메뉴 건너뛰기




Volumn 202, Issue 5, 2019, Pages 1510-1520

GA I2 signaling regulates inflammasome priming and cytokine production by biasing macrophage phenotype determination

Author keywords

[No Author keywords available]

Indexed keywords

BETA INTERFERON; CRYOPYRIN; G PROTEIN COUPLED RECEPTOR KINASE 2; INFLAMMASOME; INTERLEUKIN 1BETA; INTERLEUKIN 4; LIPOPOLYSACCHARIDE; MITOGEN ACTIVATED PROTEIN KINASE 1; MITOGEN ACTIVATED PROTEIN KINASE 3; PROTEIN AIM2; PROTEIN NLRC4; STAT3 PROTEIN; UNCLASSIFIED DRUG; CYTOKINE; INHIBITORY GUANINE NUCLEOTIDE BINDING PROTEIN;

EID: 85061845387     PISSN: 00221767     EISSN: 15506606     Source Type: Journal    
DOI: 10.4049/jimmunol.1801145     Document Type: Article
Times cited : (17)

References (69)
  • 1
    • 84910155187 scopus 로고    scopus 로고
    • Autophagy in macrophages: Impacting inflammation and bacterial infection
    • Vural, A., and J. H. Kehrl. 2014. Autophagy in macrophages: impacting inflammation and bacterial infection. Scientifica (Cairo) 2014: 825463.
    • (2014) Scientifica (Cairo) , vol.2014 , pp. 825463
    • Vural, A.1    Kehrl, J.H.2
  • 2
    • 85013135313 scopus 로고    scopus 로고
    • Macrophage polarization
    • Murray, P. J. 2017. Macrophage polarization. Annu. Rev. Physiol. 79: 541–566.
    • (2017) Annu. Rev. Physiol. , vol.79 , pp. 541-566
    • Murray, P.J.1
  • 3
    • 84861474688 scopus 로고    scopus 로고
    • Signaling in innate immunity and inflammation
    • Newton, K., and V. M. Dixit. 2012. Signaling in innate immunity and inflammation. Cold Spring Harb. Perspect. Biol. 4. DOI: 10.1101/cshperspect. a006049.
    • (2012) Cold Spring Harb. Perspect. Biol. , vol.4
    • Newton, K.1    Dixit, V.M.2
  • 4
    • 33847781275 scopus 로고    scopus 로고
    • Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling
    • Blumer, J. B., A. V. Smrcka, and S. M. Lanier. 2007. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling. Pharmacol. Ther. 113: 488–506.
    • (2007) Pharmacol. Ther. , vol.113 , pp. 488-506
    • Blumer, J.B.1    Smrcka, A.V.2    Lanier, S.M.3
  • 5
    • 84925339377 scopus 로고    scopus 로고
    • Regulators of G-protein-signaling proteins: Negative modulators of G-protein-coupled receptor signaling
    • Woodard, G. E., I. Jardín, A. Berna-Erro, G. M. Salido, and J. A. Rosado. 2015. Regulators of G-protein-signaling proteins: negative modulators of G-protein-coupled receptor signaling. Int. Rev. Cell Mol. Biol. 317: 97–183.
    • (2015) Int. Rev. Cell Mol. Biol. , vol.317 , pp. 97-183
    • Woodard, G.E.1    Jardín, I.2    Berna-Erro, A.3    Salido, G.M.4    Rosado, J.A.5
  • 6
    • 84963988183 scopus 로고    scopus 로고
    • The impact of RGS and other G-protein regulatory proteins on Gai-mediated signaling in immunity
    • Kehrl, J. H. 2016. The impact of RGS and other G-protein regulatory proteins on Gai-mediated signaling in immunity. Biochem. Pharmacol. 114: 40–52.
    • (2016) Biochem. Pharmacol. , vol.114 , pp. 40-52
    • Kehrl, J.H.1
  • 7
    • 0031939692 scopus 로고    scopus 로고
    • Mechanism of RGS4, a GTPase-activating protein for G protein a subunits
    • Srinivasa, S. P., N. Watson, M. C. Overton, and K. J. Blumer. 1998. Mechanism of RGS4, a GTPase-activating protein for G protein a subunits. J. Biol. Chem. 273: 1529–1533.
