2012) Neural Comput & Applic , vol.21 , Issue.7 , pp. 1617-1628
  • 25
    • 84994171948 scopus 로고    scopus 로고
    • Machine learning approaches to estimate simulated cardiac ejection fraction from electrical impedance tomography
    • Fonseca TL, Goliatt L, Campos LCD, Bastos FS, Barra LPS and Dos Santos RW. Machine learning approaches to estimate simulated cardiac ejection fraction from electrical impedance tomography. LNAI 2016; 10022: 235-246.
    • (2016) LNAI , pp. 235-246
    • Fonseca, T.L.1    Goliatt, L.2    Campos, L.C.D.3    Bastos, F.S.4    Barra, L.P.S.5    Dos Santos, R.W.6
  • 26
    • 80555136727 scopus 로고    scopus 로고
    • Classification of heart sounds based on the least squares support vector machine
    • Güraksin GEH. Classification of Heart Sounds Based on the Least Squares Support Vector Machine. Int J Innov Comput Inf Control 2011; 7,12: 7131-7144,.
    • (2011) Int J Innov Comput Inf Control , vol.7 , Issue.12 , pp. 7131-7144
    • Güraksin, G.E.H.1
  • 27
    • 84947613048 scopus 로고    scopus 로고
    • Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics
    • Zheng Y, Guo X, Qin J and Xiao S. Computer-assisted diagnosis for chronic heart failure by the analysis of their cardiac reserve and heart sound characteristics. Comput Methods Programs Biomed 2015; 122,3: 372-383.
    • (2015) Comput Methods Programs Biomed , vol.122 , Issue.3 , pp. 372-383
    • Zheng, Y.1    Guo, X.2    Qin, J.3    Xiao, S.4
  • 28
    • 84862239505 scopus 로고    scopus 로고
    • Evaluating cardiac health through semantic soft computing techniques
    • Acampora G, Lee CS, Vitiello A and Wang M-H. Evaluating cardiac health through semantic soft computing techniques. Soft Comput 2012; 16,7: 1165-1181.
    • (2012) Soft Comput , vol.16 , Issue.7 , pp. 1165-1181
    • Acampora, G.1    Lee, C.S.2    Vitiello, A.3    Wang, M.-H.4
  • 30
    • 84877265300 scopus 로고    scopus 로고
    • Fuzzy rule - based system applied to risk estimation of cardiovascular patients
    • Bohacik J, Davis DN. Fuzzy rule - based system applied to risk estimation of cardiovascular patients. Journal of multiple-valued logic and soft computing 2013; 20,5: 445-466.
    • (2013) Journal of multiple-valued logic and soft computing , vol.20 , Issue.5 , pp. 445-466
    • Bohacik, J.1    Davis, D.N.2
  • 31
    • 84899475600 scopus 로고    scopus 로고
    • A genetic fuzzy system for unstable angina risk assessment
    • Dong W, Huang Z, Ji L and Duan H. A genetic fuzzy system for unstable angina risk assessment. BMC Med Inform Decis Mak 2014; 14: 12.
    • (2014) BMC Med Inform Decis Mak , vol.14 , pp. 12
    • Dong, W.1    Huang, Z.2    Ji, L.3    Duan, H.4
  • 32
    • 84875652814 scopus 로고    scopus 로고
    • Combining machine learning and clinical rules to build an algorithm for predicting ICU mortality risk
    • Krajnak M, Xue J, Kaiser W and Balloni W. Combining machine learning and clinical rules to build an algorithm for predicting ICU mortality risk. Computing in Cardiology 2012; 39: 401-404.
    • (2012) Computing in Cardiology , vol.39 , pp. 401-404
    • Krajnak, M.1    Xue, J.2    Kaiser, W.3    Balloni, W.4
  • 35
    • 84883383030 scopus 로고    scopus 로고
    • A belief rule based clinical decision support system to assess suspicion of heart failure from signs, symptoms and risk factors
    • Rahaman S and Hossain MS. A belief rule based clinical decision support system to assess suspicion of heart failure from signs, symptoms and risk factors. In: 2013 International Conference on Informatics, Electronics and Vision, ICIEV 2013. DOI: 10.1109/ICIEV.2013.6572668
    • (2013) 2013 International Conference on Informatics, Electronics and Vision, ICIEV
    • Rahaman, S.1    Hossain, M.S.2
  • 36
    • 84945353785 scopus 로고    scopus 로고
    • A hybrid model for automatic identification of risk factors for heart disease
    • Yang H and Garibaldi JM. A hybrid model for automatic identification of risk factors for heart disease," J Biomed Inform 2015; 58: S171-S182.
    • (2015) J Biomed Inform , vol.58 , pp. S171-S182
    • Yang, H.1    Garibaldi, J.M.2
  • 41
    • 84880141012 scopus 로고    scopus 로고
    • Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population
    • Arsanjani R, et al. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. Journal of Nuclear Cardiology 2013; 20,4: 553-562.
    • (2013) Journal of Nuclear Cardiology , vol.20 , Issue.4 , pp. 553-562
    • Arsanjani, R.1
  • 42
    • 84923169487 scopus 로고    scopus 로고
    • An ensemble based decision support framework for intelligent heart disease diagnosis
    • Bashir S, Qamar U and Younus Javed M. An ensemble based decision support framework for intelligent heart disease diagnosis. In: Proc Int. Conf. Inf. Soc. (i-Society 2014), pp. 259-264.
    • (2014) Proc Int. Conf. Inf. Soc. (i-Society , pp. 259-264
    • Bashir, S.1    Qamar, U.2    Younus Javed, M.3
  • 43
    • 85044791167 scopus 로고    scopus 로고
    • Performance evaluation of different machine learning techniques for prediction of heart disease
    • Dwivedi AK. Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput & Applic 2016; 1-9.
    • (2016) Neural Comput & Applic , pp. 1-9
    • Dwivedi, A.K.1
  • 44
    • 84954168720 scopus 로고    scopus 로고
    • M4CVD: Mobile machine learning model for monitoring cardiovascular disease
    • Boursalie O, Samavi R and Doyle TE. M4CVD: Mobile machine learning model for monitoring cardiovascular disease. Procedia Computer Science 2015; 63: 384-391.
    • (2015) Procedia Computer Science , vol.63 , pp. 384-391
    • Boursalie, O.1    Samavi, R.2    Doyle, T.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.