메뉴 건너뛰기




Volumn 30, Issue 11, 2019, Pages 3275-3286

Separability and Compactness Network for Image Recognition and Superresolution

Author keywords

Convolutional neural networks (CNNs); cosine distance loss; image superresolution (SR); satellite video; softmax loss

Indexed keywords

CONVOLUTION; IMAGE RESOLUTION; JOB ANALYSIS; NEURAL NETWORKS; OPTICAL RESOLVING POWER; PERSONNEL TRAINING; SATELLITES; SOCIETIES AND INSTITUTIONS;

EID: 85060931387     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2018.2890550     Document Type: Article
Times cited : (70)

References (51)
  • 1
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 2
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Lake Tahoe, NV, USA
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. NIPS, Lake Tahoe, NV, USA, 2012, pp. 1097-1105.
    • (2012) Proc. NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 3
    • 84877728447 scopus 로고    scopus 로고
    • Image denoising and inpainting with deep neural networks
    • Lake Tahoe, NV, USA
    • J. Xie, L. Xu, and E. Chen, "Image denoising and inpainting with deep neural networks," in Proc. NIPS, Lake Tahoe, NV, USA, 2012, pp. 341-349.
    • (2012) Proc. NIPS , pp. 341-349
    • Xie, J.1    Xu, L.2    Chen, E.3
  • 4
    • 84976384382 scopus 로고    scopus 로고
    • Deep learning for remote sensing data: A technical tutorial on the state of the Art
    • Jun.
    • L. Zhang, L. Zhang, and B. Du, "Deep learning for remote sensing data: A technical tutorial on the state of the Art," IEEE Geosci. Remote Sens. Mag., vol. 4, no. 2, pp. 22-40, Jun. 2016.
    • (2016) IEEE Geosci. Remote Sens. Mag. , vol.4 , Issue.2 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 5
    • 85040160247 scopus 로고    scopus 로고
    • Effective Uyghur language text detection in complex background images for traffic prompt identification
    • Jan.
    • C. Yan, H. Xie, S. Liu, J. Yin, Y. Zhang, and Q. Dai, "Effective Uyghur language text detection in complex background images for traffic prompt identification," IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 220-229, Jan. 2018.
    • (2018) IEEE Trans. Intell. Transp. Syst. , vol.19 , Issue.1 , pp. 220-229
    • Yan, C.1    Xie, H.2    Liu, S.3    Yin, J.4    Zhang, Y.5    Dai, Q.6
  • 6
    • 85047193555 scopus 로고    scopus 로고
    • A fast Uyghur text detector for complex background images
    • Dec.
    • C. Yan, H. Xie, J. Chen, Z. Zha, X. Hao, Y. Zhang, and Q. Dai, "A fast Uyghur text detector for complex background images," IEEE Trans. Multimedia, vol. 20, no. 12, pp. 3389-3398, Dec. 2018.
    • (2018) IEEE Trans. Multimedia , vol.20 , Issue.12 , pp. 3389-3398
    • Yan, C.1    Xie, H.2    Chen, J.3    Zha, Z.4    Hao, X.5    Zhang, Y.6    Dai, Q.7
  • 7
    • 84916896785 scopus 로고    scopus 로고
    • Efficient parallel framework for HEVC motion estimation on many-core processors
    • Dec.
    • C. Yan et al., "Efficient parallel framework for HEVC motion estimation on many-core processors," IEEE Trans. Circuits Syst. Video Technol., vol. 24, no. 12, pp. 2077-2089, Dec. 2014.
    • (2014) IEEE Trans. Circuits Syst. Video Technol. , vol.24 , Issue.12 , pp. 2077-2089
    • Yan, C.1
  • 8
    • 84939797053 scopus 로고    scopus 로고
    • Stacked extreme learning machines
    • Sep.
    • H. Zhou, G. B. Huang, Z. Lin, H. Wang, and Y. C. Soh, "Stacked extreme learning machines," IEEE Trans. Cybern., vol. 45, no. 9, pp. 2013-2025, Sep. 2015.
