메뉴 건너뛰기




Volumn 7, Issue 2, 2019, Pages 2414-2428

Computational Framework for the Identification of Bioprivileged Molecules

Author keywords

Automated network generation; Biobased chemicals; Bioprivileged molecules; Computational molecule design; Reactivity

Indexed keywords

INDICATORS (CHEMICAL); REACTIVITY (NUCLEAR); SENSITIVITY ANALYSIS; THERMODYNAMICS;

EID: 85059661762     PISSN: None     EISSN: 21680485     Source Type: Journal    
DOI: 10.1021/acssuschemeng.8b05275     Document Type: Article
Times cited : (23)

References (81)
  • 1
    • 84893191986 scopus 로고    scopus 로고
    • Biomass Feedstocks for Renewable Fuel Production: A Review of the Impacts of Feedstock and Pretreatment on the Yield and Product Distribution of Fast Pyrolysis Bio-oils and Vapors
    • Carpenter, D.; Westover, T. L.; Czernik, S.; Jablonski, W. Biomass Feedstocks for Renewable Fuel Production: A Review of the Impacts of Feedstock and Pretreatment on the Yield and Product Distribution of Fast Pyrolysis Bio-oils and Vapors. Green Chem. 2014, 16 (2), 384-406, 10.1039/C3GC41631C
    • (2014) Green Chem. , vol.16 , Issue.2 , pp. 384-406
    • Carpenter, D.1    Westover, T.L.2    Czernik, S.3    Jablonski, W.4
  • 2
    • 54249140584 scopus 로고    scopus 로고
    • Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes
    • Kunkes, E. L.; Simonetti, D. A.; West, R. M.; Serrano-Ruiz, J. C.; Gärtner, C. A.; Dumesic, J. A. Catalytic Conversion of Biomass to Monofunctional Hydrocarbons and Targeted Liquid-Fuel Classes. Science 2008, 322 (5900), 417-421, 10.1126/science.1159210
    • (2008) Science , vol.322 , Issue.5900 , pp. 417-421
    • Kunkes, E.L.1    Simonetti, D.A.2    West, R.M.3    Serrano-Ruiz, J.C.4    Gärtner, C.A.5    Dumesic, J.A.6
  • 3
    • 78649400360 scopus 로고    scopus 로고
    • Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils
    • Vispute, T. P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G. W. Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science 2010, 330 (6008), 1222-1227, 10.1126/science.1194218
    • (2010) Science , vol.330 , Issue.6008 , pp. 1222-1227
    • Vispute, T.P.1    Zhang, H.2    Sanna, A.3    Xiao, R.4    Huber, G.W.5
  • 4
    • 84863086402 scopus 로고    scopus 로고
    • Top Ten Fundamental Challenges of Biomass Pyrolysis for Biofuels
    • Mettler, M. S.; Vlachos, D. G.; Dauenhauer, P. J. Top Ten Fundamental Challenges of Biomass Pyrolysis for Biofuels. Energy Environ. Sci. 2012, 5 (7), 7797-7809, 10.1039/c2ee21679e
    • (2012) Energy Environ. Sci. , vol.5 , Issue.7 , pp. 7797-7809
    • Mettler, M.S.1    Vlachos, D.G.2    Dauenhauer, P.J.3
  • 5
    • 79959386497 scopus 로고    scopus 로고
    • Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals
    • Chundawat, S. P. S.; Beckham, G. T.; Himmel, M. E.; Dale, B. E. Deconstruction of Lignocellulosic Biomass to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2011, 2, 121-145, 10.1146/annurev-chembioeng-061010-114205
    • (2011) Annu. Rev. Chem. Biomol. Eng. , vol.2 , pp. 121-145
    • Chundawat, S.P.S.1    Beckham, G.T.2    Himmel, M.E.3    Dale, B.E.4
  • 6
    • 84894207909 scopus 로고    scopus 로고
    • Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities
    • Mäki-Arvela, P.; Simakova, I. L.; Salmi, T.; Murzin, D. Y. Production of Lactic Acid/Lactates from Biomass and Their Catalytic Transformations to Commodities. Chem. Rev. 2014, 114 (3), 1909-1971, 10.1021/cr400203v
    • (2014) Chem. Rev. , vol.114 , Issue.3 , pp. 1909-1971
    • Mäki-Arvela, P.1    Simakova, I.L.2    Salmi, T.3    Murzin, D.Y.4
  • 7
