메뉴 건너뛰기




Volumn 165, Issue , 2018, Pages 1220-1227

Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition

Author keywords

Electricity consumption; Ensemble empirical mode decomposition; Fast Fourier transformation; Forecast; Random forest

Indexed keywords

BACKPROPAGATION; DECISION TREES; ELECTRIC POWER UTILIZATION; ERRORS; FOURIER SERIES; FREQUENCY DOMAIN ANALYSIS; MARKETING; MEAN SQUARE ERROR; NEURAL NETWORKS; SIGNAL PROCESSING;

EID: 85055974537     PISSN: 03605442     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.energy.2018.10.113     Document Type: Article
Times cited : (144)

References (41)
  • 1
    • 85038860726 scopus 로고    scopus 로고
    • Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods
    • Oliveira, E.M.D., Oliveira, F.L.C., Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods. Energy 144 (2018), 776–788 https://doi.org/10.1016/j.energy.2017.12.049.
    • (2018) Energy , vol.144 , pp. 776-788
    • Oliveira, E.M.D.1    Oliveira, F.L.C.2
  • 2
    • 85019555207 scopus 로고    scopus 로고
    • Urban long term electricity demand forecast method based on system dynamics of the new economic normal: the case of Tianjin
    • He, Y., Jiao, J., Chen, Q., Ge, S., Chang, Y., Xu, Y., Urban long term electricity demand forecast method based on system dynamics of the new economic normal: the case of Tianjin. Energy 133 (2017), 9–22 https://doi.org/10.1016/j.energy.2017.05.107.
    • (2017) Energy , vol.133 , pp. 9-22
    • He, Y.1    Jiao, J.2    Chen, Q.3    Ge, S.4    Chang, Y.5    Xu, Y.6
  • 3
    • 84865024300 scopus 로고    scopus 로고
    • Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
    • Wang, Y., Wang, J., Zhao, G., Dong, Y., Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Pol 48:3 (2012), 284–294 https://doi.org/10.1016/j.enpol.2012.05.026.
    • (2012) Energy Pol , vol.48 , Issue.3 , pp. 284-294
    • Wang, Y.1    Wang, J.2    Zhao, G.3    Dong, Y.4
  • 4
    • 85006152425 scopus 로고    scopus 로고
    • A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting
    • Shao, Z., Fu, C., Yang, S.L., Zhou, K.L., A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting. Renew Sustain Energy Rev 75 (2017), 123–136 https://doi.org/10.1016/j.rser.2016.10.056.
    • (2017) Renew Sustain Energy Rev , vol.75 , pp. 123-136
    • Shao, Z.1    Fu, C.2    Yang, S.L.3    Zhou, K.L.4
  • 5
    • 84908481654 scopus 로고    scopus 로고
    • Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States
    • Kialashaki, A., Reisel, J.R., Development and validation of artificial neural network models of the energy demand in the industrial sector of the United States. Energy 76 (2014), 749–760 https://doi.org/10.1016/j.energy.2014.08.072.
    • (2014) Energy , vol.76 , pp. 749-760
    • Kialashaki, A.1    Reisel, J.R.2
  • 6
    • 79959829242 scopus 로고    scopus 로고
    • A seasonal hybrid procedure for electricity demand forecasting in China
    • Zhu, S., Wang, J., Zhao, W., Wang, J., A seasonal hybrid procedure for electricity demand forecasting in China. Appl Energy 88:11 (2011), 3807–3815 https://doi.org/10.1016/j.apenergy.2011.05.005.
    • (2011) Appl Energy , vol.88 , Issue.11 , pp. 3807-3815
    • Zhu, S.1    Wang, J.2    Zhao, W.3    Wang, J.4
  • 7
    • 84987942280 scopus 로고    scopus 로고
    • Long-term electric energy consumption forecasting via artificial cooperative search algorithm
    • Kaboli, S.H.A., Selvaraj, J., Rahim, N.A., Long-term electric energy consumption forecasting via artificial cooperative search algorithm. Energy 115 (2016), 857–871 https://doi.org/10.1016/j.energy.2016.09.015.
