메뉴 건너뛰기




Volumn 871, Issue , 2018, Pages

Clustering field-based maize phenotyping of plant-height growth and canopy spectral dynamics using a UAV remote-sensing approach

Author keywords

Breeding; Development; High throughput phenotyping platform; Maize; Time series clustering; Typical curve; Unmanned aerial vehicles

Indexed keywords

ANTENNAS; CLUSTERING ALGORITHMS; INTERPOLATION; REMOTE SENSING; THROUGHPUT; TIME SERIES; TIME SERIES ANALYSIS; UNMANNED AERIAL VEHICLES (UAV);

EID: 85058819843     PISSN: None     EISSN: 1664462X     Source Type: Journal    
DOI: 10.3389/fpls.2018.01638     Document Type: Article
Times cited : (84)

References (58)
  • 1
    • 85037535528 scopus 로고    scopus 로고
    • Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers – from theory to application
    • Aasen H., Bolten A., (2018). Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers – from theory to application. Remote Sens. Environ. 205 374–389. 10.1016/j.rse.2017.10.043.
    • (2018) Remote Sens. Environ , vol.205 , pp. 374-389
    • Aasen, H.1    Bolten, A.2
  • 2
    • 84930671336 scopus 로고    scopus 로고
    • Time-series clustering - a decade review
    • 27911489
    • Aghabozorgi S., Shirkhorshidi A. S., Teh Ying W., (2015). Time-series clustering - a decade review. Inf. Syst. 53 16–38. 10.1016/j.is.2015.04.007 27911489.
    • (2015) Inf. Syst , vol.53 , pp. 16-38
    • Aghabozorgi, S.1    Shirkhorshidi, A.S.2    Teh Ying, W.3
  • 4
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: the new crop breeding frontier
    • 24139902
    • Araus J. L., Cairns J. E., (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19 52–61. 10.1016/j.tplants.2013.09.008 24139902.
    • (2014) Trends Plant Sci , vol.19 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 5
    • 84987933135 scopus 로고    scopus 로고
    • A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding
    • Bai G., Ge Y. F., Hussain W., Baenziger P. S., Graef G., (2016). A multi-sensor system for high throughput field phenotyping in soybean and wheat breeding. Comput. Electron. Agric. 128 181–192. 10.1016/j.compag.2016.08.021.
    • (2016) Comput. Electron. Agric , vol.128 , pp. 181-192
    • Bai, G.1    Ge, Y.F.2    Hussain, W.3    Baenziger, P.S.4    Graef, G.5
  • 6
    • 85006942309 scopus 로고    scopus 로고
    • Referencing laser and ultrasonic height measurements of barley cultivars by using a herbometre as standard
    • Barmeier G., Mistele B., Schmidhalter U., (2016). Referencing laser and ultrasonic height measurements of barley cultivars by using a herbometre as standard. Crop Pasture Sci. 67 1215–1222. 10.1071/CP16238.
    • (2016) Crop Pasture Sci , vol.67 , pp. 1215-1222
    • Barmeier, G.1    Mistele, B.2    Schmidhalter, U.3
  • 7
    • 84899858887 scopus 로고    scopus 로고
    • Detection of early plant stress responses in hyperspectral images
    • Behmann J., Steinrücken J., Plümer L., (2014). Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm. Remote Sens. 93 98–111. 10.1016/j.isprsjprs.2014.03.016.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.93 , pp. 98-111
    • Behmann, J.1    Steinrücken, J.2    Plümer, L.3
  • 8
    • 84912124929 scopus 로고    scopus 로고
    • Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging
    • Bendig J., Bolten A., Bennertz S., Broscheit J., Eichfuss S., Bareth G., (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-based RGB imaging. Remote Sens. 6 10395–10412. 10.3390/rs61110395.