    • (2015) IEEE Trans. Cybern. , vol.45 , Issue.9 , pp. 2013-2025
    • Zhou, H.1    Huang, G.B.2    Lin, Z.3    Wang, H.4    Soh, Y.C.5
  • 9
    • 33845597145 scopus 로고    scopus 로고
    • Large-scale learning with SVM and convolutional for generic object categorization
    • New York, NY, USA, Jun.
    • F. J. Huang and Y. LeCun, "Large-scale learning with SVM and convolutional for generic object categorization," in Proc. CVPR, New York, NY, USA, Jun. 2006, pp. 284-291.
    • (2006) Proc. CVPR , pp. 284-291
    • Huang, F.J.1    LeCun, Y.2
  • 10
    • 85030781222 scopus 로고    scopus 로고
    • Supervised hash coding with deep neural network for environment perception of intelligent vehicles
    • Jan.
    • C. Yan, H. Xie, D. Yang, J. Yin, Y. Zhang, and Q. Dai, "Supervised hash coding with deep neural network for environment perception of intelligent vehicles," IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1, pp. 284-295, Jan. 2018.
    • (2018) IEEE Trans. Intell. Transp. Syst. , vol.19 , Issue.1 , pp. 284-295
    • Yan, C.1    Xie, H.2    Yang, D.3    Yin, J.4    Zhang, Y.5    Dai, Q.6
  • 11
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 12
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Jan.
    • J. Schmidhuber, "Deep learning in neural networks: An overview," Neural Netw., vol. 61, pp. 85-117, Jan. 2015.
    • (2015) Neural Netw. , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 13
    • 85051831835 scopus 로고    scopus 로고
    • SeaShips: A large-scale precisely annotated dataset for ship detection
    • Oct.
    • Z. Shao, W. Wu, Z. Wang, W. Du, and C. Li, "SeaShips: A large-scale precisely annotated dataset for ship detection," IEEE Trans. Multimedia, vol. 20, no. 10, pp. 2593-2604, Oct. 2018.
    • (2018) IEEE Trans. Multimedia , vol.20 , Issue.10 , pp. 2593-2604
    • Shao, Z.1    Wu, W.2    Wang, Z.3    Du, W.4    Li, C.5
  • 14
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • Las Vegas, NV, USA, Jun.
    • K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. CVPR, Las Vegas, NV, USA, Jun. 2016, pp. 770-778.
    • (2016) Proc. CVPR , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
    • Boston, MA, USA, Jun.
    • K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification," in Proc. CVPR, Boston, MA, USA, Jun. 2015, pp. 1026-1034.
    • (2015) Proc. CVPR , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 84911198048 scopus 로고    scopus 로고
    • DeepFace: Closing the gap to human-level performance in face verification
    • Columbus, OH, USA, Jun.
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, "DeepFace: Closing the gap to human-level performance in face verification," in Proc. CVPR, Columbus, OH, USA, Jun. 2014, pp. 1701-1708.
    • (2014) Proc. CVPR , pp. 1701-1708
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 17
    • 84962128851 scopus 로고    scopus 로고
    • Image super-resolution using deep convolutional networks
    • Feb.
    • C. Dong, C. C. Loy, K. He, and X. Tang, "Image super-resolution using deep convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 2, pp. 295-307, Feb. 2015.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , Issue.2 , pp. 295-307
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 18
    • 84986325587 scopus 로고    scopus 로고
    • Accurate image super-resolution using very deep convolutional networks
    • Boston, MA, USA, Jun.
    • J. Kim, J. K. Lee, and K. M. Lee, "Accurate image super-resolution using very deep convolutional networks," in Proc. CVPR, Boston, MA, USA, Jun. 2015, pp. 1646-1654.
    • (2015) Proc. CVPR , pp. 1646-1654
    • Kim, J.1    Lee, J.K.2    Lee, K.M.3
  • 19
    • 84937852544 scopus 로고    scopus 로고
    • Deep learning face representation by joint identification-verification
    • Montreal, QC, Canada
    • Y. Sun, Y. Chen, X. Wang, and X. Tang, "Deep learning face representation by joint identification-verification," in Proc. NIPS, Montreal, QC, Canada, 2014, pp. 1988-1996.