    • (1998) J. Biol. Chem. , vol.273 , pp. 1529-1533
    • Srinivasa, S.P.1    Watson, N.2    Overton, M.C.3    Blumer, K.J.4
  • 8
    • 84855349531 scopus 로고    scopus 로고
    • Group II activators of G-protein signalling and proteins containing a G-protein regulatory motif
    • Blumer, J. B., S. S. Oner, and S. M. Lanier. 2012. Group II activators of G-protein signalling and proteins containing a G-protein regulatory motif. Acta Physiol. (Oxf.) 204: 202–218.
    • (2012) Acta Physiol. (Oxf.) , vol.204 , pp. 202-218
    • Blumer, J.B.1    Oner, S.S.2    Lanier, S.M.3
  • 9
    • 84894083655 scopus 로고    scopus 로고
    • Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad
    • Blumer, J. B., and S. M. Lanier. 2014. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol. Pharmacol. 85: 388–396.
    • (2014) Mol. Pharmacol. , vol.85 , pp. 388-396
    • Blumer, J.B.1    Lanier, S.M.2
  • 11
    • 85011617141 scopus 로고    scopus 로고
    • G protein-coupled receptors in macrophages
    • Lin, H.-H., and M. Stacey. 2016. G protein-coupled receptors in macrophages. Microbiol. Spectr. 4. DOI:10.1128/microbiolspec.MCHD-0028-2016
    • (2016) Microbiol. Spectr. , vol.4
    • Lin, H.-H.1    Stacey, M.2
  • 13
    • 85027948252 scopus 로고    scopus 로고
    • 4373–4374
    • Published erratum 2011 Oncogene 30
    • Li, Y., L. Cai, H. Wang, P. Wu, W. Gu, Y. Chen, H. Hao, K. Tang, P. Yi, M. Liu, et al. 2011. Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-2. [Published erratum appears in 2011 Oncogene 30: 4373–4374.] Oncogene 30: 3887–3899.
    • (2011) Oncogene , vol.30 , pp. 3887-3899
    • Li, Y.1    Cai, L.2    Wang, H.3    Wu, P.4    Gu, W.5    Chen, Y.6    Hao, H.7    Tang, K.8    Yi, P.9    Liu, M.10
  • 14
    • 84872577084 scopus 로고    scopus 로고
    • Cell surface receptor FPR2 promotes antitumor host defense by limiting M2 polarization of macrophages
    • Liu, Y., K. Chen, C. Wang, W. Gong, T. Yoshimura, M. Liu, and J. M. Wang. 2013. Cell surface receptor FPR2 promotes antitumor host defense by limiting M2 polarization of macrophages. Cancer Res. 73: 550–560.
    • (2013) Cancer Res , vol.73 , pp. 550-560
    • Liu, Y.1    Chen, K.2    Wang, C.3    Gong, W.4    Yoshimura, T.5    Liu, M.6    Wang, J.M.7
  • 16
    • 85020461056 scopus 로고    scopus 로고
    • CXCR3.1 and CXCR3.2 differentially contribute to macrophage polarization in teleost fish
    • Lu, X.-J., Q. Chen, Y.-J. Rong, F. Chen, and J. Chen. 2017. CXCR3.1 and CXCR3.2 differentially contribute to macrophage polarization in teleost fish. J. Immunol. 198: 4692–4706.
    • (2017) J. Immunol. , vol.198 , pp. 4692-4706
    • Lu, X.-J.1    Chen, Q.2    Rong, Y.-J.3    Chen, F.4    Chen, J.5
  • 17
    • 84904913957 scopus 로고    scopus 로고
    • CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model
    • Oghumu, S., S. Varikuti, C. Terrazas, D. Kotov, M. W. Nasser, C. A. Powell, R. K. Ganju, and A. R. Satoskar. 2014. CXCR3 deficiency enhances tumor progression by promoting macrophage M2 polarization in a murine breast cancer model. Immunology 143: 109–119.