    • (2014) Remote Sens , vol.6 , pp. 10395-10412
    • Bendig, J.1    Bolten, A.2    Bennertz, S.3    Broscheit, J.4    Eichfuss, S.5    Bareth, G.6
  • 9
    • 84939454114 scopus 로고    scopus 로고
    • Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley
    • Bendig J., Yu K., Aasen H., Bolten A., Bennertz S., Broscheit J., (2015). Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl Earth Obs. Geoinf. 39 79–87. 10.1016/j.jag.2015.02.012.
    • (2015) Int. J. Appl Earth Obs. Geoinf , vol.39 , pp. 79-87
    • Bendig, J.1    Yu, K.2    Aasen, H.3    Bolten, A.4    Bennertz, S.5    Broscheit, J.6
  • 10
    • 84908374490 scopus 로고    scopus 로고
    • Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data
    • Bouvier M., Durrieu S., Fournier R. A., Renaud J. P., (2015). Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ. 156 322–334. 10.1016/j.rse.2014.10.004.
    • (2015) Remote Sens. Environ , vol.156 , pp. 322-334
    • Bouvier, M.1    Durrieu, S.2    Fournier, R.A.3    Renaud, J.P.4
  • 11
    • 84875159589 scopus 로고    scopus 로고
    • Breed vision - a multi-sensor platform for non-destructive field-based phenotyping in plant breeding
    • 23447014
    • Busemeyer L., Mentrup D., Moller K., Wunder E., Alheit K., Hahn V., (2013). Breed vision - a multi-sensor platform for non-destructive field-based phenotyping in plant breeding. Sensors 13 2830–2847. 10.3390/s130302830 23447014.
    • (2013) Sensors , vol.13 , pp. 2830-2847
    • Busemeyer, L.1    Mentrup, D.2    Moller, K.3    Wunder, E.4    Alheit, K.5    Hahn, V.6
  • 12
    • 84892475753 scopus 로고    scopus 로고
    • Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding
    • 24330531
    • Casadesus J., Villegas D., (2014). Conventional digital cameras as a tool for assessing leaf area index and biomass for cereal breeding. J. Integr. Plant Biol. 56 7–14. 10.1111/jipb.12117 24330531.
    • (2014) J. Integr. Plant Biol , vol.56 , pp. 7-14
    • Casadesus, J.1    Villegas, D.2
  • 13
    • 84923012445 scopus 로고    scopus 로고
    • Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping
    • Chapman S., Merz T., Chan A., Jackway P., Hrabar S., Dreccer M., (2014). Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy 4:279. 10.3390/agronomy4020279.
    • (2014) Agronomy , vol.4 , Issue.279
    • Chapman, S.1    Merz, T.2    Chan, A.3    Jackway, P.4    Hrabar, S.5    Dreccer, M.6
  • 14
    • 84907621185 scopus 로고    scopus 로고
    • Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics
    • Christopher J. T., Veyradier M., Borrell A. K., Harvey G., Fletcher S., Chenu K., (2014). Phenotyping novel stay-green traits to capture genetic variation in senescence dynamics. Funct. Plant Biol. 41 1035–1048. 10.1071/FP14052.
    • (2014) Funct. Plant Biol , vol.41 , pp. 1035-1048
    • Christopher, J.T.1    Veyradier, M.2    Borrell, A.K.3    Harvey, G.4    Fletcher, S.5    Chenu, K.6
  • 15
    • 84875426911 scopus 로고    scopus 로고
    • Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement
    • 23471459
    • Cobb J. N., Declerck G., Greenberg A., Clark R., Mccouch S., (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126 867–887. 10.1007/s00122-013-2066-0 23471459.
    • (2013) Theor. Appl. Genet , vol.126 , pp. 867-887
    • Cobb, J.N.1    Declerck, G.2    Greenberg, A.3    Clark, R.4    Mccouch, S.5
  • 16
    • 84964839920 scopus 로고    scopus 로고
    • Development and deployment of a portable field phenotyping platform
    • Crain J. L., Wei Y., Barker J., Thompson S. M., Alderman P. D., Reynolds M., (2016). Development and deployment of a portable field phenotyping platform. Crop Sci. 56 965–975. 10.2135/cropsci2015.05.0290.
