-
1
-
-
85038860726
-
Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods
-
Oliveira, E.M.D., Oliveira, F.L.C., Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 144 (2018), 776–788 https://doi.org/10.1016/j.energy.2017.12.049.
-
(2018)
Energy
, vol.144
, pp. 776-788
-
-
Oliveira, E.M.D.1
Oliveira, F.L.C.2
-
2
-
-
85019555207
-
Urban long term electricity demand forecast method based on system dynamics of the new economic normal: the case of Tianjin
-
He, Y., Jiao, J., Chen, Q., Ge, S., Chang, Y., Xu, Y., Urban long term electricity demand forecast method based on system dynamics of the new economic normal: the case of Tianjin. Energy 133 (2017), 9–22 https://doi.org/10.1016/j.energy.2017.05.107.
-
(2017)
Energy
, vol.133
, pp. 9-22
-
-
He, Y.1
Jiao, J.2
Chen, Q.3
Ge, S.4
Chang, Y.5
Xu, Y.6
-
3
-
-
84865024300
-
Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
-
Wang, Y., Wang, J., Zhao, G., Dong, Y., Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Pol 48:3 (2012), 284–294 https://doi.org/10.1016/j.enpol.2012.05.026.
-
(2012)
Energy Pol
, vol.48
, Issue.3
, pp. 284-294
-
-
Wang, Y.1
Wang, J.2
Zhao, G.3
Dong, Y.4
-
4
-
-
85006152425
-
A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting
-
Shao, Z., Fu, C., Yang, S.L., Zhou, K.L., A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting. Renew Sustain Energy Rev 75 (2017), 123–136 https://doi.org/10.1016/j.rser.2016.10.056.
-
(2017)
Renew Sustain Energy Rev
, vol.75
, pp. 123-136
-
-
Shao, Z.1
Fu, C.2
Yang, S.L.3
Zhou, K.L.4
-
5
-
-
84908481654
-
Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States
-
Kialashaki, A., Reisel, J.R., Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States. Energy 76 (2014), 749–760 https://doi.org/10.1016/j.energy.2014.08.072.
-
(2014)
Energy
, vol.76
, pp. 749-760
-
-
Kialashaki, A.1
Reisel, J.R.2
-
6
-
-
79959829242
-
A seasonal hybrid procedure for electricity demand forecasting in China
-
Zhu, S., Wang, J., Zhao, W., Wang, J., A seasonal hybrid procedure for electricity demand forecasting in China. Appl Energy 88:11 (2011), 3807–3815 https://doi.org/10.1016/j.apenergy.2011.05.005.
-
(2011)
Appl Energy
, vol.88
, Issue.11
, pp. 3807-3815
-
-
Zhu, S.1
Wang, J.2
Zhao, W.3
Wang, J.4
-
7
-
-
84987942280
-
Long-term electric energy consumption forecasting via artificial cooperative search algorithm
-
Kaboli, S.H.A., Selvaraj, J., Rahim, N.A., Long-term electric energy consumption forecasting via artificial cooperative search algorithm. Energy 115 (2016), 857–871 https://doi.org/10.1016/j.energy.2016.09.015.
-
(2016)
Energy
, vol.115
, pp. 857-871
-
-
Kaboli, S.H.A.1
Selvaraj, J.2
Rahim, N.A.3
-
8
-
-
84996490224
-
Discrete cosine transform-based predictive model extended in the least-squares sense for hourly load forecasting
-
Yang, Z.C., Discrete cosine transform-based predictive model extended in the least-squares sense for hourly load forecasting. IET Gener, Transm Distrib 10:15 (2016), 3930–3939 https://doi.org/10.1049/iet-gtd.2016.0689.
-
(2016)
IET Gener, Transm Distrib
, vol.10
, Issue.15
, pp. 3930-3939
-
-
Yang, Z.C.1
-
9
-
-
84893498952
-
Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model
-
Zhao, W., Wang, J., Lu, H., Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model. Omega 45:45 (2014), 80–91 https://doi.org/10.1016/j.omega.2014.01.002.