    • 80053459756 scopus 로고    scopus 로고
    • Biotechnological routes based on lactic acid production from biomass
    • Gao, C.; Ma, C.; Xu, P. Biotechnological routes based on lactic acid production from biomass. Biotechnol. Adv. 2011, 29 (6), 930-939, 10.1016/j.biotechadv.2011.07.022
    • (2011) Biotechnol. Adv. , vol.29 , Issue.6 , pp. 930-939
    • Gao, C.1    Ma, C.2    Xu, P.3
  • 8
    • 36448962679 scopus 로고    scopus 로고
    • Chemicals from Biomass
    • Dodds, D. R.; Gross, R. A. Chemicals from Biomass. Science 2007, 318 (5854), 1250-1251, 10.1126/science.1146356
    • (2007) Science , vol.318 , Issue.5854 , pp. 1250-1251
    • Dodds, D.R.1    Gross, R.A.2
  • 9
    • 77950551360 scopus 로고    scopus 로고
    • Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's ″top 10″ revisited
    • Bozell, J. J.; Petersen, G. R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's ″Top 10″ revisited. Green Chem. 2010, 12 (4), 539-554, 10.1039/b922014c
    • (2010) Green Chem. , vol.12 , Issue.4 , pp. 539-554
    • Bozell, J.J.1    Petersen, G.R.2
  • 10
    • 84923809316 scopus 로고    scopus 로고
    • Biorefineries for the production of top building block chemicals and their derivatives
    • Choi, S.; Song, C.; Shin, J.; Lee, S. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 2015, 28, 223-239, 10.1016/j.ymben.2014.12.007
    • (2015) Metab. Eng. , vol.28 , pp. 223-239
    • Choi, S.1    Song, C.2    Shin, J.3    Lee, S.4
  • 11
    • 85027954631 scopus 로고    scopus 로고
    • Chemicals from biomass: Technological versus environmental feasibility. A review
    • Fiorentino, G.; Ripa, M.; Ulgiati, S. Chemicals from biomass: technological versus environmental feasibility. A review. Biofuels, Bioprod. Biorefin. 2017, 11 (1), 195-214, 10.1002/bbb.1729
    • (2017) Biofuels, Bioprod. Biorefin. , vol.11 , Issue.1 , pp. 195-214
    • Fiorentino, G.1    Ripa, M.2    Ulgiati, S.3
  • 14
    • 84902191010 scopus 로고    scopus 로고
    • Bridging the Chemical and Biological Catalysis Gap: Challenges and Outlooks for Producing Sustainable Chemicals
    • Schwartz, T. J.; O'Neill, B. J.; Shanks, B. H.; Dumesic, J. A. Bridging the Chemical and Biological Catalysis Gap: Challenges and Outlooks for Producing Sustainable Chemicals. ACS Catal. 2014, 4 (6), 2060-2069, 10.1021/cs500364y
    • (2014) ACS Catal. , vol.4 , Issue.6 , pp. 2060-2069
    • Schwartz, T.J.1    O'Neill, B.J.2    Shanks, B.H.3    Dumesic, J.A.4
  • 15
    • 84890842396 scopus 로고    scopus 로고
    • Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents
    • Saha, B.; Abu-Omar, M. M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem. 2014, 16 (1), 24-38, 10.1039/C3GC41324A
    • (2014) Green Chem. , vol.16 , Issue.1 , pp. 24-38
    • Saha, B.1    Abu-Omar, M.M.2
  • 16
    • 34047189780 scopus 로고    scopus 로고
    • Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides
    • Chheda, J. N.; Roman-Leshkov, Y.; Dumesic, J. A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 2007, 9 (4), 342-350, 10.1039/B611568C
    • (2007) Green Chem. , vol.9 , Issue.4 , pp. 342-350
    • Chheda, J.N.1    Roman-Leshkov, Y.2    Dumesic, J.A.3
  • 17
    • 33646395098 scopus 로고    scopus 로고
    • Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from d-Fructose in Subcritical Water
    • Salak Asghari, F.; Yoshida, H. Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from d-Fructose in Subcritical Water. Ind. Eng. Chem. Res. 2006, 45 (7), 2163-2173, 10.1021/ie051088y
    • (2006) Ind. Eng. Chem. Res. , vol.45 , Issue.7 , pp. 2163-2173