    • (2016) Crop Sci , vol.56 , pp. 965-975
    • Crain, J.L.1    Wei, Y.2    Barker, J.3    Thompson, S.M.4    Alderman, P.D.5    Reynolds, M.6
  • 17
    • 85026677594 scopus 로고    scopus 로고
    • Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations
    • De Moura Y. M., Galvão L. S., Hilker T., Wu J., Saleska S., Do Amaral C. H., (2017). Spectral analysis of amazon canopy phenology during the dry season using a tower hyperspectral camera and modis observations. ISPRS J. Photogramm. Remote Sens. 131 52–64. 10.1016/j.isprsjprs.2017.07.006.
    • (2017) ISPRS J. Photogramm. Remote Sens , vol.131 , pp. 52-64
    • De Moura, Y.M.1    Galvão, L.S.2    Hilker, T.3    Wu, J.4    Saleska, S.5    Do Amaral, C.H.6
  • 18
    • 84893401756 scopus 로고    scopus 로고
    • Cell to whole-plant phenotyping: the best is yet to come
    • 23706697
    • Dhondt S., Wuyts N., Inze D., (2013). Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci. 18 433–444. 10.1016/j.tplants.2013.04.008 23706697.
    • (2013) Trends Plant Sci , vol.18 , pp. 433-444
    • Dhondt, S.1    Wuyts, N.2    Inze, D.3
  • 19
    • 85020381651 scopus 로고    scopus 로고
    • Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle
    • a
    • Duan T., Chapman S. C., Guo Y., Zheng B., (2017a). Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crops Res. 210 71–80. 10.1016/j.fcr.2017.05.025.
    • (2017) Field Crops Res , vol.210 , pp. 71-80
    • Duan, T.1    Chapman, S.C.2    Guo, Y.3    Zheng, B.4
  • 20
    • 85006277393 scopus 로고    scopus 로고
    • Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV
    • b
    • Duan T., Zheng B. Y., Guo W., Ninomiya S., Guo Y., Chapman S. C., (2017b). Comparison of ground cover estimates from experiment plots in cotton, sorghum and sugarcane based on images and ortho-mosaics captured by UAV. Funct. Plant Biol. 44 169–183. 10.1071/FP16123.
    • (2017) Funct. Plant Biol , vol.44 , pp. 169-183
    • Duan, T.1    Zheng, B.Y.2    Guo, W.3    Ninomiya, S.4    Guo, Y.5    Chapman, S.C.6
  • 21
    • 0002117993 scopus 로고
    • Tassels and the productivity of maize
    • Duncan W. G., Williams W. A., Loomis R. S., (1967). Tassels and the productivity of maize. Crop Sci. 7 37–39. 10.2135/cropsci1967.0011183X000700010013x.
    • (1967) Crop Sci , vol.7 , pp. 37-39
    • Duncan, W.G.1    Williams, W.A.2    Loomis, R.S.3
  • 23
    • 84912137635 scopus 로고    scopus 로고
    • Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system
    • Geipel J., Link J., Claupein W., (2014). Combined spectral and spatial modeling of corn yield based on aerial images and crop surface models acquired with an unmanned aircraft system. Remote Sens. 6 10335–10355. 10.3390/rs61110335.
    • (2014) Remote Sens , vol.6 , pp. 10335-10355
    • Geipel, J.1    Link, J.2    Claupein, W.3
  • 24
    • 77954776252 scopus 로고    scopus 로고
    • Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes
    • 20639342
    • Gutierrez M., Reynolds M. P., Klatt A. R., (2010). Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes. J. Exp. Bot. 61 3291–3303. 10.1093/jxb/erq156 20639342.