    • (2014) Immunology , vol.143 , pp. 109-119
    • Oghumu, S.1    Varikuti, S.2    Terrazas, C.3    Kotov, D.4    Nasser, M.W.5    Powell, C.A.6    Ganju, R.K.7    Satoskar, A.R.8
  • 18
    • 0033584960 scopus 로고    scopus 로고
    • Quantitative analysis of formyl peptide receptor coupling to g(i)a(1), g(i)a(2), and g(i)a(3)
    • Wenzel-Seifert, K., J. M. Arthur, H.-Y. Liu, and R. Seifert. 1999. Quantitative analysis of formyl peptide receptor coupling to g(i)a(1), g(i)a(2), and g(i)a(3). J. Biol. Chem. 274: 33259–33266.
    • (1999) J. Biol. Chem. , vol.274 , pp. 33259-33266
    • Wenzel-Seifert, K.1    Arthur, J.M.2    Liu, H.-Y.3    Seifert, R.4
  • 19
    • 84921503428 scopus 로고    scopus 로고
    • FPR2/ALXR agonists and the resolution of inflammation
    • Corminboeuf, O., and X. Leroy. 2015. FPR2/ALXR agonists and the resolution of inflammation. J. Med. Chem. 58: 537–559.
    • (2015) J. Med. Chem. , vol.58 , pp. 537-559
    • Corminboeuf, O.1    Leroy, X.2
  • 20
    • 84924423278 scopus 로고    scopus 로고
    • WRAPping up early monocyte and neutrophil recruitment in atherogenesis via Annexin A1/FPR2 signaling
    • Butcher, M. J., and E. V. Galkina. 2015. wRAPping up early monocyte and neutrophil recruitment in atherogenesis via Annexin A1/FPR2 signaling. Circ. Res. 116: 774–777.
    • (2015) Circ. Res. , vol.116 , pp. 774-777
    • Butcher, M.J.1    Galkina, E.V.2
  • 23
    • 66749174867 scopus 로고    scopus 로고
    • The inflammasomes: Guardians of the body
    • Martinon, F., A. Mayor, and J. Tschopp. 2009. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27: 229–265.
    • (2009) Annu. Rev. Immunol. , vol.27 , pp. 229-265
    • Martinon, F.1    Mayor, A.2    Tschopp, J.3
  • 24
    • 85021382567 scopus 로고    scopus 로고
    • The transcription factor EB links cellular stress to the immune response
    • Nabar, N. R., and J. H. Kehrl. 2017. The transcription factor EB links cellular stress to the immune response. Yale J. Biol. Med. 90: 301–315.
    • (2017) Yale J. Biol. Med. , vol.90 , pp. 301-315
    • Nabar, N.R.1    Kehrl, J.H.2
  • 25
    • 84936891896 scopus 로고    scopus 로고
    • Inflammasomes: Mechanism of action, role in disease, and therapeutics
    • Guo, H., J. B. Callaway, and J. P. Y. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21: 677–687.
    • (2015) Nat. Med. , vol.21 , pp. 677-687
    • Guo, H.1    Callaway, J.B.2    Ting, J.P.Y.3
  • 29
    • 84908891845 scopus 로고    scopus 로고
    • Canonical and noncanonical g-protein signaling helps coordinate actin dynamics to promote macrophage phagocytosis of zy-mosan
    • Huang, N. N., S. Becker, C. Boularan, O. Kamenyeva, A. Vural, I. Y. Hwang, C. S. Shi, and J. H. Kehrl. 2014. Canonical and noncanonical g-protein signaling helps coordinate actin dynamics to promote macrophage phagocytosis of zy-mosan. Mol. Cell. Biol. 34: 4186–4199.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 4186-4199
    • Huang, N.N.1    Becker, S.2    Boularan, C.3    Kamenyeva, O.4    Vural, A.5    Hwang, I.Y.6    Shi, C.S.7    Kehrl, J.H.8
  • 32
    • 80051750096 scopus 로고    scopus 로고
    • Regulator of G-protein signaling-10 negatively regulates NF-kB in microglia and neuroprotects dopaminergic neurons in hemiparkinsonian rats
    • Lee, J. K., J. Chung, F. E. McAlpine, and M. G. Tansey. 2011. Regulator of G-protein signaling-10 negatively regulates NF-kB in microglia and neuroprotects dopaminergic neurons in hemiparkinsonian rats. J. Neurosci. 31: 11879–11888.