-
(2014)
Omega
, vol.45
, Issue.45
, pp. 80-91
-
-
Zhao, W.1
Wang, J.2
Lu, H.3
-
10
-
-
77953324921
-
An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
-
Azadeh, A., Saberi, M., Seraj, O., An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 35:6 (2010), 2351–2366 https://doi.org/10.1016/j.energy.2009.12.023.
-
(2010)
Energy
, vol.35
, Issue.6
, pp. 2351-2366
-
-
Azadeh, A.1
Saberi, M.2
Seraj, O.3
-
11
-
-
84875178534
-
Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
-
Wu, J., Wang, J., Lu, H., Dong, Y., Lu, X., Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model. Energy Convers Manag 70:70 (2013), 1–9 https://doi.org/10.1016/j.enconman.2013.02.010.
-
(2013)
Energy Convers Manag
, vol.70
, Issue.70
, pp. 1-9
-
-
Wu, J.1
Wang, J.2
Lu, H.3
Dong, Y.4
Lu, X.5
-
12
-
-
85046814976
-
A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors
-
Wang, Z.X., Li, Q., Pei, L.L., A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors. Energy 154 (2018), 522–534 https://doi.org/10.1016/j.energy.2018.04.155.
-
(2018)
Energy
, vol.154
, pp. 522-534
-
-
Wang, Z.X.1
Li, Q.2
Pei, L.L.3
-
13
-
-
84896824767
-
WITHDRAWN: applying market profile theory to forecast Taiwan index futures market
-
Chen, C.C., Kuo, Y.C., Huang, C.H., Chen, A.P., WITHDRAWN: applying market profile theory to forecast Taiwan index futures market. Expert Syst Appl 41:10 (2014), 4617–4624 https://doi.org/10.1016/j.eswa.2013.08.093.
-
(2014)
Expert Syst Appl
, vol.41
, Issue.10
, pp. 4617-4624
-
-
Chen, C.C.1
Kuo, Y.C.2
Huang, C.H.3
Chen, A.P.4
-
14
-
-
76649131245
-
Greek long-term energy consumption prediction using artificial neural networks
-
Ekonomou, L., Greek long-term energy consumption prediction using artificial neural networks. Energy 35:2 (2010), 512–517 https://doi.org/10.1016/j.energy.2009.10.018.
-
(2010)
Energy
, vol.35
, Issue.2
, pp. 512-517
-
-
Ekonomou, L.1
-
15
-
-
84857193016
-
An application of artificial bee colony algorithm with least squares support vector machine for real and reactive power tracing in deregulated power system
-
Sulaiman, M.H., Mustafa, M.W., Shareef, H., Khalid, S.N.A., An application of artificial bee colony algorithm with least squares support vector machine for real and reactive power tracing in deregulated power system. Int J Electr Power Energy Syst 37:1 (2012), 67–77 https://doi.org/10.1016/j.ijepes.2011.12.007.
-
(2012)
Int J Electr Power Energy Syst
, vol.37
, Issue.1
, pp. 67-77
-
-
Sulaiman, M.H.1
Mustafa, M.W.2
Shareef, H.3
Khalid, S.N.A.4
-
16
-
-
85016077419
-
Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings
-
Chen, Y., Xu, P., Chu, Y., Li, W., Wu, Y., Ni, L., Bao, Y., Wang, K., Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings. Appl Energy 195 (2017), 659–670 https://doi.org/10.1016/j.apenergy.2017.03.034.
-
(2017)
Appl Energy
, vol.195
, pp. 659-670
-
-
Chen, Y.1
Xu, P.2
Chu, Y.3
Li, W.4
Wu, Y.5
Ni, L.6
Bao, Y.7
Wang, K.8
-
17
-
-
85005980974
-
Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China
-
Xu, N., Dang, Y., Gong, Y., Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China. Energy 118 (2017), 473–480 https://doi.org/10.1016/j.energy.2016.10.003.