    • (2010) J. Exp. Bot , vol.61 , pp. 3291-3303
    • Gutierrez, M.1    Reynolds, M.P.2    Klatt, A.R.3
  • 25
    • 84975755388 scopus 로고    scopus 로고
    • Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries
    • 27347001
    • Haghighattalab A., Perez L. G., Mondal S., Singh D., Schinstock D., Rutkoski J., (2016). Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12:35. 10.1186/s13007-016-0134-6 27347001.
    • (2016) Plant Methods , vol.12 , Issue.35
    • Haghighattalab, A.1    Perez, L.G.2    Mondal, S.3    Singh, D.4    Schinstock, D.5    Rutkoski, J.6
  • 26
    • 85048967410 scopus 로고    scopus 로고
    • Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat
    • Hassan M., Yang M., Rasheed A., Jin X., Xia X., Xiao Y., (2018). Time-series multispectral indices from unmanned aerial vehicle imagery reveal senescence rate in bread wheat. Remote Sens. 10:809. 10.3390/rs10060809.
    • (2018) Remote Sens , vol.10 , Issue.809
    • Hassan, M.1    Yang, M.2    Rasheed, A.3    Jin, X.4    Xia, X.5    Xiao, Y.6
  • 27
    • 85019682833 scopus 로고    scopus 로고
    • High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV Based remote sensing
    • Holman F. H., Riche A. B., Michalski A., Castle M., Wooster M. J., Hawkesford M. J., (2016). High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV Based remote sensing. Remote Sens. 8:1031. 10.3390/rs8121031.
    • (2016) Remote Sens , vol.8 , Issue.1031
    • Holman, F.H.1    Riche, A.B.2    Michalski, A.3    Castle, M.4    Wooster, M.J.5    Hawkesford, M.J.6
  • 28
    • 70449678710 scopus 로고    scopus 로고
    • Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field
    • Jones H. G., Serraj R., Loveys B. R., Xiong L., Wheaton A., Price A. H., (2009). Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 36 978–989. 10.1071/FP09123.
    • (2009) Funct. Plant Biol , vol.36 , pp. 978-989
    • Jones, H.G.1    Serraj, R.2    Loveys, B.R.3    Xiong, L.4    Wheaton, A.5    Price, A.H.6
  • 30
    • 84928266341 scopus 로고    scopus 로고
    • Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach
    • 25793008
    • Liebisch F., Kirchgessner N., Schneider D., Walter A., Hund A., (2015). Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods 11:19. 10.1186/s13007-015-0048-8 25793008.
    • (2015) Plant Methods , vol.11 , Issue.19
    • Liebisch, F.1    Kirchgessner, N.2    Schneider, D.3    Walter, A.4    Hund, A.5
  • 32
    • 85002557571 scopus 로고    scopus 로고
    • Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a Standard UAV Service
    • Maresma Á., Ariza M., Martínez E., Lloveras J., Martínez-Casasnovas J. A., (2016). Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 8:973. 10.3390/rs8120973.
    • (2016) Remote Sens , vol.8 , Issue.973
    • Maresma, Á.1    Ariza, M.2    Martínez, E.3    Lloveras, J.4    Martínez-Casasnovas, J.A.5
  • 33
    • 84988703052 scopus 로고    scopus 로고
    • Assessment of a canopy height model (CHM) in a vineyard using UAV-based multispectral imaging
    • Matese A., Di Gennaro S. F., Berton A., (2017). Assessment of a canopy height model (CHM) in a vineyard using UAV-based multispectral imaging. Int. J. Remote Sens. 38 2150–2160. 10.1080/01431161.2016.1226002.
    • (2017) Int. J. Remote Sens , vol.38 , pp. 2150-2160
    • Matese, A.1    Di Gennaro, S.F.2    Berton, A.3
  • 34
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • Maulik U., Bandyopadhyay S., (2002). Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24 1650–1654. 10.1109/TPAMI.2002.1114856.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 35
    • 84920439414 scopus 로고    scopus 로고
    • TSclust: an R package for time series clustering
    • Montero P., Vilar J. A., (2014). TSclust: an R package for time series clustering. J. Stat. Softw. 62 1–43. 10.18637/jss.v062.i01.