    • Salak Asghari, F.1    Yoshida, H.2
  • 18
    • 34250835050 scopus 로고    scopus 로고
    • Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
    • Román-Leshkov, Y.; Barrett, C. J.; Liu, Z. Y.; Dumesic, J. A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates. Nature 2007, 447, 982, 10.1038/nature05923
    • (2007) Nature , vol.447 , pp. 982
    • Román-Leshkov, Y.1    Barrett, C.J.2    Liu, Z.Y.3    Dumesic, J.A.4
  • 19
    • 84944740426 scopus 로고    scopus 로고
    • 5-Hydroxymethylfurfural: A key intermediate for efficient biomass conversion
    • Zhang, Y.; Zhang, J.; Su, D. 5-Hydroxymethylfurfural: A key intermediate for efficient biomass conversion. J. Energy Chem. 2015, 24 (5), 548-551, 10.1016/j.jechem.2015.09.005
    • (2015) J. Energy Chem. , vol.24 , Issue.5 , pp. 548-551
    • Zhang, Y.1    Zhang, J.2    Su, D.3
  • 20
    • 79953778895 scopus 로고    scopus 로고
    • 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications
    • Rosatella, A. A.; Simeonov, S. P.; Frade, R. F. M.; Afonso, C. A. M. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications. Green Chem. 2011, 13 (4), 754-793, 10.1039/c0gc00401d
    • (2011) Green Chem. , vol.13 , Issue.4 , pp. 754-793
    • Rosatella, A.A.1    Simeonov, S.P.2    Frade, R.F.M.3    Afonso, C.A.M.4
  • 21
    • 84874455368 scopus 로고    scopus 로고
    • Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass
    • Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 2013, 15 (3), 584-595, 10.1039/c3gc37065h
    • (2013) Green Chem. , vol.15 , Issue.3 , pp. 584-595
    • Alonso, D.M.1    Wettstein, S.G.2    Dumesic, J.A.3
  • 22
    • 84908141383 scopus 로고    scopus 로고
    • Effects of [gamma]-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides
    • Mellmer, M. A.; Martin Alonso, D.; Luterbacher, J. S.; Gallo, J. M. R.; Dumesic, J. A. Effects of [gamma]-valerolactone in hydrolysis of lignocellulosic biomass to monosaccharides. Green Chem. 2014, 16 (11), 4659-4662, 10.1039/C4GC01768D
    • (2014) Green Chem. , vol.16 , Issue.11 , pp. 4659-4662
    • Mellmer, M.A.1    Martin Alonso, D.2    Luterbacher, J.S.3    Gallo, J.M.R.4    Dumesic, J.A.5
  • 23
    • 77953670758 scopus 로고    scopus 로고
    • Pentenoic Acid Pathways for Cellulosic Biofuels
    • Palkovits, R. Pentenoic Acid Pathways for Cellulosic Biofuels. Angew. Chem., Int. Ed. 2010, 49 (26), 4336-4338, 10.1002/anie.201002061
    • (2010) Angew. Chem., Int. Ed. , vol.49 , Issue.26 , pp. 4336-4338
    • Palkovits, R.1
  • 24
    • 84865782514 scopus 로고    scopus 로고
    • Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to γ-Valerolactone
    • Wright, W. R. H.; Palkovits, R. Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to γ-Valerolactone. ChemSusChem 2012, 5 (9), 1657-1667, 10.1002/cssc.201200111
    • (2012) ChemSusChem , vol.5 , Issue.9 , pp. 1657-1667
    • Wright, W.R.H.1    Palkovits, R.2
  • 26
    • 77649212341 scopus 로고    scopus 로고
    • Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels
    • Bond, J. Q.; Alonso, D. M.; Wang, D.; West, R. M.; Dumesic, J. A. Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels. Science 2010, 327 (5969), 1110-1114, 10.1126/science.1184362
    • (2010) Science , vol.327 , Issue.5969 , pp. 1110-1114
    • Bond, J.Q.1    Alonso, D.M.2    Wang, D.3    West, R.M.4    Dumesic, J.A.5
  • 27
    • 84954216839 scopus 로고    scopus 로고
    • Coupling chemical and biological catalysis: A flexible paradigm for producing biobased chemicals
