메뉴 건너뛰기




Volumn 1, Issue 1, 2018, Pages

Fast and accurate view classification of echocardiograms using deep learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER AIDED ANALYSIS; DEEP LEARNING; ECHOCARDIOGRAPHY; NEURAL NETWORKS;

EID: 85086330988     PISSN: None     EISSN: 23986352     Source Type: Journal    
DOI: 10.1038/s41746-017-0013-1     Document Type: Article
Times cited : (391)

References (18)
  • 2
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • COI: 1:CAS:528:DC%2BC2sXhsFGltrY%3D, PID: 28117445
    • Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017)
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1
  • 3
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • PID: 27898976
    • Gulshan, V. et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402–2410 (2016)
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 5
    • 79951983189 scopus 로고    scopus 로고
    • ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography
    • PID: 21349406
    • Douglas, P. S. et al. ACCF/ASE/AHA/ASNC/HFSA/HRS/SCAI/SCCM/SCCT/SCMR 2011 appropriate use criteria for echocardiography. J. Am. Coll. Cardiol. 57, 1126–1166 (2011)
    • (2011) J. Am. Coll. Cardiol. , vol.57 , pp. 1126-1166
    • Douglas, P.S.1
  • 6
    • 84980622283 scopus 로고    scopus 로고
    • A minimum dataset for a standard adult transthoracic echocardiogram: a guideline protocol from the British Society of Echocardiography
    • PID: 26693316
    • Wharton, G. et al. A minimum dataset for a standard adult transthoracic echocardiogram: a guideline protocol from the British Society of Echocardiography. Echo Res. Pract. 2, G9–G24 (2015)
    • (2015) Echo Res. Pract. , vol.2 , pp. G9-G24
    • Wharton, G.1
  • 7
    • 84994035399 scopus 로고    scopus 로고
    • Automatic apical view classification of echocardiograms using a discriminative learning dictionary
    • PID: 27816858
    • Khamis, H. et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. Med. Image Anal. 36, 15–21 (2017)
    • (2017) Med. Image Anal. , vol.36 , pp. 15-21
    • Khamis, H.1
  • 8
    • 84942133943 scopus 로고    scopus 로고
    • Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study
    • PID: 26403342
    • Knackstedt, C. et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J. Am. Coll. Cardiol. 66, 1456–1466 (2015)
    • (2015) J. Am. Coll. Cardiol. , vol.66 , pp. 1456-1466
    • Knackstedt, C.1
  • 9
    • 84997693769 scopus 로고    scopus 로고
    • Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography
    • PID: 27884247
    • Narula, S. et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J. Am. Coll. Cardiol. 68, 2287–2295 (2016)
    • (2016) J. Am. Coll. Cardiol. , vol.68 , pp. 2287-2295
    • Narula, S.1
  • 11
    • 84975795358 scopus 로고    scopus 로고
    • Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy
    • Sengupta, P. P. et al. Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ. Cardiovasc. Imaging 9, 10.1161/CIRCIMAGING.115.004330 (2016)
    • (2016) Circ. Cardiovasc. Imaging , vol.9
    • Sengupta, P.P.1
  • 12
    • 84995804182 scopus 로고    scopus 로고
    • A fused deep learning architecture for viewpoint classification of echocardiography
    • Gao, X. H., Li, W., Loomes, M. & Wang, L. Y. A fused deep learning architecture for viewpoint classification of echocardiography. Inf. Fusion 36, 103–113 (2017)
    • (2017) Inf. Fusion , vol.36 , pp. 103-113
    • Gao, X.H.1    Li, W.2    Loomes, M.3    Wang, L.Y.4
  • 13
    • 84941619213 scopus 로고    scopus 로고
    • Mid-level image representations for real-time heart view plane classification of echocardiograms
    • PID: 26386547
    • Penatti, O. A. et al. Mid-level image representations for real-time heart view plane classification of echocardiograms. Comput. Biol. Med. 66, 66–81 (2015)
    • (2015) Comput. Biol. Med. , vol.66 , pp. 66-81
    • Penatti, O.A.1
  • 15
    • 85135598084 scopus 로고    scopus 로고
    • Keras (GitHub
    • Keras (GitHub, 2015)
    • (2015)
  • 17
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)
    • (2015) Int. J. Comput. Vision , vol.115 , pp. 211-252
    • Russakovsky, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.