메뉴 건너뛰기




Volumn 25, Issue 1, 2017, Pages 116-122

Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes

Author keywords

Dynamic modeling; Fermentation processes; Gaussian mixture regression; Instrumentation; Process systems

Indexed keywords

DYNAMIC MODELS; GAUSSIAN DISTRIBUTION; PROCESS CONTROL; REGRESSION ANALYSIS;

EID: 85001790725     PISSN: 10049541     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cjche.2016.07.005     Document Type: Article
Times cited : (30)

References (27)
  • 1
    • 78649468188 scopus 로고    scopus 로고
    • Review of adaptation mechanisms for data-driven soft sensors
    • [1] Kadlec, P., Grbić, R., Gabrys, B., Review of adaptation mechanisms for data-driven soft sensors. Comput. Chem. Eng. 35 (2011), 1–24.
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 1-24
    • Kadlec, P.1    Grbić, R.2    Gabrys, B.3
  • 2
    • 71349085411 scopus 로고    scopus 로고
    • Model optimization of SVM for a fermentation soft sensor
    • [2] Liu, G., Zhou, D., Xu, H., Mei, C., Model optimization of SVM for a fermentation soft sensor. Expert Syst. Appl. 37 (2010), 2708–2713.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 2708-2713
    • Liu, G.1    Zhou, D.2    Xu, H.3    Mei, C.4
  • 3
    • 84924229688 scopus 로고    scopus 로고
    • Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process
    • [3] Jin, H., Chen, X., Yang, J., Wang, L., Wu, L., Online local learning based adaptive soft sensor and its application to an industrial fed-batch chlortetracycline fermentation process. Chemom. Intell. Lab. Syst. 143 (2015), 58–78.
    • (2015) Chemom. Intell. Lab. Syst. , vol.143 , pp. 58-78
    • Jin, H.1    Chen, X.2    Yang, J.3    Wang, L.4    Wu, L.5
  • 5
    • 33746991704 scopus 로고    scopus 로고
    • Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant
    • [5] Sharmin, R., Sundararaj, U., Shah, S., Griend, L.V., Sun, Y.-J., Inferential sensors for estimation of polymer quality parameters: Industrial application of a PLS-based soft sensor for a LDPE plant. Chem. Eng. Sci. 61 (2006), 6372–6384.
    • (2006) Chem. Eng. Sci. , vol.61 , pp. 6372-6384
    • Sharmin, R.1    Sundararaj, U.2    Shah, S.3    Griend, L.V.4    Sun, Y.-J.5
  • 6
    • 84921963027 scopus 로고    scopus 로고
    • Comparison of variable selection methods for PLS-based soft sensor modeling
    • [6] Wang, Z.X., He, Q.P., Wang, J., Comparison of variable selection methods for PLS-based soft sensor modeling. J. Process Control 26 (2015), 56–72.
    • (2015) J. Process Control , vol.26 , pp. 56-72
    • Wang, Z.X.1    He, Q.P.2    Wang, J.3
  • 7
    • 84855946000 scopus 로고    scopus 로고
    • Data-driven prediction of the product formation in industrial 2-keto-L-gulonic acid fermentation
    • [7] Cui, L., Xie, P., Sun, J., Yu, T., Yuan, J., Data-driven prediction of the product formation in industrial 2-keto-L-gulonic acid fermentation. Comput. Chem. Eng. 36 (2012), 386–391.
    • (2012) Comput. Chem. Eng. , vol.36 , pp. 386-391
    • Cui, L.1    Xie, P.2    Sun, J.3    Yu, T.4    Yuan, J.5
  • 8
    • 84902689450 scopus 로고    scopus 로고
    • Development of a variable selection method for soft sensor using artificial neural network and nonnegative garrote
    • [8] Sun, K., Liu, J., Kang, J.-L., Jang, S.-S., Wong, D.S.-H., Chen, D.-S., Development of a variable selection method for soft sensor using artificial neural network and nonnegative garrote. J. Process Control 24 (2014), 1068–1075.
    • (2014) J. Process Control , vol.24 , pp. 1068-1075
    • Sun, K.1    Liu, J.2    Kang, J.-L.3    Jang, S.-S.4    Wong, D.S.-H.5    Chen, D.-S.6
  • 9
    • 84903588321 scopus 로고    scopus 로고
    • Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants
    • [9] Kaneko, H., Funatsu, K., Adaptive soft sensor based on online support vector regression and Bayesian ensemble learning for various states in chemical plants. Chemom. Intell. Lab. Syst. 137 (2014), 57–66.
    • (2014) Chemom. Intell. Lab. Syst. , vol.137 , pp. 57-66
    • Kaneko, H.1    Funatsu, K.2
  • 10
    • 67349089877 scopus 로고    scopus 로고
    • Data-driven Soft Sensors in the process industry
    • [10] Kadlec, P., Gabrys, B., Strandt, S., Data-driven Soft Sensors in the process industry. Comput. Chem. Eng. 33 (2009), 795–814.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 795-814
    • Kadlec, P.1    Gabrys, B.2    Strandt, S.3
  • 11
    • 84905715987 scopus 로고    scopus 로고
    • Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression
    • [11] Yuan, X., Ge, Z., Song, Z., Soft sensor model development in multiphase/multimode processes based on Gaussian mixture regression. Chemom. Intell. Lab. Syst. 138 (2014), 97–109.
    • (2014) Chemom. Intell. Lab. Syst. , vol.138 , pp. 97-109
    • Yuan, X.1    Ge, Z.2    Song, Z.3
  • 12
    • 36348994942 scopus 로고    scopus 로고
    • Gaussian process and its application to soft-sensor modeling