    • (2014) Proc. NIPS , pp. 1988-1996
    • Sun, Y.1    Chen, Y.2    Wang, X.3    Tang, X.4
  • 20
    • 84960969688 scopus 로고    scopus 로고
    • Stacked convolutional denoising auto-encoders for feature representation
    • Apr.
    • B. Du, W. Xiong, J. Wu, L. Zhang, L. Zhang, and D. Tao, "Stacked convolutional denoising auto-encoders for feature representation," IEEE Trans. Cybern., vol. 47, no. 4, pp. 1017-1027, Apr. 2016.
    • (2016) IEEE Trans. Cybern. , vol.47 , Issue.4 , pp. 1017-1027
    • Du, B.1    Xiong, W.2    Wu, J.3    Zhang, L.4    Zhang, L.5    Tao, D.6
  • 21
    • 85039423419 scopus 로고    scopus 로고
    • Photographic image synthesis with cascaded refinement networks
    • Venice, Italy
    • Q. Chen and V. Koltun, "Photographic image synthesis with cascaded refinement networks," in Proc. ICCV, Venice, Italy, 2017, pp. 1511-1520.
    • (2017) Proc. ICCV , pp. 1511-1520
    • Chen, Q.1    Koltun, V.2
  • 22
    • 85019848798 scopus 로고    scopus 로고
    • Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval
    • W. Zhou, S. Newsam, C. Li, and Z. Shao, "Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval," Remote Sens., vol. 9, no. 5, pp. 489-496, 2017.
    • (2017) Remote Sens. , vol.9 , Issue.5 , pp. 489-496
    • Zhou, W.1    Newsam, S.2    Li, C.3    Shao, Z.4
  • 23
    • 85028395688 scopus 로고    scopus 로고
    • Large-margin softmax loss for convolutional neural networks
    • New York, NY, USA
    • W. Liu, Y. Wen, Z. Yu, and M. Yang, "Large-margin softmax loss for convolutional neural networks," in Proc. ICML, New York, NY, USA, 2016, pp. 507-516.
    • (2016) Proc. ICML , pp. 507-516
    • Liu, W.1    Wen, Y.2    Yu, Z.3    Yang, M.4
  • 24
    • 84990032583 scopus 로고    scopus 로고
    • A discriminative feature learning approach for deep face recognition
    • Amsterdam, The Netherlands
    • Y. Wen, K. Zhang, Z. Li, and Y. Qiao, "A discriminative feature learning approach for deep face recognition," in Proc. ECCV, Amsterdam, The Netherlands, 2016, pp. 499-515.
    • (2016) Proc. ECCV , pp. 499-515
    • Wen, Y.1    Zhang, K.2    Li, Z.3    Qiao, Y.4
  • 25
    • 33749243068 scopus 로고    scopus 로고
    • Solving large scale linear prediction problems using stochastic gradient descent algorithms
    • Banff, AB, Canada
    • T. Zhang, "Solving large scale linear prediction problems using stochastic gradient descent algorithms," in Proc. ICML, Banff, AB, Canada, 2004, pp. 116-123.
    • (2004) Proc. ICML , pp. 116-123
    • Zhang, T.1
  • 26
    • 0032289422 scopus 로고    scopus 로고
    • Bayesian classification with Gaussian processes
    • Dec.
    • C. K. I. Williams and D. Barber, "Bayesian classification with Gaussian processes," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1342-1351, Dec. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.12 , pp. 1342-1351
    • Williams, C.K.I.1    Barber, D.2
  • 27
    • 84946751287 scopus 로고    scopus 로고
    • FaceNet: A unified embedding for face recognition and clustering
    • Boston, MA, USA, Jun.
    • F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," in Proc. CVPR, Boston, MA, USA, Jun. 2015, pp. 815-823.
    • (2015) Proc. CVPR , pp. 815-823
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 29
    • 79958716412 scopus 로고    scopus 로고
    • Cosine similarity metric learning for face verification
    • Queenstown, New Zealand, Nov.
    • H. V. Nguyen and L. Bai, "Cosine similarity metric learning for face verification," in Proc. ACCV, Queenstown, New Zealand, Nov. 2010, pp. 709-720.