    • (2014) J. Stat. Softw , vol.62 , pp. 1-43
    • Montero, P.1    Vilar, J.A.2
  • 36
    • 79951578277 scopus 로고    scopus 로고
    • High-throughput non-destructive biomass determination during early plant development in maize under field conditions
    • Montes J. M., Technow F., Dhillon B. S., Mauch F., Melchinger A. E., (2011). High-throughput non-destructive biomass determination during early plant development in maize under field conditions. Field Crops Res. 121 268–273. 10.1016/j.fcr.2010.12.017.
    • (2011) Field Crops Res , vol.121 , pp. 268-273
    • Montes, J.M.1    Technow, F.2    Dhillon, B.S.3    Mauch, F.4    Melchinger, A.E.5
  • 37
    • 85112863727 scopus 로고    scopus 로고
    • K-shape: efficient and accurate clustering of time series
    • Paparrizos J., Gravano L., (2016). K-shape: efficient and accurate clustering of time series. Sigmod. Rec. 45 69–76. 10.1145/2949741.2949758.
    • (2016) Sigmod. Rec , vol.45 , pp. 69-76
    • Paparrizos, J.1    Gravano, L.2
  • 39
    • 85042182943 scopus 로고    scopus 로고
    • Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms
    • 29048559
    • Perez-Sanz F., Navarro P. J., Egea-Cortines M., (2017). Plant phenomics: an overview of image acquisition technologies and image data analysis algorithms. Gigascience 6 1–18. 10.1093/gigascience/gix092 29048559.
    • (2017) Gigascience , vol.6 , pp. 1-18
    • Perez-Sanz, F.1    Navarro, P.J.2    Egea-Cortines, M.3
  • 40
    • 85030851183 scopus 로고    scopus 로고
    • Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines
    • 28951735
    • Potgieter A. B., George-Jaeggli B., Chapman S. C., Laws K., Suárez Cadavid L. A., Wixted J., (2017). Multi-spectral imaging from an unmanned aerial vehicle enables the assessment of seasonal leaf area dynamics of sorghum breeding lines. Front. Plant Sci. 8:1532. 10.3389/fpls.2017.01532 28951735.
    • (2017) Front. Plant Sci , vol.8 , Issue.1532
    • Potgieter, A.B.1    George-Jaeggli, B.2    Chapman, S.C.3    Laws, K.4    Suárez Cadavid, L.A.5    Wixted, J.6
  • 41
    • 5344244656 scopus 로고    scopus 로고
    • Vienna, R Foundation for Statistical Computing
    • R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: https://www.R-project.org/.
    • (2016) R: A Language and Environment for Statistical Computing
  • 42
    • 84879248721 scopus 로고    scopus 로고
    • Yield trends are insufficient to double global crop production by 2050
    • 23840465
    • Ray D. K., Mueller N. D., West P. C., Foley J. A., (2013). Yield trends are insufficient to double global crop production by 2050. PLoS One 8:e66428. 10.1371/journal.pone.0066428 23840465.
    • (2013) PLoS One , vol.8 , Issue.e66428
    • Ray, D.K.1    Mueller, N.D.2    West, P.C.3    Foley, J.A.4
  • 43
    • 77951053057 scopus 로고    scopus 로고
    • Sensitivities of normalized difference vegetation index and a green/red ratio index to cotton ground cover fraction
    • Ritchie G. L., Sullivan D. G., Vencill W. K., Bednarz C. W., Hook J. E., (2010). Sensitivities of normalized difference vegetation index and a green/red ratio index to cotton ground cover fraction. Crop Sci. 50 1000–1010. 10.2135/cropsci2009.04.0203.
