-
1
-
-
84896958063
-
Innate immune sensing and signaling of cytosolic nucleic acids
-
Wu J, Chen ZJ. 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol 32:461–488. https://doi.org/10.1146/annurev-immunol-032713-120156.
-
(2014)
Annu Rev Immunol
, vol.32
, pp. 461-488
-
-
Wu, J.1
Chen, Z.J.2
-
2
-
-
85028846341
-
Translation inhibition and stress granules in the antiviral immune response
-
McCormick C, Khaperskyy DA. 2017. Translation inhibition and stress granules in the antiviral immune response. Nat Rev Immunol 17: 647–660. https://doi.org/10.1038/nri.2017.63.
-
(2017)
Nat Rev Immunol
, vol.17
, pp. 647-660
-
-
McCormick, C.1
Khaperskyy, D.A.2
-
3
-
-
84989851681
-
The integrated stress response
-
PakosZebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. 2016. The integrated stress response. EMBO Rep 17:1374–1395. https://doi.org/10.15252/embr.201642195.
-
(2016)
EMBO Rep
, vol.17
, pp. 1374-1395
-
-
PakosZebrucka, K.1
Koryga, I.2
Mnich, K.3
Ljujic, M.4
Samali, A.5
Gorman, A.M.6
-
4
-
-
84884587610
-
Stress granules and cell signaling: More than just a passing phase?
-
Kedersha N, Ivanov P, Anderson P. 2013. Stress granules and cell signaling: more than just a passing phase? Trends Biochem Sci 38: 494–506. https://doi.org/10.1016/j.tibs.2013.07.004.
-
(2013)
Trends Biochem Sci
, vol.38
, pp. 494-506
-
-
Kedersha, N.1
Ivanov, P.2
Anderson, P.3
-
5
-
-
84923066571
-
The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses
-
Reineke LC, Lloyd RE. 2015. The stress granule protein G3BP1 recruits protein kinase R to promote multiple innate immune antiviral responses. J Virol 89:2575–2589. https://doi.org/10.1128/JVI.02791-14.
-
(2015)
J Virol
, vol.89
, pp. 2575-2589
-
-
Reineke, L.C.1
Lloyd, R.E.2
-
6
-
-
84928787115
-
Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1
-
Reineke LC, Kedersha N, Langereis MA, van Kuppeveld FJMM, Lloyd RE. 2015. Stress granules regulate double-stranded RNA-dependent protein kinase activation through a complex containing G3BP1 and Caprin1. mBio 6:e02486-14. https://doi.org/10.1128/mBio.02486-14.
-
(2015)
mBio
, vol.6
, pp. e02486-e02514
-
-
Reineke, L.C.1
Kedersha, N.2
Langereis, M.A.3
van Kuppeveld, F.J.M.M.4
Lloyd, R.E.5
-
7
-
-
84866426158
-
Large G3BP-induced granules trigger eIF2 phosphorylation
-
Reineke LC, Dougherty JD, Pierre P, Lloyd RE. 2012. Large G3BP-induced granules trigger eIF2 phosphorylation. Mol Biol Cell 23:3499–3510. https://doi.org/10.1091/mbc.E12-05-0385.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 3499-3510
-
-
Reineke, L.C.1
Dougherty, J.D.2
Pierre, P.3
Lloyd, R.E.4
-
8
-
-
84865060036
-
Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity
-
Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, Sambhara S, Kawaguchi A, Osari S, Nagata K, Matsumiya T, Namiki H, Yoneyama M, Fujita T. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One 7:e43031. https://doi.org/10.1371/journal.pone.0043031.
-
(2012)
PLoS One
, vol.7
-
-
Onomoto, K.1
Jogi, M.2
Yoo, J.S.3
Narita, R.4
Morimoto, S.5
Takemura, A.6
Sambhara, S.7
Kawaguchi, A.8
Osari, S.9
Nagata, K.10
Matsumiya, T.11
Namiki, H.12
Yoneyama, M.13
Fujita, T.14
-
9
-
-
84878171308
-
MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon
-
Langereis MA, Feng Q, van Kuppeveld FJ. 2013. MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J Virol 87:6314–6325. https://doi.org/10.1128/JVI.03213-12.