    • (2016) Energy , vol.115 , pp. 857-871
    • Kaboli, S.H.A.1    Selvaraj, J.2    Rahim, N.A.3
  • 8
    • 84996490224 scopus 로고    scopus 로고
    • Discrete cosine transform-based predictive model extended in the least-squares sense for hourly load forecasting
    • Yang, Z.C., Discrete cosine transform-based predictive model extended in the least-squares sense for hourly load forecasting. IET Gener, Transm Distrib 10:15 (2016), 3930–3939 https://doi.org/10.1049/iet-gtd.2016.0689.
    • (2016) IET Gener, Transm Distrib , vol.10 , Issue.15 , pp. 3930-3939
    • Yang, Z.C.1
  • 9
    • 84893498952 scopus 로고    scopus 로고
    • Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model
    • Zhao, W., Wang, J., Lu, H., Combining forecasts of electricity consumption in China with time-varying weights updated by a high-order Markov chain model. Omega 45:45 (2014), 80–91 https://doi.org/10.1016/j.omega.2014.01.002.
    • (2014) Omega , vol.45 , Issue.45 , pp. 80-91
    • Zhao, W.1    Wang, J.2    Lu, H.3
  • 10
    • 77953324921 scopus 로고    scopus 로고
    • An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
    • Azadeh, A., Saberi, M., Seraj, O., An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran. Energy 35:6 (2010), 2351–2366 https://doi.org/10.1016/j.energy.2009.12.023.
    • (2010) Energy , vol.35 , Issue.6 , pp. 2351-2366
    • Azadeh, A.1    Saberi, M.2    Seraj, O.3
  • 11
    • 84875178534 scopus 로고    scopus 로고
    • Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model
    • Wu, J., Wang, J., Lu, H., Dong, Y., Lu, X., Short term load forecasting technique based on the seasonal exponential adjustment method and the regression model. Energy Convers Manag 70:70 (2013), 1–9 https://doi.org/10.1016/j.enconman.2013.02.010.
    • (2013) Energy Convers Manag , vol.70 , Issue.70 , pp. 1-9
    • Wu, J.1    Wang, J.2    Lu, H.3    Dong, Y.4    Lu, X.5
  • 12
    • 85046814976 scopus 로고    scopus 로고
    • A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors
    • Wang, Z.X., Li, Q., Pei, L.L., A seasonal GM(1,1) model for forecasting the electricity consumption of the primary economic sectors. Energy 154 (2018), 522–534 https://doi.org/10.1016/j.energy.2018.04.155.
    • (2018) Energy , vol.154 , pp. 522-534
    • Wang, Z.X.1    Li, Q.2    Pei, L.L.3
  • 13
    • 84896824767 scopus 로고    scopus 로고
    • WITHDRAWN: applying market profile theory to forecast Taiwan index futures market
    • Chen, C.C., Kuo, Y.C., Huang, C.H., Chen, A.P., WITHDRAWN: applying market profile theory to forecast Taiwan index futures market. Expert Syst Appl 41:10 (2014), 4617–4624 https://doi.org/10.1016/j.eswa.2013.08.093.
    • (2014) Expert Syst Appl , vol.41 , Issue.10 , pp. 4617-4624
    • Chen, C.C.1    Kuo, Y.C.2    Huang, C.H.3    Chen, A.P.4
  • 14
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • Ekonomou, L., Greek long-term energy consumption prediction using artificial neural networks. Energy 35:2 (2010), 512–517 https://doi.org/10.1016/j.energy.2009.10.018.
    • (2010) Energy , vol.35 , Issue.2 , pp. 512-517
    • Ekonomou, L.1
  • 15
    • 84857193016 scopus 로고    scopus 로고
    • An application of artificial bee colony algorithm with least squares support vector machine for real and reactive power tracing in deregulated power system
    • Sulaiman, M.H., Mustafa, M.W., Shareef, H., Khalid, S.N.A., An application of artificial bee colony algorithm with least squares support vector machine for real and reactive power tracing in deregulated power system. Int J Electr Power Energy Syst 37:1 (2012), 67–77 https://doi.org/10.1016/j.ijepes.2011.12.007.