    • (2010) Crop Sci , vol.50 , pp. 1000-1010
    • Ritchie, G.L.1    Sullivan, D.G.2    Vencill, W.K.3    Bednarz, C.W.4    Hook, J.E.5
  • 44
    • 85011292282 scopus 로고    scopus 로고
    • Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an applied photogrammetric approach
    • Roth L., Streit B., (2017). Predicting cover crop biomass by lightweight UAS-based RGB and NIR photography: an applied photogrammetric approach. Precis. Agric. 19 93–114. 10.1007/s11119-017-9501-1.
    • (2017) Precis. Agric , vol.19 , pp. 93-114
    • Roth, L.1    Streit, B.2
  • 45
    • 85020003897 scopus 로고    scopus 로고
    • Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size
    • Roussel J. R., Caspersen J., Béland M., Thomas S., Achim A., (2017). Removing bias from LiDAR-based estimates of canopy height: accounting for the effects of pulse density and footprint size. Remote Sens. Environ. 198 1–16. 10.1016/j.rse.2017.05.032.
    • (2017) Remote Sens. Environ , vol.198 , pp. 1-16
    • Roussel, J.R.1    Caspersen, J.2    Béland, M.3    Thomas, S.4    Achim, A.5
  • 46
    • 84860523661 scopus 로고    scopus 로고
    • Application of day and night digital photographs for estimating maize biophysical characteristics
    • Sakamoto T., Gitelson A. A., Wardlow B. D., Arkebauer T. J., Verma S. B., Suyker A. E., (2012). Application of day and night digital photographs for estimating maize biophysical characteristics. Precis. Agric. 13 285–301. 10.1007/s11119-011-9246-1.
    • (2012) Precis. Agric , vol.13 , pp. 285-301
    • Sakamoto, T.1    Gitelson, A.A.2    Wardlow, B.D.3    Arkebauer, T.J.4    Verma, S.B.5    Suyker, A.E.6
  • 48
    • 85025090008 scopus 로고    scopus 로고
    • High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field
    • 28738313
    • Shakoor N., Lee S., Mockler T. C., (2017). High throughput phenotyping to accelerate crop breeding and monitoring of diseases in the field. Curr. Opin. Plant Biol. 38 184–192. 10.1016/j.pbi.2017.05.006 28738313.
    • (2017) Curr. Opin. Plant Biol , vol.38 , pp. 184-192
    • Shakoor, N.1    Lee, S.2    Mockler, T.C.3
  • 49
    • 84865629712 scopus 로고    scopus 로고
    • A new spectral index to detect Poaceae grass abundance in Mongolian grasslands
    • Shimada S., Matsumoto J., Sekiyama A., Aosier B., Yokohana M., (2012). A new spectral index to detect Poaceae grass abundance in Mongolian grasslands. Advan. Space Res. 50 1266–1273. 10.1016/j.asr.2012.07.001.
    • (2012) Advan. Space Res , vol.50 , pp. 1266-1273
    • Shimada, S.1    Matsumoto, J.2    Sekiyama, A.3    Aosier, B.4    Yokohana, M.5
  • 50
    • 85019942927 scopus 로고    scopus 로고
    • Unmanned aerial vehicles for high-throughput phenotyping and agronomic research
    • 27472222
    • Shi Y. Y., Thomasson J. A., Murray S. C., Pugh N. A., Rooney W. L., Shafian S., (2016). Unmanned aerial vehicles for high-throughput phenotyping and agronomic research. PLoS One 11:e0159781. 10.1371/journal.pone.0159781 27472222.
    • (2016) PLoS One , vol.11 , Issue.e0159781
    • Shi, Y.Y.1    Thomasson, J.A.2    Murray, S.C.3    Pugh, N.A.4    Rooney, W.L.5    Shafian, S.6
  • 51
    • 84861817585 scopus 로고    scopus 로고
    • Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices
    • Stagakis S., González-Dugo V., Cid P., Guillén-Climent M. L., Zarco-Tejada P. J., (2012). Monitoring water stress and fruit quality in an orange orchard under regulated deficit irrigation using narrow-band structural and physiological remote sensing indices. ISPRS J. Photogramm. Remote Sens. 71 47–61. 10.1016/j.isprsjprs.2012.05.003.
