-
1
-
-
0033225865
-
An introduction to variational methods for graphical models
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L K. Saul, "An introduction to variational methods for graphical models," Machine learning, Vol. 37, No. 2, pp. 183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
6
-
-
84878919168
-
Stochastic variational inference
-
M. D. Hoffman, D. M. Blei, C. Wang, and J W. Paisley, "Stochastic variational inference," Journal of Machine Learning Research, Vol. 14, No. 1, pp. 1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.W.4
-
9
-
-
84899013244
-
Streaming variational bayes
-
T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M I. Jordan, "Streaming variational Bayes," in Advances in Neural Information Processing Systems (NIPS), 2013.
-
(2013)
Advances in Neural Information Processing Systems (NIPS)
-
-
Broderick, T.1
Boyd, N.2
Wibisono, A.3
Wilson, A.C.4
Jordan, M.I.5
-
10
-
-
84954343597
-
-
arXiv:1412.4869
-
A. Gelman, A. Vehtari, P. Jylänki, C. Robert, N. Chopin, and J. P. Cunningham, "Expectation propagation as a way of life," arXiv:1412.4869, 2014.
-
(2014)
Expectation Propagation as a Way of Life
-
-
Gelman, A.1
Vehtari, A.2
Jylänki, P.3
Robert, C.4
Chopin, N.5
Cunningham, J.P.6
-
11
-
-
84937917638
-
Distributed Bayesian posterior sampling via moment sharing
-
M. Xu, B. Lakshminarayanan, Y. W. Teh, J. Zhu, and B Zhang, "Distributed Bayesian posterior sampling via moment sharing," in Advances in Neural Information Processing Systems (NIPS), 2014.
-
(2014)
Advances in Neural Information Processing Systems (NIPS)
-
-
Xu, M.1
Lakshminarayanan, B.2
Teh, Y.W.3
Zhu, J.4
Zhang, B.5
-
13
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
T. Salimans and D. A. Knowles, "Fixed-form variational posterior approximation through stochastic linear regression," Bayesian Analysis, Vol. 8, No. 4, pp. 837-882, 2013.
-
(2013)
Bayesian Analysis
, vol.8
, Issue.4
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
15
-
-
84965158671
-
Automatic variational inference in stan
-
A. Kucukelbir, R. Ranganath, A. Gelman, and D. M. Blei, "Automatic variational inference in Stan," in Advances in Neural Information Processing Systems (NIPS), 2015.
-
(2015)
Advances in Neural Information Processing Systems (NIPS)
-
-
Kucukelbir, A.1
Ranganath, R.2
Gelman, A.3
Blei, D.M.4
-
16
-
-
84998694412
-
Black-box α-divergence minimization
-
J. M. Hernández-Lobato, Y. Li, M. Rowland, D. Hernández-Lobato, T. Bui, and R. E. Turner, "Black-box α-divergence minimization," in Proceedings of The 33rd International Conference on Machine Learning (ICML), 2016.
-
(2016)
Proceedings of the 33rd International Conference on Machine Learning (ICML)
-
-
Hernández-Lobato, J.M.1
Li, Y.2
Rowland, M.3
Hernández-Lobato, D.4
Bui, T.5
Turner, R.E.6
-
22
-
-
33646516485
-
Possible generalization of boltzmann-gibbs statistics
-
C. Tsallis, "Possible generalization of Boltzmann-Gibbs statistics," Journal of statistical physics, Vol. 52, No. 1-2, pp. 479-487, 1988.
-
(1988)
Journal of Statistical Physics
, vol.52
, Issue.1-2
, pp. 479-487
-
-
Tsallis, C.1
-
23
-
-
84902978549
-
Rényi divergence and Kullback-leibler divergence
-
IEEE Transactions on
-
T. Van Erven and P. Harremoës, "Rényi divergence and Kullback-Leibler divergence," Information Theory, IEEE Transactions on, Vol. 60, No. 7, pp. 3797-3820, 2014.
-
(2014)
Information Theory
, vol.60
, Issue.7
, pp. 3797-3820
-
-
Van Erven, T.1
Harremoës, P.2
-
25
-
-
84923421297
-
Two problems with variational expectation maximisation for time-series models
-
(D. Barber, T. Cemgil, and S. Chiappa, eds.), ch. 5 Cambridge University Press
-
R. E. Turner and M. Sahani, "Two problems with variational expectation maximisation for time-series models," in Bayesian Time series models (D. Barber, T. Cemgil, and S. Chiappa, eds.), ch. 5, pp. 109-130, Cambridge University Press, 2011.
-
(2011)
Bayesian Time Series Models
, pp. 109-130
-
-
Turner, R.E.1
Sahani, M.2
-
27
-
-
84999019279
-
Deep Gaussian processes for regression using approximate expectation propagation
-
T. D. Bui, D. Hernández-Lobato, Y. Li, J. M. Hernández-Lobato, and R E. Turner, "Deep gaussian processes for regression using approximate expectation propagation," in Proceedings of The 33rd International Conference on Machine Learning (ICML), 2016.
-
(2016)
Proceedings of the 33rd International Conference on Machine Learning (ICML)
-
-
Bui, T.D.1
Hernández-Lobato, D.2
Li, Y.3
Hernández-Lobato, J.M.4
Turner, R.E.5
-
28
-
-
85019238121
-
-
arXiv preprint arXiv:1605.07127
-
S. Depeweg, J. M. Hernández-Lobato, F. Doshi-Velez, and S Udluft, "Learning and policy search in stochastic dynamical systems with bayesian neural networks," arXiv preprint arXiv:1605.07127, 2016.
-
(2016)
Learning and Policy Search in Stochastic Dynamical Systems with Bayesian Neural Networks
-
-
Depeweg, S.1
Hernández-Lobato, J.M.2
Doshi-Velez, F.3
Udluft, S.4
|