-
1
-
-
77957667097
-
-
World Health Organization, Geneva, Switzerland
-
World Health Organization. 2018. Influenza (seasonal) factsheet. World Health Organization, Geneva, Switzerland. www.who.int/en/news-room/fact-sheets/detail/influenza-(seasonal).
-
(2018)
Influenza (Seasonal) Factsheet
-
-
-
2
-
-
33745836878
-
Strategies for mitigating an influenza pandemic
-
Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. 2006. Strategies for mitigating an influenza pandemic. Nature 442:448. https://doi.org/10.1038/nature04795.
-
(2006)
Nature
, vol.442
, pp. 448
-
-
Ferguson, N.M.1
Cummings, D.A.T.2
Fraser, C.3
Cajka, J.C.4
Cooley, P.C.5
Burke, D.S.6
-
3
-
-
33750365541
-
Seasonal and pandemic influenza preparedness: Science and countermeasures
-
Fauci AS. 2006. Seasonal and pandemic influenza preparedness: science and countermeasures. J Infect DIS 194:S73–S76. https://doi.org/10.1086/507550.
-
(2006)
J Infect DIS
, vol.194
, pp. S73-S76
-
-
Fauci, A.S.1
-
4
-
-
34447271704
-
Surveillance of resistance to adamantanes among influenza A (H3N2) and A (H1N1) viruses isolated worldwide
-
Deyde VM, Xu X, Bright RA, Shaw M, Smith CB, Zhang Y, Shu Y, Gubareva LV, Cox NJ, Klimov AI. 2007. Surveillance of resistance to adamantanes among influenza A (H3N2) and A (H1N1) viruses isolated worldwide. J Infect Dis 196:249 –257. https://doi.org/10.1086/518936.
-
(2007)
J Infect Dis
, vol.196
, pp. 249-257
-
-
Deyde, V.M.1
Xu, X.2
Bright, R.A.3
Shaw, M.4
Smith, C.B.5
Zhang, Y.6
Shu, Y.7
Gubareva, L.V.8
Cox, N.J.9
Klimov, A.I.10
-
5
-
-
84901417047
-
The epidemiology and spread of drug-resistant human influenza viruses
-
Hurt AC. 2014. The epidemiology and spread of drug-resistant human influenza viruses. Curr Opin Virol 8:22–29. https://doi.org/10.1016/j.coviro.2014.04.009.
-
(2014)
Curr Opin Virol
, vol.8
, pp. 22-29
-
-
Hurt, A.C.1
-
6
-
-
61849118968
-
Global transmission of oseltamivir-resistant influenza
-
Moscona A. 2009. Global transmission of oseltamivir-resistant influenza. N Engl J Med 360:953–956. https://doi.org/10.1056/NEJMp0900648.
-
(2009)
N Engl J Med
, vol.360
, pp. 953-956
-
-
Moscona, A.1
-
7
-
-
84885660826
-
Characterization of H7N9 influenza A viruses isolated from humans
-
Watanabe T, Kiso M, Fukuyama S, Nakajima N, Imai M, Yamada S, Murakami S, Yamayoshi S, Iwatsuki-Horimoto K, Sakoda Y, Takashita E, McBride R, Noda T, Hatta M, Imai H, Zhao D, Kishida N, Shirakura M, de Vries RP, Shichinohe S, Okamatsu M, Tamura T, Tomita Y, Fujimoto N, Goto K, Katsura H, Kawakami E, Ishikawa I, Watanabe S, Ito M, Sakai-Tagawa Y, Sugita Y, Uraki R, Yamaji R, Eisfeld AJ, Zhong G, Fan S, Ping J, Maher EA, Hanson A, Uchida Y, Saito T, Ozawa M, Neumann G, Kida H, Odagiri T, Paulson JC, Hasegawa H, Tashiro M, Kawaoka Y. 2013. Characterization of H7N9 influenza A viruses isolated from humans. Nature 501:551. https://doi.org/10.1038/nature12392.