-
(2013)
J Virol
, vol.87
, pp. 6314-6325
-
-
Langereis, M.A.1
Feng, Q.2
van Kuppeveld, F.J.3
-
10
-
-
14844360344
-
Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions
-
Kim WJ, Back SH, Kim V, Ryu I, Jang SK. 2005. Sequestration of TRAF2 into stress granules interrupts tumor necrosis factor signaling under stress conditions. Mol Cell Biol 25:2450 –2462. https://doi.org/10.1128/MCB.25.6.2450-2462.2005.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 2450-2462
-
-
Kim, W.J.1
Back, S.H.2
Kim, V.3
Ryu, I.4
Jang, S.K.5
-
11
-
-
84977089563
-
Feline calicivirus infection disrupts assembly of cytoplasmic stress granules and induces G3BP1 cleavage
-
Humoud MN, Doyle N, Royall E, Willcocks MM, Sorgeloos F, van Kuppeveld F, Roberts LO, Goodfellow IG, Langereis MA, Locker N. 2016. Feline calicivirus infection disrupts assembly of cytoplasmic stress granules and induces G3BP1 cleavage. J Virol 90:6489 – 6501. https://doi.org/10.1128/JVI.00647-16.
-
(2016)
J Virol
, vol.90
, pp. 6489-6501
-
-
Humoud, M.N.1
Doyle, N.2
Royall, E.3
Willcocks, M.M.4
Sorgeloos, F.5
van Kuppeveld, F.6
Roberts, L.O.7
Goodfellow, I.G.8
Langereis, M.A.9
Locker, N.10
-
12
-
-
84869019846
-
Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress
-
Garaigorta U, Heim MH, Boyd B, Wieland S, Chisari FV. 2012. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress. J Virol 86: 11043–11056. https://doi.org/10.1128/JVI.07101-11.
-
(2012)
J Virol
, vol.86
, pp. 11043-11056
-
-
Garaigorta, U.1
Heim, M.H.2
Boyd, B.3
Wieland, S.4
Chisari, F.V.5
-
13
-
-
84946495240
-
Dengue virus infection induces formation of G3BP1 granules in human lung epithelial cells
-
Xia J, Chen X, Xu F, Wang Y, Shi Y, Li Y, He J, Zhang P. 2015. Dengue virus infection induces formation of G3BP1 granules in human lung epithelial cells. Arch Virol 160:2991–2999. https://doi.org/10.1007/s00705-015-2578-9.
-
(2015)
Arch Virol
, vol.160
, pp. 2991-2999
-
-
Xia, J.1
Chen, X.2
Xu, F.3
Wang, Y.4
Shi, Y.5
Li, Y.6
He, J.7
Zhang, P.8
-
14
-
-
84905400783
-
G3BP1, G3BP2 and Caprin1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA
-
Bidet K, Dadlani D, Garcia-Blanco MA. 2014. G3BP1, G3BP2 and Caprin1 are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLoS Pathog 10:e1004242. https://doi.org/10.1371/journal.ppat.1004242.
-
(2014)
PLoS Pathog
, vol.10
-
-
Bidet, K.1
Dadlani, D.2
Garcia-Blanco, M.A.3
-
15
-
-
84871196139
-
Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection
-
Panas MD, Varjak M, Lulla A, Eng KE, Merits A, Karlsson Hedestam GB, McInerney GM. 2012. Sequestration of G3BP coupled with efficient translation inhibits stress granules in Semliki Forest virus infection. Mol Biol Cell 23:4701–4712. https://doi.org/10.1091/mbc.E12-08-0619.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 4701-4712
-
-
Panas, M.D.1
Varjak, M.2
Lulla, A.3
Eng, K.E.4
Merits, A.5
Karlsson Hedestam, G.B.6
McInerney, G.M.7
-
16
-
-
84925386816
-
Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication
-
Scholte FEM, Tas A, Albulescu IC, Žusinaite E, Merits A, Snijder EJ, van Hemert MJ. 2015. Stress granule components G3BP1 and G3BP2 play a proviral role early in Chikungunya virus replication. J Virol 89:4457– 4469. https://doi.org/10.1128/JVI.03612-14.
-
(2015)
J Virol
, vol.89
, pp. 4457-4469
-
-
Scholte, F.E.M.1
Tas, A.2
Albulescu, I.C.3
Žusinaite, E.4
Merits, A.5
Snijder, E.J.6
van Hemert, M.J.7
-
17
-
-
84869049624
-
Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci
-
Fros JJ, Domeradzka NE, Baggen J, Geertsema C, Flipse J, Vlak JM, Pijlman GP. 2012. Chikungunya virus nsP3 blocks stress granule assembly by recruitment of G3BP into cytoplasmic foci. J Virol 86:10873–10879. https://doi.org/10.1128/JVI.01506-12.
-
(2012)
J Virol
, vol.86
, pp. 10873-10879
-
-
Fros, J.J.1
Domeradzka, N.E.2
Baggen, J.3
Geertsema, C.4
Flipse, J.5
Vlak, J.M.6
Pijlman, G.P.7
-
18
-
-
84894522449
-
Enterovirus 2Apro targets MDA5 and MAVS in infected cells
-
Feng Q, Langereis MA, Lork M, Nguyen M, Hato SV, Lanke K, Emdad L, Bhoopathi P, Fisher PB, Lloyd RE, van Kuppeveld FJM. 2014. Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J Virol 88:3369–3378. https://doi.org/10.1128/JVI.02712-13.