-
(2017)
Energy
, vol.118
, pp. 473-480
-
-
Xu, N.1
Dang, Y.2
Gong, Y.3
-
18
-
-
84938118602
-
Day-ahead load forecast using random forest and expert input selection
-
Lahouar, A., Slama, J.B.H., Day-ahead load forecast using random forest and expert input selection. Energy Convers Manag 103 (2015), 1040–1051 https://doi.org/10.1016/j.enconman.2015.07.041.
-
(2015)
Energy Convers Manag
, vol.103
, pp. 1040-1051
-
-
Lahouar, A.1
Slama, J.B.H.2
-
19
-
-
85032029470
-
Breeder hybrid algorithm approach for natural gas demand forecasting model
-
Karadede, Y., Ozdemir, G., Aydemir, E., Breeder hybrid algorithm approach for natural gas demand forecasting model. Energy 141 (2017), 1269–1284 https://doi.org/10.1016/j.energy.2017.09.130.
-
(2017)
Energy
, vol.141
, pp. 1269-1284
-
-
Karadede, Y.1
Ozdemir, G.2
Aydemir, E.3
-
20
-
-
84862777006
-
An annual load forecasting model based on support vector regression with differential evolution algorithm
-
Wang, J., Li, L., Niu, D., Tan, Z., An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energy 94:6 (2012), 65–70 https://doi.org/10.1016/j.apenergy.2012.01.010.
-
(2012)
Appl Energy
, vol.94
, Issue.6
, pp. 65-70
-
-
Wang, J.1
Li, L.2
Niu, D.3
Tan, Z.4
-
21
-
-
84991628968
-
A note of hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining: a response
-
Deris, A.M., Zain, A.M., Sallehuddin, R., A note of hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining: a response. Meccanica 52:8 (2017), 1993–1994 https://doi.org/10.1007/s11012-016-0542-8.
-
(2017)
Meccanica
, vol.52
, Issue.8
, pp. 1993-1994
-
-
Deris, A.M.1
Zain, A.M.2
Sallehuddin, R.3
-
22
-
-
85028356347
-
Oblique random forest ensemble via least square estimation for time series forecasting
-
Qiu, X., Zhang, L., Suganthan, P.N., Amaratunga, G.A.J., Oblique random forest ensemble via least square estimation for time series forecasting. Inf Sci 420 (2017), 249–262 https://doi.org/10.1016/j.ins.2017.08.060.
-
(2017)
Inf Sci
, vol.420
, pp. 249-262
-
-
Qiu, X.1
Zhang, L.2
Suganthan, P.N.3
Amaratunga, G.A.J.4
-
23
-
-
84931051773
-
Integrative random forest for gene regulatory network inference
-
Petralia, F., Wang, P., Yang, J., Tu, Z., Integrative random forest for gene regulatory network inference. Bioinformatics 31:12 (2015), 197–205 https://doi.org/10.1093/bioinformatics/btv268.
-
(2015)
Bioinformatics
, vol.31
, Issue.12
, pp. 197-205
-
-
Petralia, F.1
Wang, P.2
Yang, J.3
Tu, Z.4
-
24
-
-
84961115074
-
Downscaling land surface temperatures at regional scales with random forest regression
-
Hutengs, C., Vohland, M., Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens Environ 178 (2016), 127–141 https://doi.org/10.1016/j.rse.2016.03.006.
-
(2016)
Remote Sens Environ
, vol.178
, pp. 127-141
-
-
Hutengs, C.1
Vohland, M.2
-
25
-
-
85025151429
-
Predicting solar flares using SDO/HMI vector magnetic data product and random forest algorithm
-
Liu, C., Deng, N., Wang, J.T.L., Wang, H., Predicting solar flares using SDO/HMI vector magnetic data product and random forest algorithm. Astrophys J 843:104 (2017), 1–14 https://doi.org/10.3847/1538-4357/aa789b.