    • Schwartz, T. J.; Shanks, B. H.; Dumesic, J. A. Coupling chemical and biological catalysis: a flexible paradigm for producing biobased chemicals. Curr. Opin. Biotechnol. 2016, 38, 54-62, 10.1016/j.copbio.2015.12.017
    • (2016) Curr. Opin. Biotechnol. , vol.38 , pp. 54-62
    • Schwartz, T.J.1    Shanks, B.H.2    Dumesic, J.A.3
  • 28
    • 85025681765 scopus 로고    scopus 로고
    • Bioprivileged molecules: Creating value from biomass
    • Shanks, B. H.; Keeling, P. L. Bioprivileged molecules: creating value from biomass. Green Chem. 2017, 19 (14), 3177-3185, 10.1039/C7GC00296C
    • (2017) Green Chem. , vol.19 , Issue.14 , pp. 3177-3185
    • Shanks, B.H.1    Keeling, P.L.2
  • 30
    • 85059684427 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone (TAL)
    • Cardenas, J.; Da Silva, N. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone (TAL). Abstr. Pap. Am. Chem. Soc 2013, 245
    • (2013) Abstr. Pap. Am. Chem. Soc , pp. 245
    • Cardenas, J.1    Da Silva, N.2
  • 31
    • 84879999713 scopus 로고    scopus 로고
    • Screening for Enhanced Triacetic Acid Lactone Production by Recombinant Escherichia coli Expressing a Designed Triacetic Acid Lactone Reporter
    • Tang, S. Y.; Qian, S.; Akinterinwa, O.; Frei, C. S.; Gredell, J. A.; Cirino, P. C. Screening for Enhanced Triacetic Acid Lactone Production by Recombinant Escherichia coli Expressing a Designed Triacetic Acid Lactone Reporter. J. Am. Chem. Soc. 2013, 135 (27), 10099-10103, 10.1021/ja402654z
    • (2013) J. Am. Chem. Soc. , vol.135 , Issue.27 , pp. 10099-10103
    • Tang, S.Y.1    Qian, S.2    Akinterinwa, O.3    Frei, C.S.4    Gredell, J.A.5    Cirino, P.C.6
  • 32
    • 84907332252 scopus 로고    scopus 로고
    • Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone
    • Cardenas, J.; Da Silva, N. A. Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metab. Eng. 2014, 25, 194-203, 10.1016/j.ymben.2014.07.008
    • (2014) Metab. Eng. , vol.25 , pp. 194-203
    • Cardenas, J.1    Da Silva, N.A.2
  • 35
    • 84947968348 scopus 로고    scopus 로고
    • An improved aldol protocol for the preparation of 6-styrenylpyrones
    • Kraus, G. A.; Wanninayake, U. K. An improved aldol protocol for the preparation of 6-styrenylpyrones. Tetrahedron Lett. 2015, 56 (51), 7112-7114, 10.1016/j.tetlet.2015.11.021
    • (2015) Tetrahedron Lett. , vol.56 , Issue.51 , pp. 7112-7114
    • Kraus, G.A.1    Wanninayake, U.K.2
  • 36
    • 37049122052 scopus 로고
    • Photochemistry of 4-Hydroxy-6-Methyl-(2h)-Pyran-2-One (Triacetic Acid Lactone)
    • Bedford, C. T.; Money, T. Photochemistry of 4-Hydroxy-6-Methyl-(2h)-Pyran-2-One (Triacetic Acid Lactone). J. Chem. Soc. D 1969, 0 (13), 685-686, 10.1039/c29690000685
    • (1969) J. Chem. Soc. D , Issue.13 , pp. 685-686
    • Bedford, C.T.1    Money, T.2
  • 37
    • 37049094736 scopus 로고
    • Triacetic Acid Lactone as a Polyketide Synthon - Synthesis of Toralactone and Polyketide-Type Anthracene-Derivatives
    • Evans, G. E.; Leeper, F. J.; Murphy, J. A.; Staunton, J. Triacetic Acid Lactone as a Polyketide Synthon-Synthesis of Toralactone and Polyketide-Type Anthracene-Derivatives. J. Chem. Soc., Chem. Commun. 1979, 5, 205-206, 10.1039/c39790000205
    • (1979) J. Chem. Soc., Chem. Commun. , vol.5 , pp. 205-206
    • Evans, G.E.1    Leeper, F.J.2    Murphy, J.A.3    Staunton, J.4
  • 38
    • 0007695596 scopus 로고
    • Hydrogenations of Triacetic Acid Lactone - New Synthesis of the Carpenter Bee (Xylocopa-Hirsutissima) Sex-Pheromone
    • Bacardit, R.; Morenomanas, M. Hydrogenations of Triacetic Acid Lactone-New Synthesis of the Carpenter Bee (Xylocopa-Hirsutissima) Sex-Pheromone. Tetrahedron Lett. 1980, 21 (6), 551-554, 10.1016/S0040-4039(01)85553-2