-
(2014)
J Virol
, vol.88
, pp. 3369-3378
-
-
Feng, Q.1
Langereis, M.A.2
Lork, M.3
Nguyen, M.4
Hato, S.V.5
Lanke, K.6
Emdad, L.7
Bhoopathi, P.8
Fisher, P.B.9
Lloyd, R.E.10
van Kuppeveld, F.J.M.11
-
19
-
-
85020396681
-
Disruption of MDA5 mediated innate immune responses by the 3C proteins of Coxsackievirus A16, Coxsackievirus A6, and Enterovirus D68
-
Rui Y, Su J, Wang H, Chang J, Wang S, Zheng W, Cai Y, Wei W, Gordy JT, Markham R, Kong W, Zhang W, Yu X-F. 2017. Disruption of MDA5 mediated innate immune responses by the 3C proteins of Coxsackievirus A16, Coxsackievirus A6, and Enterovirus D68. J Virol 91:e00546-17.
-
(2017)
J Virol
, vol.91
, pp. e00546-e00617
-
-
Rui, Y.1
Su, J.2
Wang, H.3
Chang, J.4
Wang, S.5
Zheng, W.6
Cai, Y.7
Wei, W.8
Gordy, J.T.9
Markham, R.10
Kong, W.11
Zhang, W.12
Yu, X.-F.13
-
20
-
-
68649098926
-
RIG-I is cleaved during picornavirus infection
-
Barral PM, Sarkar D, Fisher PB, Racaniello VR. 2009. RIG-I is cleaved during picornavirus infection. Virology 391:171–176. https://doi.org/10.1016/j.virol.2009.06.045.
-
(2009)
Virology
, vol.391
, pp. 171-176
-
-
Barral, P.M.1
Sarkar, D.2
Fisher, P.B.3
Racaniello, V.R.4
-
21
-
-
84876002925
-
Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses
-
Wang B, Xi X, Lei X, Zhang X, Cui S, Wang J, Jin Q, Zhao Z. 2013. Enterovirus 71 protease 2Apro targets MAVS to inhibit anti-viral type I interferon responses. PLoS Pathog 9:e1003231. https://doi.org/10.1371/journal.ppat.1003231.
-
(2013)
PLoS Pathog
, vol.9
-
-
Wang, B.1
Xi, X.2
Lei, X.3
Zhang, X.4
Cui, S.5
Wang, J.6
Jin, Q.7
Zhao, Z.8
-
22
-
-
79953279338
-
The coxsackievirus B 3Cpro protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling
-
Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Ober-ste MS, Wang T, Coyne CB. 2011. The coxsackievirus B 3Cpro protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog 7:e1001311. https://doi.org/10.1371/journal.ppat.1001311.
-
(2011)
PLoS Pathog
, vol.7
-
-
Mukherjee, A.1
Morosky, S.A.2
Delorme-Axford, E.3
Dybdahl-Sissoko, N.4
Ober-Ste, M.S.5
Wang, T.6
Coyne, C.B.7
-
23
-
-
85020945684
-
Enterovirus 71 suppresses interferon responses by blocking Janus kinase (JAK)/ signal transducer and activator of transcription (STAT) signaling through inducing karyopherin-1 degradation
-
Wang C, Sun M, Yuan X, Ji L, Jin Y, Cardona CJ, Xing Z. 2017. Enterovirus 71 suppresses interferon responses by blocking Janus kinase (JAK)/ signal transducer and activator of transcription (STAT) signaling through inducing karyopherin-1 degradation. J Biol Chem 292:10262–10274. https://doi.org/10.1074/jbc.M116.745729.
-
(2017)
J Biol Chem
, vol.292
, pp. 10262-10274
-
-
Wang, C.1
Sun, M.2
Yuan, X.3
Ji, L.4
Jin, Y.5
Cardona, C.J.6
Xing, Z.7
-
24
-
-
35848929915
-
Inhibition of cytoplasmic mRNA Stress granule formation by a viral proteinase
-
White JP, Cardenas AM, Marissen WE, Lloyd RE. 2007. Inhibition of cytoplasmic mRNA Stress granule formation by a viral proteinase. Cell Host Microbe 2:295–305. https://doi.org/10.1016/j.chom.2007.08.006.
-
(2007)
Cell Host Microbe
, vol.2
, pp. 295-305
-
-
White, J.P.1
Cardenas, A.M.2
Marissen, W.E.3
Lloyd, R.E.4
-
25
-
-
84948746574
-
Multiple poliovirus proteins repress cytoplasmic RNA granules
-
Dougherty JD, Tsai WC, Lloyd RE. 2015. Multiple poliovirus proteins repress cytoplasmic RNA granules. Viruses 7:6127–6140. https://doi.org/10.3390/v7122922.
