메뉴 건너뛰기




Volumn 4, Issue SUPPL. 1, 2010, Pages

CAESAR models for developmental toxicity

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77955379604     PISSN: None     EISSN: 1752153X     Source Type: Journal    
DOI: 10.1186/1752-153X-4-S1-S4     Document Type: Article
Times cited : (1045)

References (49)
  • 3
    • 84958611907 scopus 로고    scopus 로고
    • Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commi
    • Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. OJ L 396, 30.12.2006. 1-849.
  • 4
    • 77955385514 scopus 로고    scopus 로고
    • Computer Assisted Evaluation of industrial chemical Substances According to Regulations. EC project 022674 (SSPI)
    • CAESAR
    • CAESAR Computer Assisted Evaluation of industrial chemical Substances According to Regulations. EC project 022674 (SSPI). CAESAR., http://www.caesar-project.eu
  • 5
    • 0842280719 scopus 로고    scopus 로고
    • The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models
    • Arena VC, Sussman NB, Mazumdar S, Yu S, Macina OT. The utility of structure-activity relationship (SAR) models for prediction and covariate selection in developmental toxicity: comparative analysis of logistic regression and decision tree models. SAR QSAR Environ Res 2004, 15:1-18.
    • (2004) SAR QSAR Environ Res , vol.15 , pp. 1-18
    • Arena, V.C.1    Sussman, N.B.2    Mazumdar, S.3    Yu, S.4    Macina, O.T.5
  • 8
    • 35148898451 scopus 로고    scopus 로고
    • Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models
    • OECD
    • OECD Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models. OECD., http://www.oecd.org/dataoecd/55/35/38130292.pdf
  • 9
    • 84873999616 scopus 로고    scopus 로고
    • Guidance on information requirements and chemical safety assessment, Chapter R.6: QSARs and grouping of chemicals
    • ECHA
    • ECHA Guidance on information requirements and chemical safety assessment, Chapter R.6: QSARs and grouping of chemicals. ECHA., http://guidance.echa.europa.eu/docs/guidance_document/information_requirements_r6_en.pdf?vers=20_08_08
  • 10
    • 33846880679 scopus 로고    scopus 로고
    • A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals
    • Matthews EJ, Kruhlak NL, Benz RD, Ivanov J, Klopma G, Contrera JF. A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals. Regul Toxicol Pharm 2006, 47:136-155.
    • (2006) Regul Toxicol Pharm , vol.47 , pp. 136-155
    • Matthews, E.J.1    Kruhlak, N.L.2    Benz, R.D.3    Ivanov, J.4    Klopma, G.5    Contrera, J.F.6
  • 12
    • 0028991114 scopus 로고
    • Assessment of developmental toxicity potential of chemicals by quantitative structure-toxicity relationship models
    • Gomba VK, Enslein K, Blake BW. Assessment of developmental toxicity potential of chemicals by quantitative structure-toxicity relationship models. Chemosphere 1995, 31:2499-2510.
    • (1995) Chemosphere , vol.31 , pp. 2499-2510
    • Gomba, V.K.1    Enslein, K.2    Blake, B.W.3
  • 14
    • 77955372653 scopus 로고    scopus 로고
    • Daylight SMILES: Simplified Molecular Input Line Entry System
    • Daylight SMILES: Simplified Molecular Input Line Entry System. , http://www.daylight.com/smiles
  • 15
    • 61949166066 scopus 로고    scopus 로고
    • How similar are similarity searching methods? A principal component analysis of molecular descriptor space
    • Bender A, Jenkins JL, Scheiber J, Sukuru SC, Glick M, Davies JW. How similar are similarity searching methods? A principal component analysis of molecular descriptor space. J Chem Inf Model 2009, 49:108-19.
    • (2009) J Chem Inf Model , vol.49 , pp. 108-119
    • Bender, A.1    Jenkins, J.L.2    Scheiber, J.3    Sukuru, S.C.4    Glick, M.5    Davies, J.W.6
  • 16
    • 77955389189 scopus 로고    scopus 로고
    • Talete srl, DRAGON for Linux (Software for Molecular Descriptor Calculations) Version 1.4, 2009
    • Talete srl, DRAGON for Linux (Software for Molecular Descriptor Calculations) Version 1.4, 2009. , http://www.talete.mi.it/
  • 17
    • 77955404055 scopus 로고    scopus 로고
    • Daylight Fingerprint: Screening and Similarity
    • Daylight Fingerprint: Screening and Similarity. , http://www.daylight.com/dayhtml/doc/theory/theory.finger.html
  • 18
    • 33751246188 scopus 로고    scopus 로고
    • Similarity-based virtual screening using 2D fingerprints
    • Willett P. Similarity-based virtual screening using 2D fingerprints. Drug Discovery Today 2006, 11:1046-1053.