    • (2011) J. Neurosci. , vol.31 , pp. 11879-11888
    • Lee, J.K.1    Chung, J.2    McAlpine, F.E.3    Tansey, M.G.4
  • 33
    • 84940118627 scopus 로고    scopus 로고
    • B lymphocyte-specific loss of ric-8a results in a Ga protein deficit and severe humoral immunodeficiency
    • Boularan, C., I. Y. Hwang, O. Kamenyeva, C. Park, K. Harrison, Z. Huang, and J. H. Kehrl. 2015. B lymphocyte-specific loss of ric-8a results in a Ga protein deficit and severe humoral immunodeficiency. J. Immunol. 195: 2090–2102.
    • (2015) J. Immunol. , vol.195 , pp. 2090-2102
    • Boularan, C.1    Hwang, I.Y.2    Kamenyeva, O.3    Park, C.4    Harrison, K.5    Huang, Z.6    Kehrl, J.H.7
  • 34
    • 77954888367 scopus 로고    scopus 로고
    • Variations in Gnai2 and Rgs1 expression affect chemokine receptor signaling and the organization of secondary lymphoid organs
    • Hwang, I. Y., C. Park, K. A. Harrision, N. N. Huang, and J. H. Kehrl. 2010. Variations in Gnai2 and Rgs1 expression affect chemokine receptor signaling and the organization of secondary lymphoid organs. Genes Immun. 11: 384–396.
    • (2010) Genes Immun , vol.11 , pp. 384-396
    • Hwang, I.Y.1    Park, C.2    Harrision, K.A.3    Huang, N.N.4    Kehrl, J.H.5
  • 38
    • 84896716395 scopus 로고    scopus 로고
    • Critical role of regulator G-protein signaling 10 (RGS10) in modulating macrophage M1/M2 activation
    • Lee, J. K., J. Chung, G. T. Kannarkat, and M. G. Tansey. 2013. Critical role of regulator G-protein signaling 10 (RGS10) in modulating macrophage M1/M2 activation. PLoS One 8: e81785.
    • (2013) PLoS One , vol.8
    • Lee, J.K.1    Chung, J.2    Kannarkat, G.T.3    Tansey, M.G.4
  • 39
    • 84976516826 scopus 로고    scopus 로고
    • Inflammasomes: Mechanism of assembly, regulation and signalling
    • Broz, P., and V. M. Dixit. 2016. Inflammasomes: mechanism of assembly, regulation and signalling. Nat. Rev. Immunol. 16: 407–420.
    • (2016) Nat. Rev. Immunol. , vol.16 , pp. 407-420
    • Broz, P.1    Dixit, V.M.2
  • 40
    • 84918809100 scopus 로고    scopus 로고
    • Macrophage cytokines: Involvement in immunity and infectious diseases
    • Arango Duque, G., and A. Descoteaux. 2014. Macrophage cytokines: involvement in immunity and infectious diseases. Front. Immunol. 5: 491.
    • (2014) Front. Immunol. , vol.5 , pp. 491
    • Arango Duque, G.1    Descoteaux, A.2
  • 41
    • 78650647259 scopus 로고    scopus 로고
    • Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages
    • Iyer, S. S., A. A. Ghaffari, and G. Cheng. 2010. Lipopolysaccharide-mediated IL-10 transcriptional regulation requires sequential induction of type I IFNs and IL-27 in macrophages. J. Immunol. 185: 6599–6607.
    • (2010) J. Immunol. , vol.185 , pp. 6599-6607
    • Iyer, S.S.1    Ghaffari, A.A.2    Cheng, G.3
  • 42
    • 0031051444 scopus 로고    scopus 로고
    • Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins
    • Fields, T. A., and P. J. Casey. 1997. Signalling functions and biochemical properties of pertussis toxin-resistant G-proteins. Biochem. J. 321: 561–571.