-
(2015)
Viruses
, vol.7
, pp. 6127-6140
-
-
Dougherty, J.D.1
Tsai, W.C.2
Lloyd, R.E.3
-
26
-
-
80052443081
-
The leader protein of cardioviruses inhibits stress granule assembly
-
Borghese F, Michiels T. 2011. The leader protein of cardioviruses inhibits stress granule assembly. J Virol 85:9614–9622. https://doi.org/10.1128/JVI.00480-11.
-
(2011)
J Virol
, vol.85
, pp. 9614-9622
-
-
Borghese, F.1
Michiels, T.2
-
27
-
-
84908344793
-
Induction and suppression of innate antiviral responses by picornaviruses
-
Feng Q, Langereis MA, van Kuppeveld FJM. 2014. Induction and suppression of innate antiviral responses by picornaviruses. Cytokine Growth Factor Rev 25:577–585. https://doi.org/10.1016/j.cytogfr.2014.07.003.
-
(2014)
Cytokine Growth Factor Rev
, vol.25
, pp. 577-585
-
-
Feng, Q.1
Langereis, M.A.2
van Kuppeveld, F.J.M.3
-
28
-
-
84883271505
-
Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses
-
Ng CS, Jogi M, Yoo J-S, Onomoto K, Koike S, Iwasaki T, Yoneyama M, Kato H, Fujita T. 2013. Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J Virol 87:9511–9522. https://doi.org/10.1128/JVI.03248-12.
-
(2013)
J Virol
, vol.87
, pp. 9511-9522
-
-
Ng, C.S.1
Jogi, M.2
Yoo, J.-S.3
Onomoto, K.4
Koike, S.5
Iwasaki, T.6
Yoneyama, M.7
Kato, H.8
Fujita, T.9
-
29
-
-
0032534805
-
Structure of the foot-and-mouth disease virus leader protease: A papain-like fold adapted for self-processing and eIF4G recognition
-
Guarné A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T. 1998. Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17:7469–7479. https://doi.org/10.1093/emboj/17.24.7469.
-
(1998)
EMBO J
, vol.17
, pp. 7469-7479
-
-
Guarné, A.1
Tormo, J.2
Kirchweger, R.3
Pfistermueller, D.4
Fita, I.5
Skern, T.6
-
30
-
-
0029897109
-
Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle
-
Brown CC, Piccone ME, Mason PW, McKenna TS, Grubman MJ. 1996. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J Virol 70:5638–5641.
-
(1996)
J Virol
, vol.70
, pp. 5638-5641
-
-
Brown, C.C.1
Piccone, M.E.2
Mason, P.W.3
McKenna, T.S.4
Grubman, M.J.5
-
31
-
-
32444446676
-
The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response
-
de Los Santos T, de Avila Botton S, Weiblen R, Grubman MJ. 2006. The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J Virol 80:1906–1914. https://doi.org/10.1128/JVI.80.4.1906-1914.2006.
-
(2006)
J Virol
, vol.80
, pp. 1906-1914
-
-
de Los Santos, T.1
de Avila Botton, S.2
Weiblen, R.3
Grubman, M.J.4
-
32
-
-
36349008785
-
Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection
-
de Los Santos T, Diaz-San Segundo F, Grubman MJ. 2007. Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection. J Virol 81:12803–12815. https://doi.org/10.1128/JVI.01467-07.
-
(2007)
J Virol
, vol.81
, pp. 12803-12815
-
-
de Los Santos, T.1
Diaz-San Segundo, F.2
Grubman, M.J.3
-
33
-
-
77955565711
-
Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels
-
Wang D, Fang L, Luo R, Ye R, Fang Y, Xie L, Chen H, Xiao S. 2010. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels. Biochem Biophys Res Commun 399:72–78. https://doi.org/10.1016/j.bbrc.2010.07.044.
-
(2010)
Biochem Biophys Res Commun
, vol.399
, pp. 72-78
-
-
Wang, D.1
Fang, L.2
Luo, R.3
Ye, R.4
Fang, Y.5
Xie, L.6
Chen, H.7
Xiao, S.8
-
34
-
-
79952837091
-
The leader proteinase of foot-and-mouth disease virus negatively regulates the type I Interferon pathway by acting as a viral deubiquitinase
-
Wang D, Fang L, Li P, Sun L, Fan J, Zhang Q, Luo R, Liu X, Li K, Chen H, Chen Z, Xiao S. 2011. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I Interferon pathway by acting as a viral deubiquitinase. J Virol 85:3758–3766. https://doi.org/10.1128/JVI.02589-10.