    • (2012) Int J Electr Power Energy Syst , vol.37 , Issue.1 , pp. 67-77
    • Sulaiman, M.H.1    Mustafa, M.W.2    Shareef, H.3    Khalid, S.N.A.4
  • 16
    • 85016077419 scopus 로고    scopus 로고
    • Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings
    • Chen, Y., Xu, P., Chu, Y., Li, W., Wu, Y., Ni, L., Bao, Y., Wang, K., Short-term electrical load forecasting using the support vector regression (SVR) model to calculate the demand response baseline for office buildings. Appl Energy 195 (2017), 659–670 https://doi.org/10.1016/j.apenergy.2017.03.034.
    • (2017) Appl Energy , vol.195 , pp. 659-670
    • Chen, Y.1    Xu, P.2    Chu, Y.3    Li, W.4    Wu, Y.5    Ni, L.6    Bao, Y.7    Wang, K.8
  • 17
    • 85005980974 scopus 로고    scopus 로고
    • Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China
    • Xu, N., Dang, Y., Gong, Y., Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China. Energy 118 (2017), 473–480 https://doi.org/10.1016/j.energy.2016.10.003.
    • (2017) Energy , vol.118 , pp. 473-480
    • Xu, N.1    Dang, Y.2    Gong, Y.3
  • 18
    • 84938118602 scopus 로고    scopus 로고
    • Day-ahead load forecast using random forest and expert input selection
    • Lahouar, A., Slama, J.B.H., Day-ahead load forecast using random forest and expert input selection. Energy Convers Manag 103 (2015), 1040–1051 https://doi.org/10.1016/j.enconman.2015.07.041.
    • (2015) Energy Convers Manag , vol.103 , pp. 1040-1051
    • Lahouar, A.1    Slama, J.B.H.2
  • 19
    • 85032029470 scopus 로고    scopus 로고
    • Breeder hybrid algorithm approach for natural gas demand forecasting model
    • Karadede, Y., Ozdemir, G., Aydemir, E., Breeder hybrid algorithm approach for natural gas demand forecasting model. Energy 141 (2017), 1269–1284 https://doi.org/10.1016/j.energy.2017.09.130.
    • (2017) Energy , vol.141 , pp. 1269-1284
    • Karadede, Y.1    Ozdemir, G.2    Aydemir, E.3
  • 20
    • 84862777006 scopus 로고    scopus 로고
    • An annual load forecasting model based on support vector regression with differential evolution algorithm
    • Wang, J., Li, L., Niu, D., Tan, Z., An annual load forecasting model based on support vector regression with differential evolution algorithm. Appl Energy 94:6 (2012), 65–70 https://doi.org/10.1016/j.apenergy.2012.01.010.
    • (2012) Appl Energy , vol.94 , Issue.6 , pp. 65-70
    • Wang, J.1    Li, L.2    Niu, D.3    Tan, Z.4
  • 21
    • 84991628968 scopus 로고    scopus 로고
    • A note of hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining: a response
    • Deris, A.M., Zain, A.M., Sallehuddin, R., A note of hybrid GR-SVM for prediction of surface roughness in abrasive water jet machining: a response. Meccanica 52:8 (2017), 1993–1994 https://doi.org/10.1007/s11012-016-0542-8.
    • (2017) Meccanica , vol.52 , Issue.8 , pp. 1993-1994
    • Deris, A.M.1    Zain, A.M.2    Sallehuddin, R.3
  • 22
    • 85028356347 scopus 로고    scopus 로고
    • Oblique random forest ensemble via least square estimation for time series forecasting
    • Qiu, X., Zhang, L., Suganthan, P.N., Amaratunga, G.A.J., Oblique random forest ensemble via least square estimation for time series forecasting. Inf Sci 420 (2017), 249–262 https://doi.org/10.1016/j.ins.2017.08.060.
    • (2017) Inf Sci , vol.420 , pp. 249-262
    • Qiu, X.1    Zhang, L.2    Suganthan, P.N.3    Amaratunga, G.A.J.4
  • 23
    • 84931051773 scopus 로고    scopus 로고
    • Integrative random forest for gene regulatory network inference
    • Petralia, F., Wang, P., Yang, J., Tu, Z., Integrative random forest for gene regulatory network inference. Bioinformatics 31:12 (2015), 197–205 https://doi.org/10.1093/bioinformatics/btv268.