-
(2017)
Astrophys J
, vol.843
, Issue.104
, pp. 1-14
-
-
Liu, C.1
Deng, N.2
Wang, J.T.L.3
Wang, H.4
-
26
-
-
85019413262
-
A permutation importance-based feature selection method for short-term electricity load forecasting using random forest
-
Huang, N., Lu, G., Xu, D., A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies, 9(10), 2016, 767 https://doi.org/10.3390/en9100767.
-
(2016)
Energies
, vol.9
, Issue.10
, pp. 767
-
-
Huang, N.1
Lu, G.2
Xu, D.3
-
27
-
-
85006795629
-
Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
-
Panapakidis, I.P., Dagoumas, A.S., Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 118 (2017), 231–245 https://doi.org/10.1016/j.energy.2016.12.033.
-
(2017)
Energy
, vol.118
, pp. 231-245
-
-
Panapakidis, I.P.1
Dagoumas, A.S.2
-
28
-
-
84975059583
-
Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach
-
Bai, Y., Li, C., Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach. Energy Build 127 (2016), 571–579 https://doi.org/10.1016/j.enbuild.2016.06.020.
-
(2016)
Energy Build
, vol.127
, pp. 571-579
-
-
Bai, Y.1
Li, C.2
-
29
-
-
85046016469
-
Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator
-
Zeng, B., Duan, H., Bai, Y., Meng, W., Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator. Energy 151 (2018), 238–249 https://doi.org/10.1016/j.energy.2018.03.045.
-
(2018)
Energy
, vol.151
, pp. 238-249
-
-
Zeng, B.1
Duan, H.2
Bai, Y.3
Meng, W.4
-
30
-
-
84880746489
-
Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation
-
Bessedik, S.A., Hadi, H., Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation. Elec Power Syst Res 104:9 (2013), 87–92 https://doi.org/10.1016/j.epsr.2013.06.013.
-
(2013)
Elec Power Syst Res
, vol.104
, Issue.9
, pp. 87-92
-
-
Bessedik, S.A.1
Hadi, H.2
-
31
-
-
85019990042
-
Analyzing big time series data in solar engineering using features and PCA
-
Yang, D., Dong, Z., Lim, L.H.I., Liu, L., Analyzing big time series data in solar engineering using features and PCA. Sol Energy 153 (2017), 317–328 https://doi.org/10.1016/j.solener.2017.05.072.
-
(2017)
Sol Energy
, vol.153
, pp. 317-328
-
-
Yang, D.1
Dong, Z.2
Lim, L.H.I.3
Liu, L.4
-
32
-
-
85049400663
-
A comparison of fuzzy clustering algorithms for bearing fault diagnosis
-
Li, C., Cerrada, M., Cabrera, D., Sanchez, R., Pacheco, F., Ulutagay, G., Oliveira, J.V.D., A comparison of fuzzy clustering algorithms for bearing fault diagnosis. J Intell Fuzzy Syst 34:6 (2018), 3565–3580 https://doi.org/10.3233/JIFS-169534.
-
(2018)
J Intell Fuzzy Syst
, vol.34
, Issue.6
, pp. 3565-3580
-
-
Li, C.1
Cerrada, M.2
Cabrera, D.3
Sanchez, R.4
Pacheco, F.5
Ulutagay, G.6
Oliveira, J.V.D.7
-
33
-
-
84904904412
-
A multi-scale relevance vector regression approach for daily urban water demand forecasting
-
Bai, Y., Wang, P., Li, C., Xie, J., Wang, Y., A multi-scale relevance vector regression approach for daily urban water demand forecasting. J Hydrol 517:2 (2014), 236–245 https://doi.org/10.1016/j.jhydrol.2014.05.033.