    • [12] Wang, H., Gaussian process and its application to soft-sensor modeling. J. Chem. Ind. Eng. 58 (2007), 2840–2845.
    • (2007) J. Chem. Ind. Eng. , vol.58 , pp. 2840-2845
    • Wang, H.1
  • 13
    • 52949129443 scopus 로고    scopus 로고
    • Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression
    • [13] Sciascio, F.D., Amicarelli, A.N., Biomass estimation in batch biotechnological processes by Bayesian Gaussian process regression. Comput. Chem. Eng. 32 (2008), 3264–3273.
    • (2008) Comput. Chem. Eng. , vol.32 , pp. 3264-3273
    • Sciascio, F.D.1    Amicarelli, A.N.2
  • 14
    • 84973099950 scopus 로고    scopus 로고
    • Finite Mixture Models
    • John Wiley & Sons
    • [14] McLachlan, G., Peel, D., Finite Mixture Models. 2004, John Wiley & Sons.
    • (2004)
    • McLachlan, G.1    Peel, D.2
  • 15
    • 84905283780 scopus 로고    scopus 로고
    • Dynamic soft sensor modeling based on state detection and impulses response template
    • [15] Fan, Z., Cao, J., Wei, Y., Dynamic soft sensor modeling based on state detection and impulses response template. Chinese Control and Decision Conference, 2014, 4031–4037.
    • (2014) Chinese Control and Decision Conference , pp. 4031-4037
    • Fan, Z.1    Cao, J.2    Wei, Y.3
  • 16
    • 84924813762 scopus 로고    scopus 로고
    • Enhancing dynamic soft sensors based on DPLS: a temporal smoothness regularization approach
    • [16] Bernstein, A., Stein, C., Enhancing dynamic soft sensors based on DPLS: a temporal smoothness regularization approach. J. Process Control 28 (2015), 17–26.
    • (2015) J. Process Control , vol.28 , pp. 17-26
    • Bernstein, A.1    Stein, C.2
  • 17
    • 33845650294 scopus 로고    scopus 로고
    • Gaussian Mixture Regression and Classification
    • Rice University
    • [17] Sung, H.G., Gaussian Mixture Regression and Classification. 2004, Rice University.
    • (2004)
    • Sung, H.G.1
  • 19
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • [19] Yu, J., Qin, S.J., Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AICHE J. 54 (2008), 1811–1829.
    • (2008) AICHE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 20
    • 33646775297 scopus 로고    scopus 로고
    • “Assumed inherent sensor” inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process
    • [20] Dai, X., Wang, W., Ding, Y., Sun, Z., “Assumed inherent sensor” inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process. Comput. Chem. Eng. 30 (2006), 1203–1225.
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 1203-1225
    • Dai, X.1    Wang, W.2    Ding, Y.3    Sun, Z.4
  • 21
    • 84988669605 scopus 로고    scopus 로고
    • Some Aspects on Nonlinear System Identification
    • [21] Ljung, L., Some Aspects on Nonlinear System Identification. 2007.
    • (2007)
    • Ljung, L.1
  • 22
    • 4444289955 scopus 로고    scopus 로고
    • Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
    • [22] Zamprogna, E., Barolo, M., Seborg, D.E., Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. J. Process Control 15 (2005), 39–52.
    • (2005) J. Process Control , vol.15 , pp. 39-52
    • Zamprogna, E.1    Barolo, M.2    Seborg, D.E.3
  • 23
    • 0033036852 scopus 로고    scopus 로고
    • Variable selection in large environmental data sets using principal components analysis
    • [23] King, J.R., Jackson, D.A., Variable selection in large environmental data sets using principal components analysis. Environmetrics 10 (1999), 67–77.
    • (1999) Environmetrics , vol.10 , pp. 67-77
    • King, J.R.1    Jackson, D.A.2
  • 24
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: understanding AIC and BIC in model selection
    • [24] Burnham, K.P., Anderson, D.R., Multimodel inference: understanding AIC and BIC in model selection. Sociol. Methods Res. 33 (2004), 261–304.
    • (2004) Sociol. Methods Res. , vol.33 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 25
    • 84938697051 scopus 로고    scopus 로고
    • Quality prediction in complex batch processes with just-in-time learning model based on non-Gaussian dissimilarity measure
    • [25] Zhang, X., Li, Y., Kano, M., Quality prediction in complex batch processes with just-in-time learning model based on non-Gaussian dissimilarity measure. Ind. Eng. Chem. Res. 54:31 (2015), 7694–7705.
    • (2015) Ind. Eng. Chem. Res. , vol.54 , Issue.31 , pp. 7694-7705
    • Zhang, X.1    Li, Y.2    Kano, M.3
  • 26
    • 0037110983 scopus 로고    scopus 로고
    • A modular simulation package for fed-batch fermentation: penicillin production
    • [26] Birol, G., Ündey, C., Cinar, A., A modular simulation package for fed-batch fermentation: penicillin production. Comput. Chem. Eng. 26 (2002), 1553–1565.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1553-1565
    • Birol, G.1    Ündey, C.2    Cinar, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.