    • (2015) Bioinformatics , vol.31 , Issue.12 , pp. 197-205
    • Petralia, F.1    Wang, P.2    Yang, J.3    Tu, Z.4
  • 24
    • 84961115074 scopus 로고    scopus 로고
    • Downscaling land surface temperatures at regional scales with random forest regression
    • Hutengs, C., Vohland, M., Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens Environ 178 (2016), 127–141 https://doi.org/10.1016/j.rse.2016.03.006.
    • (2016) Remote Sens Environ , vol.178 , pp. 127-141
    • Hutengs, C.1    Vohland, M.2
  • 25
    • 85025151429 scopus 로고    scopus 로고
    • Predicting solar flares using SDO/HMI vector magnetic data product and random forest algorithm
    • Liu, C., Deng, N., Wang, J.T.L., Wang, H., Predicting solar flares using SDO/HMI vector magnetic data product and random forest algorithm. Astrophys J 843:104 (2017), 1–14 https://doi.org/10.3847/1538-4357/aa789b.
    • (2017) Astrophys J , vol.843 , Issue.104 , pp. 1-14
    • Liu, C.1    Deng, N.2    Wang, J.T.L.3    Wang, H.4
  • 26
    • 85019413262 scopus 로고    scopus 로고
    • A permutation importance-based feature selection method for short-term electricity load forecasting using random forest
    • Huang, N., Lu, G., Xu, D., A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies, 9(10), 2016, 767 https://doi.org/10.3390/en9100767.
    • (2016) Energies , vol.9 , Issue.10 , pp. 767
    • Huang, N.1    Lu, G.2    Xu, D.3
  • 27
    • 85006795629 scopus 로고    scopus 로고
    • Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model
    • Panapakidis, I.P., Dagoumas, A.S., Day-ahead natural gas demand forecasting based on the combination of wavelet transform and ANFIS/genetic algorithm/neural network model. Energy 118 (2017), 231–245 https://doi.org/10.1016/j.energy.2016.12.033.
    • (2017) Energy , vol.118 , pp. 231-245
    • Panapakidis, I.P.1    Dagoumas, A.S.2
  • 28
    • 84975059583 scopus 로고    scopus 로고
    • Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach
    • Bai, Y., Li, C., Daily natural gas consumption forecasting based on a structure-calibrated support vector regression approach. Energy Build 127 (2016), 571–579 https://doi.org/10.1016/j.enbuild.2016.06.020.
    • (2016) Energy Build , vol.127 , pp. 571-579
    • Bai, Y.1    Li, C.2
  • 29
    • 85046016469 scopus 로고    scopus 로고
    • Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator
    • Zeng, B., Duan, H., Bai, Y., Meng, W., Forecasting the output of shale gas in China using an unbiased grey model and weakening buffer operator. Energy 151 (2018), 238–249 https://doi.org/10.1016/j.energy.2018.03.045.
    • (2018) Energy , vol.151 , pp. 238-249
    • Zeng, B.1    Duan, H.2    Bai, Y.3    Meng, W.4
  • 30
    • 84880746489 scopus 로고    scopus 로고
    • Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation
    • Bessedik, S.A., Hadi, H., Prediction of flashover voltage of insulators using least squares support vector machine with particle swarm optimisation. Elec Power Syst Res 104:9 (2013), 87–92 https://doi.org/10.1016/j.epsr.2013.06.013.
    • (2013) Elec Power Syst Res , vol.104 , Issue.9 , pp. 87-92
    • Bessedik, S.A.1    Hadi, H.2
  • 31
    • 85019990042 scopus 로고    scopus 로고
    • Analyzing big time series data in solar engineering using features and PCA
    • Yang, D., Dong, Z., Lim, L.H.I., Liu, L., Analyzing big time series data in solar engineering using features and PCA. Sol Energy 153 (2017), 317–328 https://doi.org/10.1016/j.solener.2017.05.072.
    • (2017) Sol Energy , vol.153 , pp. 317-328
    • Yang, D.1    Dong, Z.2    Lim, L.H.I.3    Liu, L.4
  • 33
    • 84904904412 scopus 로고    scopus 로고
    • A multi-scale relevance vector regression approach for daily urban water demand forecasting
    • Bai, Y., Wang, P., Li, C., Xie, J., Wang, Y., A multi-scale relevance vector regression approach for daily urban water demand forecasting. J Hydrol 517:2 (2014), 236–245 https://doi.org/10.1016/j.jhydrol.2014.05.033.