-
(2013)
Nature
, vol.501
, pp. 551
-
-
Watanabe, T.1
Kiso, M.2
Fukuyama, S.3
Nakajima, N.4
Imai, M.5
Yamada, S.6
Murakami, S.7
Yamayoshi, S.8
Iwatsuki-Horimoto, K.9
Sakoda, Y.10
Takashita, E.11
McBride, R.12
Noda, T.13
Hatta, M.14
Imai, H.15
Zhao, D.16
Kishida, N.17
Shirakura, M.18
de Vries, R.P.19
Shichinohe, S.20
Okamatsu, M.21
Tamura, T.22
Tomita, Y.23
Fujimoto, N.24
Goto, K.25
Katsura, H.26
Kawakami, E.27
Ishikawa, I.28
Watanabe, S.29
Ito, M.30
Sakai-Tagawa, Y.31
Sugita, Y.32
Uraki, R.33
Yamaji, R.34
Eisfeld, A.J.35
Zhong, G.36
Fan, S.37
Ping, J.38
Maher, E.A.39
Hanson, A.40
Uchida, Y.41
Saito, T.42
Ozawa, M.43
Neumann, G.44
Kida, H.45
Odagiri, T.46
Paulson, J.C.47
Hasegawa, H.48
Tashiro, M.49
Kawaoka, Y.50
more..
-
8
-
-
84880321726
-
Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs
-
Zhu H, Wang D, Kelvin DJ, Li L, Zheng Z, Yoon S-W, Wong S-S, Farooqui A, Wang J, Banner D, Chen R, Zheng R, Zhou J, Zhang Y, Hong W, Dong W, Cai Q, Roehrl MHA, Huang SSH, Kelvin AA, Yao T, Zhou B, Chen X, Leung GM, Poon LLM, Webster RG, Webby RJ, Peiris JSM, Guan Y, Shu Y. 2013. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science 341:183–186. https://doi.org/10.1126/science.1239844.
-
(2013)
Science
, vol.341
, pp. 183-186
-
-
Zhu, H.1
Wang, D.2
Kelvin, D.J.3
Li, L.4
Zheng, Z.5
Yoon, S.-W.6
Wong, S.-S.7
Farooqui, A.8
Wang, J.9
Banner, D.10
Chen, R.11
Zheng, R.12
Zhou, J.13
Zhang, Y.14
Hong, W.15
Dong, W.16
Cai, Q.17
Roehrl, M.H.A.18
Huang, S.S.H.19
Kelvin, A.A.20
Yao, T.21
Zhou, B.22
Chen, X.23
Leung, G.M.24
Poon, L.L.M.25
Webster, R.G.26
Webby, R.J.27
Peiris, J.S.M.28
Guan, Y.29
Shu, Y.30
more..
-
9
-
-
85031791832
-
A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets
-
e618
-
Imai M, Watanabe T, Kiso M, Nakajima N, Yamayoshi S, Iwatsuki-Horimoto K, Hatta M, Yamada S, Ito M, Sakai-Tagawa Y, Shirakura M, Takashita E, Fujisaki S, McBride R, Thompson AJ, Takahashi K, Maemura T, Mitake H, Chiba S, Zhong G, Fan S, Oishi K, Yasuhara A, Takada K, Nakao T, Fukuyama S, Yamashita M, Lopes TJS, Neumann G, Odagiri T, Watanabe S, Shu Y, Paulson JC, Hasegawa H, Kawaoka Y. 2017. A highly pathogenic avian H7N9 influenza virus isolated from a human is lethal in some ferrets infected via respiratory droplets. Cell Host Microbe 22: 615–626. e618. https://doi.org/10.1016/j.chom.2017.09.008.
-
(2017)
Cell Host Microbe
, vol.22
, pp. 615-626
-
-
Imai, M.1
Watanabe, T.2
Kiso, M.3
Nakajima, N.4
Yamayoshi, S.5
Iwatsuki-Horimoto, K.6
Hatta, M.7
Yamada, S.8
Ito, M.9
Sakai-Tagawa, Y.10
Shirakura, M.11
Takashita, E.12
Fujisaki, S.13
McBride, R.14
Thompson, A.J.15
Takahashi, K.16
Maemura, T.17
Mitake, H.18
Chiba, S.19
Zhong, G.20
Fan, S.21
Oishi, K.22
Yasuhara, A.23
Takada, K.24
Nakao, T.25
Fukuyama, S.26
Yamashita, M.27
Lopes, T.J.S.28
Neumann, G.29
Odagiri, T.30
Watanabe, S.31
Shu, Y.32
Paulson, J.C.33
Hasegawa, H.34
Kawaoka, Y.35
more..
-
10
-
-
85014145172
-
Influenza antivirals currently in late-phase clinical trial
-
Koszalka P, Tilmanis D, Hurt AC. 2017. Influenza antivirals currently in late-phase clinical trial. Influenza Other Respir Viruses 11:240–246. https://doi.org/10.1111/irv.12446.