    • (2006) Drug Discovery Today , vol.11 , pp. 1046-1053
    • Willett, P.1
  • 21
    • 70449858127 scopus 로고    scopus 로고
    • ChemBioFinder.com: Scientific Database Gateway
    • ChemBioFinder.com: Scientific Database Gateway. , http://chemfinder.camsoft.com/chembiofinder/Forms/Home/ContentArea/Home.aspx
  • 22
    • 84884673205 scopus 로고    scopus 로고
    • ChemIDplus Advanced
    • ChemIDplus Advanced. , http://chem.sis.nlm.nih.gov/chemidplus/
  • 25
    • 36749045167 scopus 로고    scopus 로고
    • Exploring the impact of size of training sets for the development of predictive QSAR models
    • Roy PP, Leonard JT, Roy K. Exploring the impact of size of training sets for the development of predictive QSAR models. Chemomet Intell Lab 2008, 90:31-42.
    • (2008) Chemomet Intell Lab , vol.90 , pp. 31-42
    • Roy, P.P.1    Leonard, J.T.2    Roy, K.3
  • 26
    • 4444273205 scopus 로고    scopus 로고
    • Assessment of Prediction Confidence and Domain Extrapolation of Two Structure-Activity Relationship Models for Predicting Estrogen Receptor Binding Activity
    • Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R. Assessment of Prediction Confidence and Domain Extrapolation of Two Structure-Activity Relationship Models for Predicting Estrogen Receptor Binding Activity. Environ Health Persp 2004, 112:1249-1254.
    • (2004) Environ Health Persp , vol.112 , pp. 1249-1254
    • Tong, W.1    Xie, Q.2    Hong, H.3    Shi, L.4    Fang, H.5    Perkins, R.6
  • 27
    • 77955351847 scopus 로고    scopus 로고
    • USEPA, T.E.S.T. (Toxicity Estimation Software Tool)
    • USEPA, T.E.S.T. (Toxicity Estimation Software Tool). 2010, , http://www.epa.gov/ORD/NRMRL/std/cppb/qsar/index.html
    • (2010)
  • 29
    • 79952405732 scopus 로고    scopus 로고
    • Weka 3 - Data Mining with Open Source Machine Learning Software in Java
    • Weka
    • Weka Weka 3 - Data Mining with Open Source Machine Learning Software in Java. Weka., http://www.cs.waikato.ac.nz/ml/weka
  • 34
    • 0037190138 scopus 로고    scopus 로고
    • Molecular description selection combining genetic algorithms and fuzzy logic: application to database mining procedures
    • Ros F, Pintore M, Chretien JR. Molecular description selection combining genetic algorithms and fuzzy logic: application to database mining procedures. Chemomet Intell Lab 2002, 63:15-26.
    • (2002) Chemomet Intell Lab , vol.63 , pp. 15-26
    • Ros, F.1    Pintore, M.2    Chretien, J.R.3
  • 35
    • 0345019845 scopus 로고    scopus 로고
    • Genetic algorithm applied to feature selection in PLS regression: how and when to use them
    • Leardi R, Gonzales AL. Genetic algorithm applied to feature selection in PLS regression: how and when to use them. Chemomet Intell Lab 1998, 41:195-207.
    • (1998) Chemomet Intell Lab , vol.41 , pp. 195-207
    • Leardi, R.1    Gonzales, A.L.2
  • 36
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman L. Random Forests. Mach Learn 2001, 45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 38
    • 0037671488 scopus 로고    scopus 로고
    • Development of CNS predictive models by Adaptive Fuzzy Partitioning
    • Ros F, Taboureau O, Pintore M, Chretien JR. Development of CNS predictive models by Adaptive Fuzzy Partitioning. Chemomet Intell Lab 2003, 67:29-50.
    • (2003) Chemomet Intell Lab , vol.67 , pp. 29-50
    • Ros, F.1    Taboureau, O.2    Pintore, M.3    Chretien, J.R.4
  • 39
    • 84974751422 scopus 로고
    • Building a textitFuzzy System from Input-Output Data
    • Lin Y, Cunningham GJ. Building a textitFuzzy System from Input-Output Data. J Intell Fuzzy Syst 1994, 2:243-250.