    • (2014) J Hydrol , vol.517 , Issue.2 , pp. 236-245
    • Bai, Y.1    Wang, P.2    Li, C.3    Xie, J.4    Wang, Y.5
  • 34
    • 85026436770 scopus 로고    scopus 로고
    • A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction
    • Wang, C., Zhang, H., Fan, W., Ma, P., A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction. Energy 138 (2017), 977–990 https://doi.org/10.1016/j.energy.2017.07.112.
    • (2017) Energy , vol.138 , pp. 977-990
    • Wang, C.1    Zhang, H.2    Fan, W.3    Ma, P.4
  • 35
    • 84939809781 scopus 로고    scopus 로고
    • A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: hidden characteristic extraction and probability density prediction
    • Shao, Z., Gao, F., Yang, S.L., Yu, B.G., A new semiparametric and EEMD based framework for mid-term electricity demand forecasting in China: hidden characteristic extraction and probability density prediction. Renew Sustain Energy Rev 52 (2015), 876–889 https://doi.org/10.1016/j.rser.2015.07.159.
    • (2015) Renew Sustain Energy Rev , vol.52 , pp. 876-889
    • Shao, Z.1    Gao, F.2    Yang, S.L.3    Yu, B.G.4
  • 36
    • 85044435294 scopus 로고    scopus 로고
    • Research on electricity consumption forecast based on mutual information and random forests algorithm
    • (5)
    • Shi, J., Shi, Y., Tan, J., Zhu, L., Li, H., Research on electricity consumption forecast based on mutual information and random forests algorithm. IOP conference series: earth and environmental science, vol. 121, 2018, 052089 (5) https://doi.org/10.1088/1755-1315/121/5/052089.
    • (2018) IOP conference series: earth and environmental science , vol.121 , pp. 052089
    • Shi, J.1    Shi, Y.2    Tan, J.3    Zhu, L.4    Li, H.5
  • 37
    • 84899697804 scopus 로고    scopus 로고
    • Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China
    • Jiang, X., Zhang, L., Chen, X., Short-term forecasting of high-speed rail demand: a hybrid approach combining ensemble empirical mode decomposition and gray support vector machine with real-world applications in China. Transport Res C 44:4 (2014), 110–127 https://doi.org/10.1016/j.trc.2014.03.016.
    • (2014) Transport Res C , vol.44 , Issue.4 , pp. 110-127
    • Jiang, X.1    Zhang, L.2    Chen, X.3
  • 38
    • 84861423084 scopus 로고    scopus 로고
    • Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal
    • Wang, T., Zhang, M., Yu, Q., Zhang, H., Comparing the applications of EMD and EEMD on time–frequency analysis of seismic signal. J Appl Geophys 83 (2012), 29–34 https://doi.org/10.1016/j.jappgeo.2012.05.002.
    • (2012) J Appl Geophys , vol.83 , pp. 29-34
    • Wang, T.1    Zhang, M.2    Yu, Q.3    Zhang, H.4
  • 39
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise-assisted data analysis method
    • Wu, Z.H., Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:01 (2005), 1–41 https://doi.org/10.1142/S1793536909000047.
    • (2005) Adv Adapt Data Anal , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 40
    • 0032585001 scopus 로고    scopus 로고
    • A comparison of fast Fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data
    • Spyers-Ashby, J.M., Bain, P.G., Roberts, S.J., A comparison of fast Fourier transform (FFT) and autoregressive (AR) spectral estimation techniques for the analysis of tremor data. J Neurosci Methods 83:1 (1998), 35–43 https://doi.org/10.1016/S0165-0270(98)00064-8.
    • (1998) J Neurosci Methods , vol.83 , Issue.1 , pp. 35-43
    • Spyers-Ashby, J.M.1    Bain, P.G.2    Roberts, S.J.3
  • 41
    • 85028006288 scopus 로고    scopus 로고
    • A Random Forest approach using imprecise probabilities
    • Abellán, J., Mantas, C.J., Castellano, J.G., A Random Forest approach using imprecise probabilities. Knowl-Based Syst 134 (2017), 72–84 https://doi.org/10.1016/j.knosys.2017.07.019.
    • (2017) Knowl-Based Syst , vol.134 , pp. 72-84
    • Abellán, J.1    Mantas, C.J.2    Castellano, J.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.