-
(2017)
Influenza Other Respir Viruses
, vol.11
, pp. 240-246
-
-
Koszalka, P.1
Tilmanis, D.2
Hurt, A.C.3
-
11
-
-
84973512821
-
Approved antiviral drugs over the past 50 years
-
De Clercq E, Li G. 2016. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 29:695–747. https://doi.org/10.1128/CMR.00102-15.
-
(2016)
Clin Microbiol Rev
, vol.29
, pp. 695-747
-
-
De Clercq, E.1
Li, G.2
-
12
-
-
0036211719
-
In vitro and in vivo activities of anti-influenza virus compound T-705
-
Furuta Y, Takahashi K, Fukuda Y, Kuno M, Kamiyama T, Kozaki K, Nomura N, Egawa H, Minami S, Watanabe Y, Narita H, Shiraki K. 2002. In vitro and in vivo activities of anti-influenza virus compound T-705. Antimicrob Agents Chemother 46:977–981. https://doi.org/10.1128/AAC.46.4.977-981.2002.
-
(2002)
Antimicrob Agents Chemother
, vol.46
, pp. 977-981
-
-
Furuta, Y.1
Takahashi, K.2
Fukuda, Y.3
Kuno, M.4
Kamiyama, T.5
Kozaki, K.6
Nomura, N.7
Egawa, H.8
Minami, S.9
Watanabe, Y.10
Narita, H.11
Shiraki, K.12
-
13
-
-
33847688459
-
Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice
-
Sidwell RW, Barnard DL, Day CW, Smee DF, Bailey KW, Wong M-H, Morrey JD, Furuta Y. 2007. Efficacy of orally administered T-705 on lethal avian influenza A (H5N1) virus infections in mice. Antimicrob Agents Chemother 51:845–851. https://doi.org/10.1128/AAC.01051-06.
-
(2007)
Antimicrob Agents Chemother
, vol.51
, pp. 845-851
-
-
Sidwell, R.W.1
Barnard, D.L.2
Day, C.W.3
Smee, D.F.4
Bailey, K.W.5
Wong, M.-H.6
Morrey, J.D.7
Furuta, Y.8
-
14
-
-
76249125006
-
T-705 (favipiravir) activity against lethal H5N1 influenza A viruses
-
Kiso M, Takahashi K, Sakai-Tagawa Y, Shinya K, Sakabe S, Le QM, Ozawa M, Furuta Y, Kawaoka Y. 2010. T-705 (favipiravir) activity against lethal H5N1 influenza A viruses. Proc Natl Acad Sci U S A 107:882–887. https://doi.org/10.1073/pnas.0909603107.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 882-887
-
-
Kiso, M.1
Takahashi, K.2
Sakai-Tagawa, Y.3
Shinya, K.4
Sakabe, S.5
Le, Q.M.6
Ozawa, M.7
Furuta, Y.8
Kawaoka, Y.9
-
15
-
-
64749093901
-
T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections
-
Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF, Barnard DL, Gowen BB, Julander JG, Morrey JD. 2009. T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res 82:95–102. https://doi.org/10.1016/j.antiviral.2009.02.198.
-
(2009)
Antiviral Res
, vol.82
, pp. 95-102
-
-
Furuta, Y.1
Takahashi, K.2
Shiraki, K.3
Sakamoto, K.4
Smee, D.F.5
Barnard, D.L.6
Gowen, B.B.7
Julander, J.G.8
Morrey, J.D.9
-
16
-
-
77952645453
-
In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A (H1N1) viruses
-
Sleeman K, Mishin VP, Deyde VM, Furuta Y, Klimov AI, Gubareva LV. 2010. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A (H1N1) viruses. Antimicrob Agents Chemother 54:2517–2524. https://doi.org/10.1128/AAC.01739-09.
-
(2010)
Antimicrob Agents Chemother
, vol.54
, pp. 2517-2524
-
-
Sleeman, K.1
Mishin, V.P.2
Deyde, V.M.3
Furuta, Y.4
Klimov, A.I.5
Gubareva, L.V.6
-
17
-
-
84885448756
-
Favipiravir (T-705), a novel viral RNA polymerase inhibitor
-
Furuta Y, Gowen BB, Takahashi K, Shiraki K, Smee DF, Barnard DL. 2013. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res 100:446–454. https://doi.org/10.1016/j.antiviral.2013.09.015.
-
(2013)
Antiviral Res
, vol.100
, pp. 446-454
-
-
Furuta, Y.1
Gowen, B.B.2
Takahashi, K.3
Shiraki, K.4
Smee, D.F.5
Barnard, D.L.6
-
18
-
-
85026639600
-
Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase
-
Furuta Y, Komeno T, Nakamura T. 2017. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad Ser B Phys Biol Sci 93:449–463. https://doi.org/10.2183/pjab.93.027.