    • (1980) Tetrahedron Lett. , vol.21 , Issue.6 , pp. 551-554
    • Bacardit, R.1    Morenomanas, M.2
  • 39
    • 0345138885 scopus 로고
    • Alkylations at C-3 and C-5 of Triacetic Acid Lactone and Derivatives
    • Moreno-Manas, M.; Pleixats, R.; de March, P.; Ripoll, I. Alkylations at C-3 and C-5 of Triacetic Acid Lactone and Derivatives. Heterocycles 1984, 21, 766-766, 10.3987/S-1984-02-0766
    • (1984) Heterocycles , vol.21 , pp. 766
    • Moreno-Manas, M.1    Pleixats, R.2    De March, P.3    Ripoll, I.4
  • 40
    • 0004962288 scopus 로고
    • Reactions of Triacetic Acid Lactone with Carbonyl-Compounds - X-Ray Structure Determination of 3-Acetoacetyl-2-Chromenone and 3,6,9,12-Tetramethyl-1h,6h,7h,12h-6,12-Methanodipyrano[4,3-B-4,3-F]-Dioxocin-1,7-Dione
    • Demarch, P.; Morenomanas, M.; Roca, J. L.; Germain, G.; Piniella, J. F.; Dideberg, O. Reactions of Triacetic Acid Lactone with Carbonyl-Compounds-X-Ray Structure Determination of 3-Acetoacetyl-2-Chromenone and 3,6,9,12-Tetramethyl-1h,6h,7h,12h-6,12-Methanodipyrano[4,3-B-4,3-F]-Dioxocin-1,7-Dione. J. Heterocycl. Chem. 1986, 23 (5), 1511-1513, 10.1002/jhet.5570230550
    • (1986) J. Heterocycl. Chem. , vol.23 , Issue.5 , pp. 1511-1513
    • Demarch, P.1    Morenomanas, M.2    Roca, J.L.3    Germain, G.4    Piniella, J.F.5    Dideberg, O.6
  • 41
    • 0010417691 scopus 로고
    • Dehydroacetic Acid, Triacetic Acid Lactone, and Related Pyrones
    • Morenomanas, M.; Pleixats, R. Dehydroacetic Acid, Triacetic Acid Lactone, and Related Pyrones. Adv. Heterocycl. Chem. 1992, 53, 1-84, 10.1016/S0065-2725(08)60861-2
    • (1992) Adv. Heterocycl. Chem. , vol.53 , pp. 1-84
    • Morenomanas, M.1    Pleixats, R.2
  • 42
    • 18744390513 scopus 로고    scopus 로고
    • Triacetic acid lactone methyl ether as a natural products synthon
    • Younis, Y. M.; Al-Shihry, S. S. Triacetic acid lactone methyl ether as a natural products synthon. Aust. J. Chem. 2000, 53 (7), 589-591, 10.1071/CH99119
    • (2000) Aust. J. Chem. , vol.53 , Issue.7 , pp. 589-591
    • Younis, Y.M.1    Al-Shihry, S.S.2
  • 43
    • 84862906325 scopus 로고    scopus 로고
    • Triacetic acid lactone as a potential biorenewable platform chemical
    • Chia, M.; Schwartz, T. J.; Shanks, B. H.; Dumesic, J. A. Triacetic acid lactone as a potential biorenewable platform chemical. Green Chem. 2012, 14 (7), 1850-1853, 10.1039/c2gc35343a
    • (2012) Green Chem. , vol.14 , Issue.7 , pp. 1850-1853
    • Chia, M.1    Schwartz, T.J.2    Shanks, B.H.3    Dumesic, J.A.4
  • 44
    • 84940006387 scopus 로고    scopus 로고
    • Selective pyrone functionalization: Reductive alkylation of triacetic acid lactone
    • Kraus, G. A.; Basemann, K.; Guney, T. Selective pyrone functionalization: reductive alkylation of triacetic acid lactone. Tetrahedron Lett. 2015, 56 (23), 3494-3496, 10.1016/j.tetlet.2015.01.141
    • (2015) Tetrahedron Lett. , vol.56 , Issue.23 , pp. 3494-3496
    • Kraus, G.A.1    Basemann, K.2    Guney, T.3
  • 45
    • 85059680871 scopus 로고    scopus 로고
    • Application of Microwave Heating of Dry Organic Reactions: New Condensation Products from Triacetic Acid Lactone (Tal)
    • Benferrah, N.; Hammadi, M.; Berthiol, F. Application of Microwave Heating of Dry Organic Reactions: New Condensation Products from Triacetic Acid Lactone (Tal). Rev. Roum. Chim. 2016, 61 (11-12), 863-869
    • (2016) Rev. Roum. Chim. , vol.61 , Issue.1112 , pp. 863-869
    • Benferrah, N.1    Hammadi, M.2    Berthiol, F.3
  • 46
    • 84959011026 scopus 로고    scopus 로고