-
(2011)
J Virol
, vol.85
, pp. 3758-3766
-
-
Wang, D.1
Fang, L.2
Li, P.3
Sun, L.4
Fan, J.5
Zhang, Q.6
Luo, R.7
Liu, X.8
Li, K.9
Chen, H.10
Chen, Z.11
Xiao, S.12
-
35
-
-
85042911760
-
Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies
-
Swatek KN, Aumayr M, Pruneda JN, Visser LJ, Berryman S, Kueck AF, Geurink PP, Ovaa H, van Kuppeveld FJM, Tuthill TJ, Skern T, Komander D. 2018. Irreversible inactivation of ISG15 by a viral leader protease enables alternative infection detection strategies. Proc Natl Acad Sci U S A 115:2371–2376. https://doi.org/10.1073/pnas.1710617115.
-
(2018)
Proc Natl Acad Sci U S A
, vol.115
, pp. 2371-2376
-
-
Swatek, K.N.1
Aumayr, M.2
Pruneda, J.N.3
Visser, L.J.4
Berryman, S.5
Kueck, A.F.6
Geurink, P.P.7
Ovaa, H.8
van Kuppeveld, F.J.M.9
Tuthill, T.J.10
Skern, T.11
Komander, D.12
-
36
-
-
85021802864
-
Structure and function of viral deubiquitinating enzymes
-
Bailey-Elkin BA, Knaap RCM, Kikkert M, Mark BL. 2017. Structure and function of viral deubiquitinating enzymes. J Mol Biol 429:3441–3470. https://doi.org/10.1016/j.jmb.2017.06.010.
-
(2017)
J Mol Biol
, vol.429
, pp. 3441-3470
-
-
Bailey-Elkin, B.A.1
Knaap, R.C.M.2
Kikkert, M.3
Mark, B.L.4
-
37
-
-
84866144289
-
Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling
-
Wang D, Fang L, Li K, Zhong H, Fan J, Ouyang C, Zhang H, Duan E, Luo R, Zhang Z, Liu X, Chen H, Xiao S. 2012. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J Virol 86:9311–9322. https://doi.org/10.1128/JVI.00722-12.
-
(2012)
J Virol
, vol.86
, pp. 9311-9322
-
-
Wang, D.1
Fang, L.2
Li, K.3
Zhong, H.4
Fan, J.5
Ouyang, C.6
Zhang, H.7
Duan, E.8
Luo, R.9
Zhang, Z.10
Liu, X.11
Chen, H.12
Xiao, S.13
-
38
-
-
84897508835
-
3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation
-
Du Y, Bi J, Liu J, Liu X, Wu X, Jiang P, Yoo D, Zhang Y, Wu J, Wan R, Zhao X, Guo L, Sun W, Cong X, Chen L, Wang J. 2014. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J Virol 88:4908 – 4920. https://doi.org/10.1128/JVI.03668-13.
-
(2014)
J Virol
, vol.88
, pp. 4908-4920
-
-
Du, Y.1
Bi, J.2
Liu, J.3
Liu, X.4
Wu, X.5
Jiang, P.6
Yoo, D.7
Zhang, Y.8
Wu, J.9
Wan, R.10
Zhao, X.11
Guo, L.12
Sun, W.13
Cong, X.14
Chen, L.15
Wang, J.16
-
39
-
-
26244449677
-
The v6 integrin receptor for foot- And-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle
-
Monaghan P, Gold S, Simpson J, Zhang Z, Weinreb PH, Violette SM, Alexandersen S, Jackson T. 2005. The v6 integrin receptor for foot- and-mouth disease virus is expressed constitutively on the epithelial cells targeted in cattle. J Gen Virol 86:2769–2780. https://doi.org/10.1099/vir.0.81172-0.
-
(2005)
J Gen Virol
, vol.86
, pp. 2769-2780
-
-
Monaghan, P.1
Gold, S.2
Simpson, J.3
Zhang, Z.4
Weinreb, P.H.5
Violette, S.M.6
Alexandersen, S.7
Jackson, T.8
-
40
-
-
84878520285
-
A continuous bovine kidney cell line constitutively expressing bovine v6 integrin has increased susceptibility to foot- And-mouth disease virus
-
LaRocco M, Krug PW, Kramer E, Ahmed Z, Pacheco JM, Duque H, Baxt B, Rodriguez LL. 2013. A continuous bovine kidney cell line constitutively expressing bovine v6 integrin has increased susceptibility to foot- and-mouth disease virus. J Clin Microbiol 51:1714–1720. https://doi.org/10.1128/JCM.03370-12.