-
(2014)
J Hydrol
, vol.517
, Issue.2
, pp. 236-245
-
-
Bai, Y.1
Wang, P.2
Li, C.3
Xie, J.4
Wang, Y.5
-
34
-
-
85026436770
-
A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction
-
Wang, C., Zhang, H., Fan, W., Ma, P., A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction. Energy 138 (2017), 977–990 https://doi.org/10.1016/j.energy.2017.07.112.
-
(2017)
Energy
, vol.138
, pp. 977-990
-
-
Wang, C.1
Zhang, H.2
Fan, W.3
Ma, P.4
-
35
-
-
84939809781
-
A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: hidden characteristic extraction and probability density prediction
-
Shao, Z., Gao, F., Yang, S.L., Yu, B.G., A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: hidden characteristic extraction and probability density prediction. Renew Sustain Energy Rev 52 (2015), 876–889 https://doi.org/10.1016/j.rser.2015.07.159.
-
(2015)
Renew Sustain Energy Rev
, vol.52
, pp. 876-889
-
-
Shao, Z.1
Gao, F.2
Yang, S.L.3
Yu, B.G.4
-
36
-
-
85044435294
-
Research on electricity consumption forecast based on mutual information and random forests algorithm
-
(5)
-
Shi, J., Shi, Y., Tan, J., Zhu, L., Li, H., Research on electricity consumption forecast based on mutual information and random forests algorithm. IOP conference series: earth and environmental science, vol. 121, 2018, 052089 (5) https://doi.org/10.1088/1755-1315/121/5/052089.
-
(2018)
IOP conference series: earth and environmental science
, vol.121
, pp. 052089
-
-
Shi, J.1
Shi, Y.2
Tan, J.3
Zhu, L.4
Li, H.5
-
37
-
-
84899697804
-
Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China
-
Jiang, X., Zhang, L., Chen, X., Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China. Transport Res C 44:4 (2014), 110–127 https://doi.org/10.1016/j.trc.2014.03.016.
-
(2014)
Transport Res C
, vol.44
, Issue.4
, pp. 110-127
-
-
Jiang, X.1
Zhang, L.2
Chen, X.3
-
38
-
-
84861423084
-
Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal
-
Wang, T., Zhang, M., Yu, Q., Zhang, H., Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. J Appl Geophys 83 (2012), 29–34 https://doi.org/10.1016/j.jappgeo.2012.05.002.
-
(2012)
J Appl Geophys
, vol.83
, pp. 29-34
-
-
Wang, T.1
Zhang, M.2
Yu, Q.3
Zhang, H.4
-
39
-
-
80052078099
-
Ensemble empirical mode decomposition: a noise-assisted data analysis method
-
Wu, Z.H., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:01 (2005), 1–41 https://doi.org/10.1142/S1793536909000047.
-
(2005)
Adv Adapt Data Anal
, vol.1
, Issue.1
, pp. 1-41
-
-
Wu, Z.H.1
Huang, N.E.2
-
40
-
-
0032585001
-
A comparison of fast Fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data
-
Spyers-Ashby, J.M., Bain, P.G., Roberts, S.J., A comparison of fast Fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data. J Neurosci Methods 83:1 (1998), 35–43 https://doi.org/10.1016/S0165-0270(98)00064-8.
-
(1998)
J Neurosci Methods
, vol.83
, Issue.1
, pp. 35-43
-
-
Spyers-Ashby, J.M.1
Bain, P.G.2
Roberts, S.J.3
-
41
-
-
85028006288
-
A Random Forest approach using imprecise probabilities
-
Abellán, J., Mantas, C.J., Castellano, J.G., A Random Forest approach using imprecise probabilities. Knowl-Based Syst 134 (2017), 72–84 https://doi.org/10.1016/j.knosys.2017.07.019.
-
(2017)
Knowl-Based Syst
, vol.134
, pp. 72-84
-
-
Abellán, J.1
Mantas, C.J.2
Castellano, J.G.3
|