    • (1997) Biochem. J. , vol.321 , pp. 561-571
    • Fields, T.A.1    Casey, P.J.2
  • 43
    • 43049179999 scopus 로고    scopus 로고
    • LPS/TLR4 signal transduction pathway
    • Lu, Y.-C., W.-C. Yeh, and P. S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokine 42: 145–151.
    • (2008) Cytokine , vol.42 , pp. 145-151
    • Lu, Y.-C.1    Yeh, W.-C.2    Ohashi, P.S.3
  • 44
    • 0033111732 scopus 로고    scopus 로고
    • Both Erk and p38 kinases are necessary for cytokine gene transcription
    • Carter, A. B., M. M. Monick, and G. W. Hunninghake. 1999. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am. J. Respir. Cell Mol. Biol. 20: 751–758.
    • (1999) Am. J. Respir. Cell Mol. Biol. , vol.20 , pp. 751-758
    • Carter, A.B.1    Monick, M.M.2    Hunninghake, G.W.3
  • 46
    • 64149112132 scopus 로고    scopus 로고
    • STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria
    • Samavati, L., R. Rastogi, W. Du, M. Hüttemann, A. Fite, and L. Franchi. 2009. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol. Immunol. 46: 1867–1877.
    • (2009) Mol. Immunol. , vol.46 , pp. 1867-1877
    • Samavati, L.1    Rastogi, R.2    Du, W.3    Hüttemann, M.4    Fite, A.5    Franchi, L.6
  • 47
    • 33644506745 scopus 로고    scopus 로고
    • Lipopolysaccharide-induced production of interleukin-10 is promoted by the serine/threonine kinase Akt
    • Pengal, R. A., L. P. Ganesan, G. Wei, H. Fang, M. C. Ostrowski, and S. Tridandapani. 2006. Lipopolysaccharide-induced production of interleukin-10 is promoted by the serine/threonine kinase Akt. Mol. Immunol. 43: 1557–1564.
    • (2006) Mol. Immunol. , vol.43 , pp. 1557-1564
    • Pengal, R.A.1    Ganesan, L.P.2    Wei, G.3    Fang, H.4    Ostrowski, M.C.5    Tridandapani, S.6
  • 48
    • 85044680054 scopus 로고    scopus 로고
    • The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages
    • Czimmerer, Z., B. Daniel, A. Horvath, D. Rückerl, G. Nagy, M. Kiss, M. Peloquin, M. M. Budai, I. Cuaranta-Monroy, Z. Simandi, et al. 2018. The transcription factor STAT6 mediates direct repression of inflammatory enhancers and limits activation of alternatively polarized macrophages. Immunity 48: 75–90.e6.
    • (2018) Immunity , vol.48 , pp. 75-90
    • Czimmerer, Z.1    Daniel, B.2    Horvath, A.3    Rückerl, D.4    Nagy, G.5    Kiss, M.6    Peloquin, M.7    Budai, M.M.8    Cuaranta-Monroy, I.9    Simandi, Z.10
  • 49
    • 84991111186 scopus 로고    scopus 로고
    • M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses T-cell proliferation
    • Oishi, S., R. Takano, S. Tamura, S. Tani, M. Iwaizumi, Y. Hamaya, K. Takagaki, T. Nagata, S. Seto, T. Horii, et al. 2016. M2 polarization of murine peritoneal macrophages induces regulatory cytokine production and suppresses T-cell proliferation. Immunology 149: 320–328.
    • (2016) Immunology , vol.149 , pp. 320-328
    • Oishi, S.1    Takano, R.2    Tamura, S.3    Tani, S.4    Iwaizumi, M.5    Hamaya, Y.6    Takagaki, K.7    Nagata, T.8    Seto, S.9    Horii, T.10
  • 50
    • 0022981587 scopus 로고
    • Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide
    • Jakway, J. P., and A. L. DeFranco. 1986. Pertussis toxin inhibition of B cell and macrophage responses to bacterial lipopolysaccharide. Science 234: 743–746.