-
(2013)
J Clin Microbiol
, vol.51
, pp. 1714-1720
-
-
LaRocco, M.1
Krug, P.W.2
Kramer, E.3
Ahmed, Z.4
Pacheco, J.M.5
Duque, H.6
Baxt, B.7
Rodriguez, L.L.8
-
41
-
-
35948982216
-
The mengovirus leader protein blocks interferon-alpha/beta gene transcription and inhibits activation of interferon regulatory factor 3
-
Hato SV, Ricour C, Schulte BM, Lanke KHW, de Bruijn M, Zoll J, Melchers WJG, Michiels T, van Kuppeveld FJM. 2007. The mengovirus leader protein blocks interferon-alpha/beta gene transcription and inhibits activation of interferon regulatory factor 3. Cell Microbiol 9:2921–2930. https://doi.org/10.1111/j.1462-5822.2007.01006.x.
-
(2007)
Cell Microbiol
, vol.9
, pp. 2921-2930
-
-
Hato, S.V.1
Ricour, C.2
Schulte, B.M.3
Lanke, K.H.W.4
de Bruijn, M.5
Zoll, J.6
Melchers, W.J.G.7
Michiels, T.8
van Kuppeveld, F.J.M.9
-
42
-
-
84870476784
-
MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells
-
Feng Q, Hato SVV, Langereis MA, Zoll J, Virgen-Slane R, Peisley A, Hur S, Semler BLL, van Rij RP, van Kuppeveld FJM. 2012. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep 2:1187–1196. https://doi.org/10.1016/j.celrep.2012.10.005.
-
(2012)
Cell Rep
, vol.2
, pp. 1187-1196
-
-
Feng, Q.1
Hato, S.V.V.2
Langereis, M.A.3
Zoll, J.4
Virgen-Slane, R.5
Peisley, A.6
Hur, S.7
Semler, B.L.L.8
van Rij, R.P.9
van Kuppeveld, F.J.M.10
-
43
-
-
84992694820
-
Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses
-
Rabouw HH, Langereis MA, Knaap RCM, Dalebout TJ, Canton J, Sola I, Enjuanes L, Bredenbeek PJ, Kikkert M, de Groot RJ, van Kuppeveld FJM. 2016. Middle East respiratory coronavirus accessory protein 4a inhibits PKR-mediated antiviral stress responses. PLoS Pathog 12:e1005982. https://doi.org/10.1371/journal.ppat.1005982.
-
(2016)
PLoS Pathog
, vol.12
-
-
Rabouw, H.H.1
Langereis, M.A.2
Knaap, R.C.M.3
Dalebout, T.J.4
Canton, J.5
Sola, I.6
Enjuanes, L.7
Bredenbeek, P.J.8
Kikkert, M.9
de Groot, R.J.10
van Kuppeveld, F.J.M.11
-
44
-
-
0028314953
-
Translation of encephalomyocarditis virus RNA: Parameters influencing the selection of the internal initiation site
-
Kaminski A, Belsham GJ, Jackson RJ. 1994. Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J 13:1673–1681. https://doi.org/10.1002/j.1460-2075.1994.tb06431.x.
-
(1994)
EMBO J
, vol.13
, pp. 1673-1681
-
-
Kaminski, A.1
Belsham, G.J.2
Jackson, R.J.3
-
45
-
-
77950606271
-
Differential IFN-/ production suppressing capacities of the leader proteins of mengovirus and foot-and-mouth disease virus
-
Hato SV, Sorgeloos F, Ricour C, Zoll J, Melchers WJG, Michiels T, van Kuppeveld FJM. 2010. Differential IFN-/ production suppressing capacities of the leader proteins of mengovirus and foot-and-mouth disease virus. Cell Microbiol 12:310–317. https://doi.org/10.1111/j.1462-5822.2009.01395.x.
-
(2010)
Cell Microbiol
, vol.12
, pp. 310-317
-
-
Hato, S.V.1
Sorgeloos, F.2
Ricour, C.3
Zoll, J.4
Melchers, W.J.G.5
Michiels, T.6
van Kuppeveld, F.J.M.7
-
46
-
-
0029122520
-
The foot-and-mouth disease virus leader proteinase gene is not required for viral replication
-
Piccone ME, Rieder E, Mason PW, Grubman MJ. 1995. The foot-and-mouth disease virus leader proteinase gene is not required for viral replication. J Virol 69:5376–5382.
-
(1995)
J Virol
, vol.69
, pp. 5376-5382
-
-
Piccone, M.E.1
Rieder, E.2
Mason, P.W.3
Grubman, M.J.4
-
47
-
-
84894188840
-
Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection
-
Fung G, Ng CS, Zhang J, Shi J, Wong J, Piesik P, Han L, Chu F, Jagdeo J, Jan E, Fujita T, Luo H. 2013. Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection. PLoS One 8:e79546. https://doi.org/10.1371/journal.pone.0079546.