-
(2017)
Proc Jpn Acad Ser B Phys Biol Sci
, vol.93
, pp. 449-463
-
-
Furuta, Y.1
Komeno, T.2
Nakamura, T.3
-
19
-
-
78751692774
-
T-705 (favipiravir) inhibition of arenavirus replication in cell culture
-
Mendenhall M, Russell A, Juelich T, Messina EL, Smee DF, Freiberg AN, Holbrook MR, Furuta Y, de la Torre J-C, Nunberg JH, Gowen BB. 2011. T-705 (favipiravir) inhibition of arenavirus replication in cell culture. Antimicrob Agents Chemother 55:782–787. https://doi.org/10.1128/AAC.01219-10.
-
(2011)
Antimicrob Agents Chemother
, vol.55
, pp. 782-787
-
-
Mendenhall, M.1
Russell, A.2
Juelich, T.3
Messina, E.L.4
Smee, D.F.5
Freiberg, A.N.6
Holbrook, M.R.7
Furuta, Y.8
de la Torre, J.-C.9
Nunberg, J.H.10
Gowen, B.B.11
-
20
-
-
80055080528
-
Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic fever
-
Mendenhall M, Russell A, Smee DF, Hall JO, Skirpstunas R, Furuta Y, Gowen BB. 2011. Effective oral favipiravir (T-705) therapy initiated after the onset of clinical disease in a model of arenavirus hemorrhagic fever. PLoS Negl Trop Dis 5:e1342. https://doi.org/10.1371/journal.pntd.0001342.
-
(2011)
PLoS Negl Trop Dis
, vol.5
-
-
Mendenhall, M.1
Russell, A.2
Smee, D.F.3
Hall, J.O.4
Skirpstunas, R.5
Furuta, Y.6
Gowen, B.B.7
-
21
-
-
84896129506
-
Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model
-
Oestereich L, Lüdtke A, Wurr S, Rieger T, Muñoz-Fontela C, Günther S. 2014. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res 105:17–21. https://doi.org/10.1016/j.antiviral.2014.02.014.
-
(2014)
Antiviral Res
, vol.105
, pp. 17-21
-
-
Oestereich, L.1
Lüdtke, A.2
Wurr, S.3
Rieger, T.4
Muñoz-Fontela, C.5
Günther, S.6
-
22
-
-
84943800811
-
The broad-spectrum antiviral favipiravir protects Guinea pigs from lethal Lassa virus infection post-disease onset
-
Safronetz D, Rosenke K, Westover JB, Martellaro C, Okumura A, Furuta Y, Geisbert J, Saturday G, Komeno T, Geisbert TW, Feldmann H, Gowen BB. 2015. The broad-spectrum antiviral favipiravir protects guinea pigs from lethal Lassa virus infection post-disease onset. Sci Rep 5:14775. https://doi.org/10.1038/srep14775.
-
(2015)
Sci Rep
, vol.5
, pp. 14775
-
-
Safronetz, D.1
Rosenke, K.2
Westover, J.B.3
Martellaro, C.4
Okumura, A.5
Furuta, Y.6
Geisbert, J.7
Saturday, G.8
Komeno, T.9
Geisbert, T.W.10
Feldmann, H.11
Gowen, B.B.12
-
23
-
-
84964875979
-
Efficacy of favipiravir alone and in combination with ribavirin in a lethal, immunocompetent mouse model of Lassa fever
-
Oestereich L, Rieger T, Lüdtke A, Ruibal P, Wurr S, Pallasch E, Bockholt S, Krasemann S, Muñoz-Fontela C, Günther S. 2015. Efficacy of favipiravir alone and in combination with ribavirin in a lethal, immunocompetent mouse model of Lassa fever. J Infect Dis 213:934–938. https://doi.org/10.1093/infdis/jiv522.
-
(2015)
J Infect Dis
, vol.213
, pp. 934-938
-
-
Oestereich, L.1
Rieger, T.2
Lüdtke, A.3
Ruibal, P.4
Wurr, S.5
Pallasch, E.6
Bockholt, S.7
Krasemann, S.8
Muñoz-Fontela, C.9
Günther, S.10
-
24
-
-
85010887244
-
Efficacy of T-705 (favipiravir) in the treatment of infections with lethal severe fever with thrombocytopenia syndrome virus
-
Tani H, Fukuma A, Fukushi S, Taniguchi S, Yoshikawa T, Iwata-Yoshikawa N, Sato Y, Suzuki T, Nagata N, Hasegawa H. 2016. Efficacy of T-705 (favipiravir) in the treatment of infections with lethal severe fever with thrombocytopenia syndrome virus. mSphere 1:e00061-15.