    • (1986) Science , vol.234 , pp. 743-746
    • Jakway, J.P.1    DeFranco, A.L.2
  • 51
    • 0036953532 scopus 로고    scopus 로고
    • Implication of Galpha i proteins and Src tyrosine kinases in endotoxin-induced signal transduction events and mediator production
    • Ferlito, M., O. G. Romanenko, K. Guyton, S. Ashton, F. Squadrito, P. V. Halushka, and J. A. Cook. 2002. Implication of Galpha i proteins and Src tyrosine kinases in endotoxin-induced signal transduction events and mediator production. J. Endotoxin Res. 8: 427–435.
    • (2002) J. Endotoxin Res. , vol.8 , pp. 427-435
    • Ferlito, M.1    Romanenko, O.G.2    Guyton, K.3    Ashton, S.4    Squadrito, F.5    Halushka, P.V.6    Cook, J.A.7
  • 52
    • 22444449303 scopus 로고    scopus 로고
    • Lipopolysaccharide- And gram-positive bacteria-induced cellular inflammatory responses: Role of heterotrimeric Galpha(i) proteins
    • Published erratum appears in 2005 Am. J. Physiol. Cell Physiol. 289: C1360
    • Fan, H., B. Zingarelli, O. M. Peck, G. Teti, G. E. Tempel, P. V. Halushka, K. Spicher, G. Boulay, L. Birnbaumer, and J. A. Cook. 2005. Lipopolysaccharide- and gram-positive bacteria-induced cellular inflammatory responses: role of heterotrimeric Galpha(i) proteins. [Published erratum appears in 2005 Am. J. Physiol. Cell Physiol. 289: C1360.] Am. J. Physiol. Cell Physiol. 289: C293–C301.
    • (2005) Am. J. Physiol. Cell Physiol. , vol.289 , pp. C293-C301
    • Fan, H.1    Zingarelli, B.2    Peck, O.M.3    Teti, G.4    Tempel, G.E.5    Halushka, P.V.6    Spicher, K.7    Boulay, G.8    Birnbaumer, L.9    Cook, J.A.10
  • 53
    • 0032421572 scopus 로고    scopus 로고
    • Hetero-trimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide
    • Solomon, K. R., E. A. Kurt-Jones, R. A. Saladino, A. M. Stack, I. F. Dunn, M. Ferretti, D. Golenbock, G. R. Fleisher, and R. W. Finberg. 1998. Hetero-trimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide. J. Clin. Invest. 102: 2019–2027.
    • (1998) J. Clin. Invest. , vol.102 , pp. 2019-2027
    • Solomon, K.R.1    Kurt-Jones, E.A.2    Saladino, R.A.3    Stack, A.M.4    Dunn, I.F.5    Ferretti, M.6    Golenbock, D.7    Fleisher, G.R.8    Finberg, R.W.9
  • 54
    • 0024341193 scopus 로고
    • Lipopolysaccharide response is linked to the GTP binding protein, Gi2, in the promonocytic cell line U937
    • Daniel-Issakani, S., A. M. Spiegel, and B. Strulovici. 1989. Lipopolysaccharide response is linked to the GTP binding protein, Gi2, in the promonocytic cell line U937. J. Biol. Chem. 264: 20240–20247.
    • (1989) J. Biol. Chem. , vol.264 , pp. 20240-20247
    • Daniel-Issakani, S.1    Spiegel, A.M.2    Strulovici, B.3
  • 56
    • 13644270638 scopus 로고    scopus 로고
    • Toll-like receptor 4 coupled GI protein signaling pathways regulate extracellular signal-regulated kinase phosphorylation and AP-1 activation independent of NFkappaB activation
    • Fan, H., O. M. Peck, G. E. Tempel, P. V. Halushka, and J. A. Cook. 2004. Toll-like receptor 4 coupled GI protein signaling pathways regulate extracellular signal-regulated kinase phosphorylation and AP-1 activation independent of NFkappaB activation. Shock 22: 57–62.
    • (2004) Shock , vol.22 , pp. 57-62
    • Fan, H.1    Peck, O.M.2    Tempel, G.E.3    Halushka, P.V.4    Cook, J.A.5
  • 57
    • 0028179929 scopus 로고
    • NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site
    • Cogswell, J. P., M. M. Godlevski, G. B. Wisely, W. C. Clay, L. M. Leesnitzer, J. P. Ways, and J. G. Gray. 1994. NF-kappa B regulates IL-1 beta transcription through a consensus NF-kappa B binding site and a nonconsensus CRE-like site. J. Immunol. 153: 712–723.