-
(2013)
PLoS One
, vol.8
-
-
Fung, G.1
Ng, C.S.2
Zhang, J.3
Shi, J.4
Wong, J.5
Piesik, P.6
Han, L.7
Chu, F.8
Jagdeo, J.9
Jan, E.10
Fujita, T.11
Luo, H.12
-
48
-
-
85042712176
-
Picornavirus 2A protease regulates stress granule formation to facilitate viral translation
-
Yang X, Hu Z, Fan S, Zhang Q, Zhong Y, Guo D, Qin Y, Chen M. 2018. Picornavirus 2A protease regulates stress granule formation to facilitate viral translation. PLoS Pathog 14:e1006901. https://doi.org/10.1371/journal.ppat.1006901.
-
(2018)
PLoS Pathog
, vol.14
-
-
Yang, X.1
Hu, Z.2
Fan, S.3
Zhang, Q.4
Zhong, Y.5
Guo, D.6
Qin, Y.7
Chen, M.8
-
49
-
-
84971547291
-
G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits
-
Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P, Anderson P. 2016. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Physiol 212:845–860. https://doi.org/10.1083/jcb.201508028.
-
(2016)
J Cell Physiol
, vol.212
, pp. 845-860
-
-
Kedersha, N.1
Panas, M.D.2
Achorn, C.A.3
Lyons, S.4
Tisdale, S.5
Hickman, T.6
Thomas, M.7
Lieberman, J.8
McInerney, G.M.9
Ivanov, P.10
Anderson, P.11
-
50
-
-
78449303073
-
Viral security proteins: Counteracting host defences
-
Agol VI, Gmyl AP. 2010. Viral security proteins: counteracting host defences. Nat Rev Microbiol 8:867–878. https://doi.org/10.1038/nrmicro2452.
-
(2010)
Nat Rev Microbiol
, vol.8
, pp. 867-878
-
-
Agol, V.I.1
Gmyl, A.P.2
-
51
-
-
84951761611
-
Analysis of the interaction between host factor Sam68 and viral elements during foot- And-mouth disease virus infections
-
Rai DK, Lawrence P, Kloc A, Schafer E, Rieder E. 2015. Analysis of the interaction between host factor Sam68 and viral elements during foot- and-mouth disease virus infections. Virol J 12:224. https://doi.org/10.1186/s12985-015-0452-8.
-
(2015)
Virol J
, vol.12
, pp. 224
-
-
Rai, D.K.1
Lawrence, P.2
Kloc, A.3
Schafer, E.4
Rieder, E.5
-
52
-
-
84856575654
-
The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells
-
Lawrence P, Schafer EA, Rieder E. 2012. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells. Virology 425:40 –52. https://doi.org/10.1016/j.virol.2011.12.019.
-
(2012)
Virology
, vol.425
, pp. 40-52
-
-
Lawrence, P.1
Schafer, E.A.2
Rieder, E.3
-
53
-
-
84973861761
-
Enterovirus 71 induces anti-viral stress granule-like structures in RD cells
-
Zhu Y, Wang B, Huang H, Zhao Z. 2016. Enterovirus 71 induces anti-viral stress granule-like structures in RD cells. Biochem Biophys Res Commun 476:212–217. https://doi.org/10.1016/j.bbrc.2016.05.094.
-
(2016)
Biochem Biophys Res Commun
, vol.476
, pp. 212-217
-
-
Zhu, Y.1
Wang, B.2
Huang, H.3
Zhao, Z.4
-
54
-
-
84979207652
-
The nuclear protein Sam68 is recruited to the cytoplasmic stress granules during enterovirus 71 infection
-
Zhang H, Chen N, Li P, Pan Z, Ding Y, Zou D, Li L, Xiao L, Shen B, Liu S, Cao H, Cui Y. 2016. The nuclear protein Sam68 is recruited to the cytoplasmic stress granules during enterovirus 71 infection. Microb Pathog 96:58–66. https://doi.org/10.1016/j.micpath.2016.04.001.
-
(2016)
Microb Pathog
, vol.96
, pp. 58-66
-
-
Zhang, H.1
Chen, N.2
Li, P.3
Pan, Z.4
Ding, Y.5
Zou, D.6
Li, L.7
Xiao, L.8
Shen, B.9
Liu, S.10
Cao, H.11
Cui, Y.12
-
55
-
-
0024593159
-
The cellular 68,000-Mr protein kinase is highly autophosphorylated and activated yet significantly degraded during poliovirus infection: Implications for translational regulation
-
Black TL, Safer B, Hovanessian A, Katze MG. 1989. The cellular 68,000-Mr protein kinase is highly autophosphorylated and activated yet significantly degraded during poliovirus infection: implications for translational regulation. J Virol 63:2244–2251.