-
(2016)
mSphere
, vol.1
, pp. e00061-e00115
-
-
Tani, H.1
Fukuma, A.2
Fukushi, S.3
Taniguchi, S.4
Yoshikawa, T.5
Iwata-Yoshikawa, N.6
Sato, Y.7
Suzuki, T.8
Nagata, N.9
Hasegawa, H.10
-
25
-
-
85044444590
-
Favipiravir as a potential countermeasure against neglected and emerging RNA viruses
-
Delang L, Abdelnabi R, Neyts J. 2018. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses. Antiviral Res 153:85–94. https://doi.org/10.1016/j.antiviral.2018.03.003.
-
(2018)
Antiviral Res
, vol.153
, pp. 85-94
-
-
Delang, L.1
Abdelnabi, R.2
Neyts, J.3
-
26
-
-
14744274674
-
Mechanism of action of T-705 against influenza virus
-
Furuta Y, Takahashi K, Kuno-Maekawa M, Sangawa H, Uehara S, Kozaki K, Nomura N, Egawa H, Shiraki K. 2005. Mechanism of action of T-705 against influenza virus. Antimicrob Agents Chemother 49:981–986. https://doi.org/10.1128/AAC.49.3.981-986.2005.
-
(2005)
Antimicrob Agents Chemother
, vol.49
, pp. 981-986
-
-
Furuta, Y.1
Takahashi, K.2
Kuno-Maekawa, M.3
Sangawa, H.4
Uehara, S.5
Kozaki, K.6
Nomura, N.7
Egawa, H.8
Shiraki, K.9
-
27
-
-
84875107202
-
T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro
-
Baranovich T, Wong S-S, Armstrong J, Marjuki H, Webby RJ, Webster RG, Govorkova EA. 2013. T-705 (favipiravir) induces lethal mutagenesis in influenza A H1N1 viruses in vitro. J Virol 87:3741–3751. https://doi.org/10.1128/JVI.02346-12.
-
(2013)
J Virol
, vol.87
, pp. 3741-3751
-
-
Baranovich, T.1
Wong, S.-S.2
Armstrong, J.3
Marjuki, H.4
Webby, R.J.5
Webster, R.G.6
Govorkova, E.A.7
-
28
-
-
84924773343
-
Favipiravir elicits antiviral mutagenesis during virus replication in vivo
-
Arias A, Thorne L, Goodfellow I. 2014. Favipiravir elicits antiviral mutagenesis during virus replication in vivo. Elife 3:e03679. https://doi.org/10.7554/eLife.03679.
-
(2014)
Elife
, vol.3
, pp. e03679
-
-
Arias, A.1
Thorne, L.2
Goodfellow, I.3
-
29
-
-
84992111855
-
Lethal mutagenesis of hepatitis C virus induced by favipiravir
-
de Ávila AI, Gallego I, Soria ME, Gregori J, Quer J, Esteban JI, Rice CM, Domingo E, Perales C. 2016. Lethal mutagenesis of hepatitis C virus induced by favipiravir. PLoS One 11:e0164691. https://doi.org/10.1371/ journal.pone.0164691.
-
(2016)
PLoS One
, vol.11
-
-
de Ávila, A.I.1
Gallego, I.2
Soria, M.E.3
Gregori, J.4
Quer, J.5
Esteban, J.I.6
Rice, C.M.7
Domingo, E.8
Perales, C.9
-
30
-
-
85031281165
-
Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: Polymerase activity and mechanisms of action of nucleotide analogs
-
Barauskas O, Xing W, Aguayo E, Willkom M, Sapre A, Clarke M, Birkus G, Schultz BE, Sakowicz R, Kwon HJ, Feng JY. 2017. Biochemical characterization of recombinant influenza A polymerase heterotrimer complex: polymerase activity and mechanisms of action of nucleotide analogs. PLoS One 12:e0185998. https://doi.org/10.1371/journal.pone.0185998.