    • (1994) J Intell Fuzzy Syst , vol.2 , pp. 243-250
    • Lin, Y.1    Cunningham, G.J.2
  • 40
    • 0034913681 scopus 로고    scopus 로고
    • Database mining applied to central nervous system (CNS) activity
    • Pintore M, Taboureau O, Ros F, Chretien JR. Database mining applied to central nervous system (CNS) activity. Eur J Med Chem 2001, 36:349-359.
    • (2001) Eur J Med Chem , vol.36 , pp. 349-359
    • Pintore, M.1    Taboureau, O.2    Ros, F.3    Chretien, J.R.4
  • 42
    • 0038745832 scopus 로고    scopus 로고
    • Predicting toxicity against the fathead minnow by Adaptive a Fuzzy Partition
    • Pintore M, Piclin N, Benfenati E, Gini G, Chretien JR. Predicting toxicity against the fathead minnow by Adaptive a Fuzzy Partition. QSAR Comb Sci 2003, 22:210-219.
    • (2003) QSAR Comb Sci , vol.22 , pp. 210-219
    • Pintore, M.1    Piclin, N.2    Benfenati, E.3    Gini, G.4    Chretien, J.R.5
  • 43
    • 0242416628 scopus 로고    scopus 로고
    • Database mining with adaptive fuzzy partition (AFP): Application to the prediction of pesticide toxicity on rats
    • Pintore M, Piclin N, Benfenati E, Gini G, Chretien JR. Database mining with adaptive fuzzy partition (AFP): Application to the prediction of pesticide toxicity on rats. Environ Toxicol Chem 2003, 22:983-991.
    • (2003) Environ Toxicol Chem , vol.22 , pp. 983-991
    • Pintore, M.1    Piclin, N.2    Benfenati, E.3    Gini, G.4    Chretien, J.R.5
  • 44
    • 20844445791 scopus 로고    scopus 로고
    • Classification of a large anticancer data set by Adaptive Fuzzy Partition
    • Piclin N, Pintore M, Wechman C, Chretien JR. Classification of a large anticancer data set by Adaptive Fuzzy Partition. J Comput Aid Mol Des 2004, 18:577-586.
    • (2004) J Comput Aid Mol Des , vol.18 , pp. 577-586
    • Piclin, N.1    Pintore, M.2    Wechman, C.3    Chretien, J.R.4
  • 45
    • 0038738537 scopus 로고    scopus 로고
    • Adaptive Fuzzy Partition in data base mining: application to olfaction
    • Pintore M, Audouze K, Ros F, Chretien JR. Adaptive Fuzzy Partition in data base mining: application to olfaction. Data Science J 2002, 1:99-110.
    • (2002) Data Science J , vol.1 , pp. 99-110
    • Pintore, M.1    Audouze, K.2    Ros, F.3    Chretien, J.R.4
  • 46
    • 33646472578 scopus 로고    scopus 로고
    • Ecotoxicity prediction by adaptive fuzzy partitioning: comparing descriptors computed on 2D and 3D structures
    • Piclin N, Pintore M, Wechman C, Roncaglioni A, Benfenati E, Chretien JR. Ecotoxicity prediction by adaptive fuzzy partitioning: comparing descriptors computed on 2D and 3D structures. SAR QSAR Environ Res 2006, 17:225-251.
    • (2006) SAR QSAR Environ Res , vol.17 , pp. 225-251
    • Piclin, N.1    Pintore, M.2    Wechman, C.3    Roncaglioni, A.4    Benfenati, E.5    Chretien, J.R.6
  • 47
    • 0027544110 scopus 로고
    • A fuzzy logic based approach to qualitative modeling
    • Sugeno M, Yasakawa T. A fuzzy logic based approach to qualitative modeling. IEEE T Fuzzy Syst 1993, 1:7-31.
    • (1993) IEEE T Fuzzy Syst , vol.1 , pp. 7-31
    • Sugeno, M.1    Yasakawa, T.2
  • 49
    • 0000652239 scopus 로고
    • Theory of T-norms and fuzzy inference methods
    • Gupta MM, Qi J. Theory of T-norms and fuzzy inference methods. Fuzzy Set Syst 1991, 40:431-450.
    • (1991) Fuzzy Set Syst , vol.40 , pp. 431-450
    • Gupta, M.M.1    Qi, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.