    • (2010) Proc. ACCV , pp. 709-720
    • Nguyen, H.V.1    Bai, L.2
  • 30
    • 85021764678 scopus 로고    scopus 로고
    • Single image super-resolution using Gaussian process regression with dictionary-based sampling and student-t likelihood
    • Jul.
    • H. Wang, X. Gao, K. Zhang, and J. Li, "Single image super-resolution using Gaussian process regression with dictionary-based sampling and student-t likelihood," IEEE Trans. Image Process., vol. 26, no. 7, pp. 3556-3568, Jul. 2017.
    • (2017) IEEE Trans. Image Process. , vol.26 , Issue.7 , pp. 3556-3568
    • Wang, H.1    Gao, X.2    Zhang, K.3    Li, J.4
  • 31
    • 85035780360 scopus 로고    scopus 로고
    • Noise robust face image super-resolution through smooth sparse representation
    • Nov.
    • J. Jiang, J. Ma, C. Chen, X. Jiang, and Z. Wang, "Noise robust face image super-resolution through smooth sparse representation," IEEE Trans. Cybern., vol. 47, no. 11, pp. 3991-4002, Nov. 2017.
    • (2017) IEEE Trans. Cybern. , vol.47 , Issue.11 , pp. 3991-4002
    • Jiang, J.1    Ma, J.2    Chen, C.3    Jiang, X.4    Wang, Z.5
  • 32
    • 85044722702 scopus 로고    scopus 로고
    • Learning temporal dynamics for video super-resolution: A deep learning approach
    • Jul.
    • D. Liu et al., "Learning temporal dynamics for video super-resolution: A deep learning approach," IEEE Trans. Image Process., vol. 27, no. 7, pp. 3432-3445, Jul. 2018.
    • (2018) IEEE Trans. Image Process. , vol.27 , Issue.7 , pp. 3432-3445
    • Liu, D.1
  • 33
    • 85043449593 scopus 로고    scopus 로고
    • Video super-resolution via bidirectional recurrent convolutional networks
    • Apr.
    • Y. Huang, W. Wang, and L. Wang, "Video super-resolution via bidirectional recurrent convolutional networks," IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 1015-1028, Apr. 2018.
    • (2018) IEEE Trans. Pattern Anal. Mach. Intell. , vol.40 , Issue.4 , pp. 1015-1028
    • Huang, Y.1    Wang, W.2    Wang, L.3
  • 34
    • 85058885655 scopus 로고    scopus 로고
    • Multi-memory convolutional neural network for video super-resolution
    • to be published
    • Z. Wang et al., "Multi-memory convolutional neural network for video super-resolution," IEEE Trans. Image Process., to be published, doi: 10.1109/TIP.2018.2887017.
    • IEEE Trans. Image Process.
    • Wang, Z.1
  • 35
    • 84964328650 scopus 로고    scopus 로고
    • Hyperspectral image super-resolution via non-negative structured sparse representation
    • May
    • W. Dong et al., "Hyperspectral image super-resolution via non-negative structured sparse representation," IEEE Trans. Image Process., vol. 25, no. 5, pp. 2337-2352, May 2016.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.5 , pp. 2337-2352
    • Dong, W.1
  • 36
    • 84898792173 scopus 로고    scopus 로고
    • Anchored neighborhood regression for fast example-based super-resolution
    • Sydney, NSW, Australia, Dec.
    • R. Timofte, V. De, and L. Van Gool, "Anchored neighborhood regression for fast example-based super-resolution," in Proc. ICCV, Sydney, NSW, Australia, Dec. 2013, pp. 1920-1927.
    • (2013) Proc. ICCV , pp. 1920-1927
    • Timofte, R.1    De, V.2    Van Gool, L.3
  • 37
    • 77956006189 scopus 로고    scopus 로고
    • Context-constrained hallucination for image super-resolution
    • San Francisco, CA, USA
    • J. Sun, J. Zhu, and M. F. Tappen, "Context-constrained hallucination for image super-resolution," in Proc. CVPR, San Francisco, CA, USA, 2010, pp. 231-238.