-
(2017)
PLoS One
, vol.12
-
-
Barauskas, O.1
Xing, W.2
Aguayo, E.3
Willkom, M.4
Sapre, A.5
Clarke, M.6
Birkus, G.7
Schultz, B.E.8
Sakowicz, R.9
Kwon, H.J.10
Feng, J.Y.11
-
31
-
-
84994812705
-
Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis
-
Vanderlinden E, Vrancken B, Van Houdt J, Rajwanshi VK, Gillemot S, Andrei G, Lemey P, Naesens L. 2016. Distinct effects of T-705 (favipiravir) and ribavirin on influenza virus replication and viral RNA synthesis. Antimicrob Agents Chemother 60:6679–6691. https://doi.org/10.1128/AAC.01156-16.
-
(2016)
Antimicrob Agents Chemother
, vol.60
, pp. 6679-6691
-
-
Vanderlinden, E.1
Vrancken, B.2
Van Houdt, J.3
Rajwanshi, V.K.4
Gillemot, S.5
Andrei, G.6
Lemey, P.7
Naesens, L.8
-
32
-
-
84885907998
-
Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase
-
Sangawa H, Komeno T, Nishikawa H, Yoshida A, Takahashi K, Nomura N, Furuta Y. 2013. Mechanism of action of T-705 ribosyl triphosphate against influenza virus RNA polymerase. Antimicrob Agents Chemother 57:5202–5208. https://doi.org/10.1128/AAC.00649-13.
-
(2013)
Antimicrob Agents Chemother
, vol.57
, pp. 5202-5208
-
-
Sangawa, H.1
Komeno, T.2
Nishikawa, H.3
Yoshida, A.4
Takahashi, K.5
Nomura, N.6
Furuta, Y.7
-
33
-
-
84880006467
-
The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofura-nosyl 5=-triphosphate towards influenza A virus polymerase
-
Jin Z, Smith LK, Rajwanshi VK, Kim B, Deval J. 2013. The ambiguous base-pairing and high substrate efficiency of T-705 (favipiravir) ribofura-nosyl 5=-triphosphate towards influenza A virus polymerase. PLoS One 8:e68347. https://doi.org/10.1371/journal.pone.0068347.
-
(2013)
PLoS One
, vol.8
-
-
Jin, Z.1
Smith, L.K.2
Rajwanshi, V.K.3
Kim, B.4
Deval, J.5
-
34
-
-
85018651966
-
Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs
-
Jin Z, Kinkade A, Behera I, Chaudhuri S, Tucker K, Dyatkina N, Rajwanshi VK, Wang G, Jekle A, Smith DB, Beigelman L, Symons JA, Deval J. 2017. Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs. Antiviral Res 143:151–161. https://doi.org/10.1016/j.antiviral.2017.04.005.
-
(2017)
Antiviral Res
, vol.143
, pp. 151-161
-
-
Jin, Z.1
Kinkade, A.2
Behera, I.3
Chaudhuri, S.4
Tucker, K.5
Dyatkina, N.6
Rajwanshi, V.K.7
Wang, G.8
Jekle, A.9
Smith, D.B.10
Beigelman, L.11
Symons, J.A.12
Deval, J.13
-
35
-
-
84971228935
-
Combinations of oseltamivir and T-705 extend the treatment window for highly pathogenic influenza A (H5N1) virus infection in mice
-
Marathe BM, Wong S-S, Vogel P, Garcia-Alcalde F, Webster RG, Webby RJ, Najera I, Govorkova EA. 2016. Combinations of oseltamivir and T-705 extend the treatment window for highly pathogenic influenza A (H5N1) virus infection in mice. Sci Rep 6:26742. https://doi.org/10.1038/srep26742.
-
(2016)
Sci Rep
, vol.6
, pp. 26742
-
-
Marathe, B.M.1
Wong, S.-S.2
Vogel, P.3
Garcia-Alcalde, F.4
Webster, R.G.5
Webby, R.J.6
Najera, I.7
Govorkova, E.A.8
-
36
-
-
84925406921
-
Mutations in the chikungunya virus nonstructural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral
-
Delang L, Segura Guerrero N, Tas A, Quérat G, Pastorino B, Froeyen M, Dallmeier K, Jochmans D, Herdewijn P, Bello F, Snijder EJ, de Lamballerie X, Martina B, Neyts J, van Hemert MJ, Leyssen P. 2014. Mutations in the chikungunya virus nonstructural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral. J Antimicrob Chemother 69: 2770–2784. https://doi.org/10.1093/jac/dku209.