    • Triacetic acid lactone as a common intermediate for the synthesis of 4-hydroxy-2-pyridones and 4-amino-2-pyrones
    • Kraus, G. A.; Wanninayake, U. K.; Bottoms, J. Triacetic acid lactone as a common intermediate for the synthesis of 4-hydroxy-2-pyridones and 4-amino-2-pyrones. Tetrahedron Lett. 2016, 57 (11), 1293-1295, 10.1016/j.tetlet.2016.02.043
    • (2016) Tetrahedron Lett. , vol.57 , Issue.11 , pp. 1293-1295
    • Kraus, G.A.1    Wanninayake, U.K.2    Bottoms, J.3
  • 47
    • 84876481379 scopus 로고    scopus 로고
    • Mechanistic Insights into Ring-Opening and Decarboxylation of 2-Pyrones in Liquid Water and Tetrahydrofuran
    • Chia, M.; Haider, M. A.; Pollock, G.; Kraus, G. A.; Neurock, M.; Dumesic, J. A. Mechanistic Insights into Ring-Opening and Decarboxylation of 2-Pyrones in Liquid Water and Tetrahydrofuran. J. Am. Chem. Soc. 2013, 135 (15), 5699-5708, 10.1021/ja312075r
    • (2013) J. Am. Chem. Soc. , vol.135 , Issue.15 , pp. 5699-5708
    • Chia, M.1    Haider, M.A.2    Pollock, G.3    Kraus, G.A.4    Neurock, M.5    Dumesic, J.A.6
  • 48
    • 0028410110 scopus 로고
    • Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates
    • Broadbelt, L. J.; Stark, S. M.; Klein, M. T. Computer Generated Pyrolysis Modeling: On-the-Fly Generation of Species, Reactions, and Rates. Ind. Eng. Chem. Res. 1994, 33 (4), 790-799, 10.1021/ie00028a003
    • (1994) Ind. Eng. Chem. Res. , vol.33 , Issue.4 , pp. 790-799
    • Broadbelt, L.J.1    Stark, S.M.2    Klein, M.T.3
  • 49
    • 70350501257 scopus 로고    scopus 로고
    • Computational Framework for Predictive Biodegradation
    • Finley, S. D.; Broadbelt, L. J.; Hatzimanikatis, V. Computational Framework for Predictive Biodegradation. Biotechnol. Bioeng. 2009, 104 (6), 1086-1097, 10.1002/bit.22489
    • (2009) Biotechnol. Bioeng. , vol.104 , Issue.6 , pp. 1086-1097
    • Finley, S.D.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 50
    • 77649173572 scopus 로고    scopus 로고
    • In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene
    • Finley, S. D.; Broadbelt, L. J.; Hatzimanikatis, V. In silico feasibility of novel biodegradation pathways for 1,2,4-trichlorobenzene. BMC Syst. Biol. 2010, 4 (1), 7, 10.1186/1752-0509-4-7
    • (2010) BMC Syst. Biol. , vol.4 , Issue.1 , pp. 7
    • Finley, S.D.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 51
    • 22144436255 scopus 로고    scopus 로고
    • Theoretical Considerations and Computational Analysis of the Complexity in Polyketide Synthesis Pathways
    • González-Lergier, J.; Broadbelt, L. J.; Hatzimanikatis, V. Theoretical Considerations and Computational Analysis of the Complexity in Polyketide Synthesis Pathways. J. Am. Chem. Soc. 2005, 127 (27), 9930-9938, 10.1021/ja051586y
    • (2005) J. Am. Chem. Soc. , vol.127 , Issue.27 , pp. 9930-9938
    • González-Lergier, J.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 52
    • 84929143779 scopus 로고    scopus 로고
    • Efficient searching and annotation of metabolic networks using chemical similarity
    • Pertusi, D. A.; Stine, A. E.; Broadbelt, L. J.; Tyo, K. E. J. Efficient searching and annotation of metabolic networks using chemical similarity. Bioinformatics 2015, 31 (7), 1016-1024, 10.1093/bioinformatics/btu760
    • (2015) Bioinformatics , vol.31 , Issue.7 , pp. 1016-1024
    • Pertusi, D.A.1    Stine, A.E.2    Broadbelt, L.J.3    Tyo, K.E.J.4
  • 54
    • 77953578214 scopus 로고    scopus 로고
    • Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate
    • Henry, C. S.; Broadbelt, L. J.; Hatzimanikatis, V. Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol. Bioeng. 2010, 106 (3), 462-473, 10.1002/bit.22673
    • (2010) Biotechnol. Bioeng. , vol.106 , Issue.3 , pp. 462-473
    • Henry, C.S.1    Broadbelt, L.J.2    Hatzimanikatis, V.3
  • 55
    • 34948896114 scopus 로고    scopus 로고
    • Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals
    • Chheda, J. N.; Huber, G. W.; Dumesic, J. A. Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew. Chem., Int. Ed. 2007, 46 (38), 7164-7183, 10.1002/anie.200604274
    • (2007) Angew. Chem., Int. Ed. , vol.46 , Issue.38 , pp. 7164-7183
    • Chheda, J.N.1    Huber, G.W.2    Dumesic, J.A.3
  • 56
    • 77956376454 scopus 로고    scopus 로고
    • Catalytic conversion of biomass to biofuels
    • Alonso, D. M.; Bond, J. Q.; Dumesic, J. A. Catalytic conversion of biomass to biofuels. Green Chem. 2010, 12 (9), 1493-1513, 10.1039/c004654j
    • (2010) Green Chem. , vol.12 , Issue.9 , pp. 1493-1513
    • Alonso, D.M.1    Bond, J.Q.2    Dumesic, J.A.3
  • 57
    • 77956354825 scopus 로고    scopus 로고
    • Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals
    • Serrano-Ruiz, J. C.; West, R. M.; Dumesic, J. A. Catalytic Conversion of Renewable Biomass Resources to Fuels and Chemicals. Annu. Rev. Chem. Biomol. Eng. 2010, 1, 79-100, 10.1146/annurev-chembioeng-073009-100935
    • (2010) Annu. Rev. Chem. Biomol. Eng. , vol.1 , pp. 79-100
    • Serrano-Ruiz, J.C.1    West, R.M.2    Dumesic, J.A.3
  • 59
    • 84870022658 scopus 로고    scopus 로고
    • Bimetallic catalysts for upgrading of biomass to fuels and chemicals
    • Alonso, D. M.; Wettstein, S. G.; Dumesic, J. A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 2012, 41 (24), 8075-8098, 10.1039/c2cs35188a
    • (2012) Chem. Soc. Rev. , vol.41 , Issue.24 , pp. 8075-8098
    • Alonso, D.M.1    Wettstein, S.G.2    Dumesic, J.A.3
  • 61
    • 85028316783 scopus 로고    scopus 로고
    • Rhenium-catalyzed deoxydehydration of renewable biomass using sacrificial alcohol as reductant
    • Gossett, J.; Srivastava, R. Rhenium-catalyzed deoxydehydration of renewable biomass using sacrificial alcohol as reductant. Tetrahedron Lett. 2017, 58 (39), 3760-3763, 10.1016/j.tetlet.2017.08.028
    • (2017) Tetrahedron Lett. , vol.58 , Issue.39 , pp. 3760-3763
    • Gossett, J.1    Srivastava, R.2
  • 62
    • 85022097926 scopus 로고    scopus 로고
    • Hydrogen-Free Gas-Phase Deoxydehydration of 2,3-Butanediol to Butene on Silica-Supported Vanadium Catalysts
    • Kwok, K. M.; Choong, C. K. S.; Ong, D. S. W.; Ng, J. C. Q.; Gwie, C. G.; Chen, L.; Borgna, A. Hydrogen-Free Gas-Phase Deoxydehydration of 2,3-Butanediol to Butene on Silica-Supported Vanadium Catalysts. ChemCatChem 2017, 9 (13), 2443-2447, 10.1002/cctc.201700301
    • (2017) ChemCatChem , vol.9 , Issue.13 , pp. 2443-2447
    • Kwok, K.M.1    Choong, C.K.S.2    Ong, D.S.W.3    Ng, J.C.Q.4    Gwie, C.G.5    Chen, L.6    Borgna, A.7
  • 64
    • 85042293561 scopus 로고    scopus 로고
    • Vanadium-Catalyzed Deoxydehydration of Glycerol Without an External Reductant
    • Petersen, A. R.; Nielsen, L. B.; Dethlefsen, J. R.; Fristrup, P. Vanadium-Catalyzed Deoxydehydration of Glycerol Without an External Reductant. ChemCatChem 2018, 10 (4), 769-778, 10.1002/cctc.201701049
    • (2018) ChemCatChem , vol.10 , Issue.4 , pp. 769-778
    • Petersen, A.R.1    Nielsen, L.B.2    Dethlefsen, J.R.3    Fristrup, P.4
  • 66
    • 79953185645 scopus 로고    scopus 로고
    • Daylight Chemical Information Systems, Santa Fe, NM
    • SMARTS Theory Manual; Daylight Chemical Information Systems, Santa Fe, NM.