    • (1994) J. Immunol. , vol.153 , pp. 712-723
    • Cogswell, J.P.1    Godlevski, M.M.2    Wisely, G.B.3    Clay, W.C.4    Leesnitzer, L.M.5    Ways, J.P.6    Gray, J.G.7
  • 58
    • 1442333588 scopus 로고    scopus 로고
    • Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression
    • Kim, S. H., J. Kim, and R. P. Sharma. 2004. Inhibition of p38 and ERK MAP kinases blocks endotoxin-induced nitric oxide production and differentially modulates cytokine expression. Pharmacol. Res. 49: 433–439.
    • (2004) Pharmacol. Res. , vol.49 , pp. 433-439
    • Kim, S.H.1    Kim, J.2    Sharma, R.P.3
  • 59
    • 84919452312 scopus 로고    scopus 로고
    • Metabolic reprograming in macrophage polarization
    • Galván-Peña, S., and L. A. J. O’Neill. 2014. Metabolic reprograming in macrophage polarization. Front. Immunol. 5: 420.
    • (2014) Front. Immunol. , vol.5 , pp. 420
    • Galván-Peña, S.1    O’Neill, L.A.J.2
  • 61
    • 85045527292 scopus 로고    scopus 로고
    • Epigenetic control of macrophage polarization: Implications for targeting tumor-associated macrophages
    • de Groot, A. E., and K. J. Pienta. 2018. Epigenetic control of macrophage polarization: implications for targeting tumor-associated macrophages. Oncotarget 9: 20908–20927.
    • (2018) Oncotarget , vol.9 , pp. 20908-20927
    • de Groot, A.E.1    Pienta, K.J.2
  • 62
    • 84877119701 scopus 로고    scopus 로고
    • Epigenetic regulation of macrophage polarization and function
    • Ivashkiv, L. B. 2013. Epigenetic regulation of macrophage polarization and function. Trends Immunol. 34: 216–223.
    • (2013) Trends Immunol , vol.34 , pp. 216-223
    • Ivashkiv, L.B.1
  • 63
    • 84866729043 scopus 로고    scopus 로고
    • Toll-like receptor-induced inflammatory cytokines are suppressed by gain of function or overexpression of Ga(i2) protein
    • Li, P., R. R. Neubig, B. Zingarelli, K. Borg, P. V. Halushka, J. A. Cook, and H. Fan. 2012. Toll-like receptor-induced inflammatory cytokines are suppressed by gain of function or overexpression of Ga(i2) protein. Inflammation 35: 1611–1617.
    • (2012) Inflammation , vol.35 , pp. 1611-1617
    • Li, P.1    Neubig, R.R.2    Zingarelli, B.3    Borg, K.4    Halushka, P.V.5    Cook, J.A.6    Fan, H.7
  • 65
    • 84951284076 scopus 로고    scopus 로고
    • The development and maintenance of resident macrophages
    • Perdiguero, E. G., and F. Geissmann. 2016. The development and maintenance of resident macrophages. Nat. Immunol. 17: 2–8.
    • (2016) Nat. Immunol. , vol.17 , pp. 2-8
    • Perdiguero, E.G.1    Geissmann, F.2
  • 67
    • 0042196012 scopus 로고    scopus 로고
    • The human formyl peptide receptor as model system for constitutively active G-protein-coupled receptors
    • Seifert, R., and K. Wenzel-Seifert. 2003. The human formyl peptide receptor as model system for constitutively active G-protein-coupled receptors. Life Sci. 73: 2263–2280.
    • (2003) Life Sci , vol.73 , pp. 2263-2280
    • Seifert, R.1    Wenzel-Seifert, K.2
  • 68
    • 84924370561 scopus 로고    scopus 로고
    • ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages
    • Herová, M., M. Schmid, C. Gemperle, and M. Hersberger. 2015. ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J. Immunol. 194: 2330–2337.
    • (2015) J. Immunol. , vol.194 , pp. 2330-2337
    • Herová, M.1    Schmid, M.2    Gemperle, C.3    Hersberger, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.