-
(2014)
J Antimicrob Chemother
, vol.69
, pp. 2770-2784
-
-
Delang, L.1
Segura Guerrero, N.2
Tas, A.3
Quérat, G.4
Pastorino, B.5
Froeyen, M.6
Dallmeier, K.7
Jochmans, D.8
Herdewijn, P.9
Bello, F.10
Snijder, E.J.11
de Lamballerie, X.12
Martina, B.13
Neyts, J.14
van Hemert, M.J.15
Leyssen, P.16
-
37
-
-
85045667499
-
Antiviral efficacy of favipiravir against Ebola virus: A translational study in cynomolgus macaques
-
Guedj J, Piorkowski G, Jacquot F, Madelain V, Nguyen THT, Rodallec A, Gunther S, Carbonnelle C, Mentré F, Raoul H, de Lamballerie X. 2018. Antiviral efficacy of favipiravir against Ebola virus: a translational study in cynomolgus macaques. PLoS Med 15:e1002535. https://doi.org/10.1371/journal.pmed.1002535.
-
(2018)
PLoS Med
, vol.15
-
-
Guedj, J.1
Piorkowski, G.2
Jacquot, F.3
Madelain, V.4
Nguyen, T.H.T.5
Rodallec, A.6
Gunther, S.7
Carbonnelle, C.8
Mentré, F.9
Raoul, H.10
de Lamballerie, X.11
-
38
-
-
84055200527
-
Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID
-
Jabara CB, Jones CD, Roach J, Anderson JA, Swanstrom R. 2011. Accurate sampling and deep sequencing of the HIV-1 protease gene using a Primer ID. Proc Natl Acad Sci U S A 108:20166 –20171. https://doi.org/10.1073/pnas.1110064108.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 20166-20171
-
-
Jabara, C.B.1
Jones, C.D.2
Roach, J.3
Anderson, J.A.4
Swanstrom, R.5
-
39
-
-
84938099470
-
Primer ID validates template sampling depth and greatly reduces the error rate of next-generation sequencing of HIV-1 genomic RNA populations
-
Zhou S, Jones C, Mieczkowski P, Swanstrom R. 2015. Primer ID validates template sampling depth and greatly reduces the error rate of next-generation sequencing of HIV-1 genomic RNA populations. J Virol 89: 8540–8555. https://doi.org/10.1128/JVI.00522-15.
-
(2015)
J Virol
, vol.89
, pp. 8540-8555
-
-
Zhou, S.1
Jones, C.2
Mieczkowski, P.3
Swanstrom, R.4
-
40
-
-
85041659413
-
Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs
-
Kosik I, Ince WL, Gentles LE, Oler AJ, Kosikova M, Angel M, Magadán JG, Xie H, Brooke CB, Yewdell JW. 2018. Influenza A virus hemagglutinin glycosylation compensates for antibody escape fitness costs. PLoS Pat-hog 14:e1006796. https://doi.org/10.1371/journal.ppat.1006796.
-
(2018)
PLoS Pat-Hog
, vol.14
-
-
Kosik, I.1
Ince, W.L.2
Gentles, L.E.3
Oler, A.J.4
Kosikova, M.5
Angel, M.6
Magadán, J.G.7
Xie, H.8
Brooke, C.B.9
Yewdell, J.W.10
-
41
-
-
84900431101
-
High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution
-
Wu NC, Young AP, Al-Mawsawi LQ, Olson CA, Feng J, Qi H, Chen S-H, Lu I-H, Lin C-Y, Chin RG, Luan HH, Nguyen N, Nelson SF, Li X, Wu T-T, Sun R. 2014. High-throughput profiling of influenza A virus hemagglutinin gene at single-nucleotide resolution. Sci Rep 4:4942. https://doi.org/10.1038/srep04942.
-
(2014)
Sci Rep
, vol.4
, pp. 4942
-
-
Wu, N.C.1
Young, A.P.2
Al-Mawsawi, L.Q.3
Olson, C.A.4
Feng, J.5
Qi, H.6
Chen, S.-H.7
Lu, I.-H.8
Lin, C.-Y.9
Chin, R.G.10
Luan, H.H.11
Nguyen, N.12
Nelson, S.F.13
Li, X.14
Wu, T.-T.15
Sun, R.16
-
42
-
-
84973131100
-
Accurate measurement of the effects of all amino-acid mutations on influenza hemagglutinin
-
Doud MB, Bloom JD. 2016. Accurate measurement of the effects of all amino-acid mutations on influenza hemagglutinin. Viruses 8:155. https://doi.org/10.3390/v8060155.