    • SMARTS Theory Manual
  • 67
    • 44249103857 scopus 로고    scopus 로고
    • Daylight Chemical Information Systems, Santa Fe, NM
    • SMARTS Tutorial; Daylight Chemical Information Systems, Santa Fe, NM.
    • SMARTS Tutorial
  • 68
    • 85059680133 scopus 로고    scopus 로고
    • Daylight Chemical Information Systems, Santa Fe, NM
    • SMARTS Examples; Daylight Chemical Information Systems, Santa Fe, NM.
    • SMARTS Examples
  • 74
    • 40949091975 scopus 로고    scopus 로고
    • A hierarchical clustering methodology for the estimation of toxicity
    • Martin, T. M.; Harten, P.; Venkatapathy, R.; Das, S.; Young, D. M. A hierarchical clustering methodology for the estimation of toxicity. Toxicol. Mech. Methods 2008, 18 (2-3), 251-266, 10.1080/15376510701857353
    • (2008) Toxicol. Mech. Methods , vol.18 , Issue.23 , pp. 251-266
    • Martin, T.M.1    Harten, P.2    Venkatapathy, R.3    Das, S.4    Young, D.M.5
  • 76
  • 77
    • 58149136373 scopus 로고    scopus 로고
    • Are the Chemical Structures in Your QSAR Correct?
    • Young, D.; Martin, T.; Venkatapathy, R.; Harten, P. Are the Chemical Structures in Your QSAR Correct?. QSAR Comb. Sci. 2008, 27 (11-12), 1337-1345, 10.1002/qsar.200810084
    • (2008) QSAR Comb. Sci. , vol.27 , Issue.1112 , pp. 1337-1345
    • Young, D.1    Martin, T.2    Venkatapathy, R.3    Harten, P.4
  • 78
    • 84880541973 scopus 로고    scopus 로고
    • Aromatics from pyrones: Esters of terephthalic acid and isophthalic acid from methyl coumalate
    • Kraus, G. A.; Pollock, G. R., III; Beck, C. L.; Palmer, K.; Winter, A. H. Aromatics from pyrones: esters of terephthalic acid and isophthalic acid from methyl coumalate. RSC Adv. 2013, 3 (31), 12721-12725, 10.1039/c3ra42287a
    • (2013) RSC Adv. , vol.3 , Issue.31 , pp. 12721-12725
    • Kraus, G.A.1    Pollock, G.R.2    Beck, C.L.3    Palmer, K.4    Winter, A.H.5
  • 79
    • 80053469573 scopus 로고    scopus 로고
    • Aromatics from pyrones: Para-substituted alkyl benzoates from alkenes, coumalic acid and methyl coumalate
    • Kraus, G. A.; Riley, S.; Cordes, T. Aromatics from pyrones: para-substituted alkyl benzoates from alkenes, coumalic acid and methyl coumalate. Green Chem. 2011, 13 (10), 2734-2736, 10.1039/c1gc15650k
    • (2011) Green Chem. , vol.13 , Issue.10 , pp. 2734-2736
    • Kraus, G.A.1    Riley, S.2    Cordes, T.3
  • 80
    • 85054362295 scopus 로고    scopus 로고
    • Flow synthesis of coumalic acid and its derivatization
    • Smith, L. K.; Baxendale, I. R. Flow synthesis of coumalic acid and its derivatization. React. Chem. Eng. 2018, 3 (5), 722-732, 10.1039/C8RE00116B
    • (2018) React. Chem. Eng. , vol.3 , Issue.5 , pp. 722-732
    • Smith, L.K.1    Baxendale, I.R.2
  • 81
    • 0000577594 scopus 로고
    • 2-Pyrones. XIII.1 the Chemistry of Coumalic Acid and its Derivatives
    • Wiley, R. H.; Knabeschuh, L. H. 2-Pyrones. XIII.1 The Chemistry of Coumalic Acid and its Derivatives. J. Am. Chem. Soc. 1955, 77 (6), 1615-1617, 10.1021/ja01611a062
    • (1955) J. Am. Chem. Soc. , vol.77 , Issue.6 , pp. 1615-1617
    • Wiley, R.H.1    Knabeschuh, L.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.