-
(1989)
J Virol
, vol.63
, pp. 2244-2251
-
-
Black, T.L.1
Safer, B.2
Hovanessian, A.3
Katze, M.G.4
-
56
-
-
85027561226
-
DsRNA binding domain of PKR is proteolytically released by enterovirus A71 to facilitate viral replication
-
Chang Y-H, Lau KS, Kuo R-L, Horng J-T. 2017. dsRNA binding domain of PKR is proteolytically released by enterovirus A71 to facilitate viral replication. Front Cell Infect Microbiol 7:284. https://doi.org/10.3389/fcimb.2017.00284.
-
(2017)
Front Cell Infect Microbiol
, vol.7
, pp. 284
-
-
Chang, Y.-H.1
Lau, K.S.2
Kuo, R.-L.3
Horng, J.-T.4
-
57
-
-
85021098349
-
Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication
-
Li C, Zhu Z, Du X, Cao W, Yang F, Zhang X, Feng H, Li D, Zhang K, Liu X, Zheng H. 2017. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Virology 509:222–231. https://doi.org/10.1016/j.virol.2017.06.023.
-
(2017)
Virology
, vol.509
, pp. 222-231
-
-
Li, C.1
Zhu, Z.2
Du, X.3
Cao, W.4
Yang, F.5
Zhang, X.6
Feng, H.7
Li, D.8
Zhang, K.9
Liu, X.10
Zheng, H.11
-
58
-
-
0035010933
-
Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase
-
Chinsangaram J, Koster M, Grubman MJ. 2001. Inhibition of L-deleted foot-and-mouth disease virus replication by alpha/beta interferon involves double-stranded RNA-dependent protein kinase. J Virol 75: 5498–5503. https://doi.org/10.1128/JVI.75.12.5498-5503.2001.
-
(2001)
J Virol
, vol.75
, pp. 5498-5503
-
-
Chinsangaram, J.1
Koster, M.2
Grubman, M.J.3
-
59
-
-
85028593310
-
G3BP1 interacts directly with the FMDV IRES and negatively regulates translation
-
Galan A, Lozano G, Piñeiro D, Martinez-Salas E. 2017. G3BP1 interacts directly with the FMDV IRES and negatively regulates translation. FEBS J 284:3202–3217. https://doi.org/10.1111/febs.14184.
-
(2017)
FEBS J
, vol.284
, pp. 3202-3217
-
-
Galan, A.1
Lozano, G.2
Piñeiro, D.3
Martinez-Salas, E.4
-
60
-
-
0027324214
-
Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice
-
Rieder E, Bunch T, Brown F, Mason PW. 1993. Genetically engineered foot-and-mouth disease viruses with poly(C) tracts of two nucleotides are virulent in mice. J Virol 67:5139–5145.
-
(1993)
J Virol
, vol.67
, pp. 5139-5145
-
-
Rieder, E.1
Bunch, T.2
Brown, F.3
Mason, P.W.4
-
61
-
-
84884272857
-
A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase III-beta
-
van der Schaar HM, Leyssen P, Thibaut HJ, de Palma A, van der Linden L, Lanke KHW, Lacroix C, Verbeken E, Conrath K, MacLeod AM, Mitchell DR, Palmer NJ, van de Poël H, Andrews M, Neyts J, van Kuppeveld FJM. 2013. A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase III-beta. Antimicrob Agents Che-mother 57:4971–4981. https://doi.org/10.1128/AAC.01175-13.
-
(2013)
Antimicrob Agents Che-Mother
, vol.57
, pp. 4971-4981
-
-
van der Schaar, H.M.1
Leyssen, P.2
Thibaut, H.J.3
de Palma, A.4
van der Linden, L.5
Lanke, K.H.W.6
Lacroix, C.7
Verbeken, E.8
Conrath, K.9
MacLeod, A.M.10
Mitchell, D.R.11
Palmer, N.J.12
van de Poël, H.13
Andrews, M.14
Neyts, J.15
van Kuppeveld, F.J.M.16
-
62
-
-
84892731581
-
Application of a cell-based protease assay for testing inhibitors of picornavirus 3C proteases
-
Van Der Linden L, Ulferts R, Nabuurs SB, Kusov Y, Liu H, George S, Lacroix C, Goris N, Lefebvre D, Lanke KHW, De Clercq K, Hilgenfeld R, Neyts J, Van Kuppeveld FJM. 2014. Application of a cell-based protease assay for testing inhibitors of picornavirus 3C proteases. Antiviral Res 103:17–24. https://doi.org/10.1016/j.antiviral.2013.12.012.
-
(2014)
Antiviral Res
, vol.103
, pp. 17-24
-
-
Van Der Linden, L.1
Ulferts, R.2
Nabuurs, S.B.3
Kusov, Y.4
Liu, H.5
George, S.6
Lacroix, C.7
Goris, N.8
Lefebvre, D.9
Lanke, K.H.W.10
De Clercq, K.11
Hilgenfeld, R.12
Neyts, J.13
Van Kuppeveld, F.J.M.14
|