    • (2010) Proc. CVPR , pp. 231-238
    • Sun, J.1    Zhu, J.2    Tappen, M.F.3
  • 38
    • 84947041871 scopus 로고    scopus 로고
    • ImageNet large scale visual recognition challenge
    • Dec.
    • O. Russakovsky et al., "ImageNet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, Dec. 2015.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 39
    • 85054214048 scopus 로고    scopus 로고
    • Improving convolutional neural networks via compacting features
    • Apr.
    • L. Zhou, R. Zhu, Y. Luo, S. Liu, and Z. Wang, "Improving convolutional neural networks via compacting features," in Proc. ICASSP, Apr. 2018, pp. 2946-2950.
    • (2018) Proc. ICASSP , pp. 2946-2950
    • Zhou, L.1    Zhu, R.2    Luo, Y.3    Liu, S.4    Wang, Z.5
  • 40
    • 85033692400 scopus 로고    scopus 로고
    • Video satellite imagery super resolution via convolutional neural networks
    • Dec.
    • Y. Luo, L. Zhou, S. Wang, and Z. Wang, "Video satellite imagery super resolution via convolutional neural networks," IEEE Geosci. Remote Sens. Lett., vol. 14, no. 12, pp. 2398-2402, Dec. 2017.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.12 , pp. 2398-2402
    • Luo, Y.1    Zhou, L.2    Wang, S.3    Wang, Z.4
  • 41
    • 85053354396 scopus 로고    scopus 로고
    • A progressively enhanced network for video satellite imagery superresolution
    • Nov.
    • K. Jiang, Z. Wang, P. Yi, and J. Jiang, "A progressively enhanced network for video satellite imagery superresolution," IEEE Signal Process. Lett., vol. 25, no. 11, pp. 1630-1634, Nov. 2018.
    • (2018) IEEE Signal Process. Lett. , vol.25 , Issue.11 , pp. 1630-1634
    • Jiang, K.1    Wang, Z.2    Yi, P.3    Jiang, J.4
  • 42
    • 84898409537 scopus 로고    scopus 로고
    • Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding
    • Guildford, U.K.
    • M. Bevilacqua, A. Roumy, C. Guillemot, and M. L. Alberi, "Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding," in Proc. BMVC, Guildford, U.K., 2012, pp. 1-10.
    • (2012) Proc. BMVC , pp. 1-10
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Alberi, M.L.4
  • 43
    • 80052803206 scopus 로고    scopus 로고
    • On single image scale-up using sparse-representations
    • Berlin, Germany: Springer
    • R. Zeyde, M. Elad, and M. Protter, "On single image scale-up using sparse-representations," in Proc. Int. Conf. Curves Surfaces. Berlin, Germany: Springer, 2010, pp. 711-730.
    • (2010) Proc. Int. Conf. Curves Surfaces. , pp. 711-730
    • Zeyde, R.1    Elad, M.2    Protter, M.3
  • 44
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Vancouver, BC, Canada, Jul.
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," in Proc. ICCV, Vancouver, BC, Canada, Jul. 2001, pp. 416-423.
    • (2001) Proc. ICCV , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 46
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Orlando, FL, USA
    • Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding," in Proc. ACM Multimedia, Orlando, FL, USA, 2014, pp. 675-678.
    • (2014) Proc. ACM Multimedia , pp. 675-678
    • Jia, Y.1
  • 47
    • 77956509090 scopus 로고    scopus 로고
    • Rectified linear units improve restricted Boltzmann machines
    • Haifa, Israel
    • V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. ICML, Haifa, Israel, 2010, pp. 807-814.
    • (2010) Proc. ICML , pp. 807-814
    • Nair, V.1    Hinton, G.E.2
  • 51
    • 84959188745 scopus 로고    scopus 로고
    • Single image super-resolution from transformed self-exemplars
    • Boston, MA, USA, Jun.
    • J.-B. Huang, A. Singh, and N. Ahuja, "Single image super-resolution from transformed self-exemplars," in Proc. CVPR, Boston, MA, USA, Jun. 2015, pp. 5197-5206.
    • (2015) Proc. CVPR , pp. 5197-5206
    • Huang, J.-B.1    Singh, A.2    Ahuja, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.