-
(2016)
Viruses
, vol.8
, pp. 155
-
-
Doud, M.B.1
Bloom, J.D.2
-
43
-
-
85056134429
-
-
Goldhill DH, Langat P, Xie H, Galiano M, Shahjahan M, Kellam P, Lackenby A, Barclay W. 2018. Determining the mutation bias of favipiravir in influenza virus using next-generation sequencing. bioRxiv 10.1101/ 375378.
-
(2018)
Determining The Mutation Bias of Favipiravir in Influenza Virus Using Next-Generation Sequencing. bioRxiv
-
-
Goldhill, D.H.1
Langat, P.2
Xie, H.3
Galiano, M.4
Shahjahan, M.5
Kellam, P.6
Lackenby, A.7
Barclay, W.8
-
44
-
-
85059665117
-
The mutation rates and mutational bias of influenza A virus
-
Pauly MD, Procario M, Lauring AS. 2017. The mutation rates and mutational bias of influenza A virus. bioRxiv https://doi.org/10.1101/110197.
-
(2017)
bioRxiv
-
-
Pauly, M.D.1
Procario, M.2
Lauring, A.S.3
-
45
-
-
84984860940
-
The mutational robustness of influenza A virus
-
Visher E, Whitefield SE, McCrone JT, Fitzsimmons W, Lauring AS. 2016. The mutational robustness of influenza A virus. PLoS Pathogens 12(8): e1005856. https://doi.org/10.1371/journal.ppat.1005856.
-
(2016)
PLoS Pathogens
, vol.12
, Issue.8
-
-
Visher, E.1
Whitefield, S.E.2
McCrone, J.T.3
Fitzsimmons, W.4
Lauring, A.S.5
-
46
-
-
84924767317
-
Effective lethal mutagenesis of influenza virus by three nucleoside analogs
-
Pauly MD, Lauring AS. 2015. Effective lethal mutagenesis of influenza virus by three nucleoside analogs. J Virol 89:3584–3597. https://doi.org/10.1128/JVI.03483-14.
-
(2015)
J Virol
, vol.89
, pp. 3584-3597
-
-
Pauly, M.D.1
Lauring, A.S.2
-
47
-
-
84873456999
-
Viral population analysis and minority-variant detection using short read next-generation sequencing
-
Watson SJ, Welkers MR, Depledge DP, Coulter E, Breuer JM, de Jong MD, Kellam P. 2013. Viral population analysis and minority-variant detection using short read next-generation sequencing. Philos Trans R Soc Lond B Biol Sci 368:20120205. https://doi.org/10.1098/rstb.2012.0205.
-
(2013)
Philos Trans R Soc Lond B Biol Sci
, vol.368
, pp. 20120205
-
-
Watson, S.J.1
Welkers, M.R.2
Depledge, D.P.3
Coulter, E.4
Breuer, J.M.5
de Jong, M.D.6
Kellam, P.7
-
48
-
-
84861433996
-
Degenerate Primer IDs and the birthday problem
-
Sheward DJ, Murrell B, Williamson C. 2012. Degenerate Primer IDs and the birthday problem. Proc Natl Acad Sci U S A 109:E1330–E1330. https://doi.org/10.1073/pnas.1203613109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E1330
-
-
Sheward, D.J.1
Murrell, B.2
Williamson, C.3
-
49
-
-
84953931983
-
Species difference in ANP32A underlies influenza A virus polymerase host restriction
-
Long JS, Giotis ES, Moncorgé O, Frise R, Mistry B, James J, Morisson M, Iqbal M, Vignal A, Skinner MA, Barclay WS. 2016. Species difference in ANP32A underlies influenza A virus polymerase host restriction. Nature 529:101. https://doi.org/10.1038/nature16474.
-
(2016)
Nature
, vol.529
, pp. 101
-
-
Long, J.S.1
Giotis, E.S.2
Moncorgé, O.3
Frise, R.4
Mistry, B.5
James, J.6
Morisson, M.7
Iqbal, M.8
Vignal, A.9
Skinner, M.A.10
Barclay, W.S.11
-
50
-
-
70349272201
-
Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses
-
Zhou B, Donnelly ME, Scholes DT, George KS, Hatta M, Kawaoka Y, Wentworth DE. 2009. Single-reaction genomic amplification accelerates sequencing and vaccine production for classical and Swine origin human influenza a viruses. J Virol 83:10309–10313. https://doi.org/10.1128/JVI.01109-09.
-
(2009)
J Virol
, vol.83
, pp. 10309-10313
-
-
Zhou, B.1
Donnelly, M.E.2
Scholes, D.T.3
George, K.S.4
Hatta, M.5
Kawaoka, Y.6
Wentworth, D.E.7
|