    • (2012) ISPRS J. Photogramm. Remote Sens , vol.71 , pp. 47-61
    • Stagakis, S.1    González-Dugo, V.2    Cid, P.3    Guillén-Climent, M.L.4    Zarco-Tejada, P.J.5
  • 52
    • 84861435024 scopus 로고    scopus 로고
    • An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds
    • Turner D., Lucieer A., Watson C., (2012). An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 4 1392–1410. 10.3390/rs4051392.
    • (2012) Remote Sens , vol.4 , pp. 1392-1410
    • Turner, D.1    Lucieer, A.2    Watson, C.3
  • 53
    • 70350061503 scopus 로고    scopus 로고
    • Detecting trend and seasonal changes in satellite image time series
    • Verbesselt J., Hyndman R., Newnham G., Culvenor D., (2010). Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114 106–115. 10.1016/j.rse.2009.08.014.
    • (2010) Remote Sens. Environ , vol.114 , pp. 106-115
    • Verbesselt, J.1    Hyndman, R.2    Newnham, G.3    Culvenor, D.4
  • 54
    • 84928745882 scopus 로고    scopus 로고
    • Plant phenotyping: from bean weighing to image analysis
    • 25767559
    • Walter A., Liebisch F., Hund A., (2015). Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14. 10.1186/s13007-015-0056-8 25767559.
    • (2015) Plant Methods , vol.11 , Issue.14
    • Walter, A.1    Liebisch, F.2    Hund, A.3
  • 55
    • 85017318727 scopus 로고    scopus 로고
    • High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling
    • 28400784
    • Watanabe K., Guo W., Arai K., Takanashi H., Kajiya-Kanegae H., Kobayashi M., (2017). High-throughput phenotyping of sorghum plant height using an unmanned aerial vehicle and its application to genomic prediction modeling. Front. Plant Sci. 8:421. 10.3389/fpls.2017.00421 28400784.
    • (2017) Front. Plant Sci , vol.8 , Issue.421
    • Watanabe, K.1    Guo, W.2    Arai, K.3    Takanashi, H.4    Kajiya-Kanegae, H.5    Kobayashi, M.6
  • 56
    • 84870300327 scopus 로고    scopus 로고
    • Structure-from-motion photogrammetry: a low-cost, effective tool for geoscience applications
    • Westoby M. J., Brasington J., Glasser N. F., Hambrey M. J., Reynolds J. M., (2012). Structure-from-motion photogrammetry: a low-cost, effective tool for geoscience applications. Geomorphology 179 300–314. 10.1016/j.geomorph.2012.08.021.
    • (2012) Geomorphology , vol.179 , pp. 300-314
    • Westoby, M.J.1    Brasington, J.2    Glasser, N.F.3    Hambrey, M.J.4    Reynolds, J.M.5
  • 57
    • 85026443520 scopus 로고    scopus 로고
    • Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives
    • 28713402
    • Yang G., Liu J., Zhao C., Li Z., Huang Y., Yu H., (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front. Plant Sci. 8:1111. 10.3389/fpls.2017.01111 28713402.
    • (2017) Front. Plant Sci , vol.8 , Issue.1111
    • Yang, G.1    Liu, J.2    Zhao, C.3    Li, Z.4    Huang, Y.5    Yu, H.6
  • 58
    • 84945483122 scopus 로고    scopus 로고
    • Photosynthesis of a yellow-green mutant line in maize
    • Zhong X. M., Sun S. F., Li F. H., Wang J., Shi Z. S., (2015). Photosynthesis of a yellow-green mutant line in maize. Photosynthetica 53 499–505. 10.1007/s11099-015-0123-4.
    • (2015) Photosynthetica , vol.53 , pp. 499-505
    • Zhong, X.M.1    Sun, S.F.2    Li, F.H.3    Wang, J.4    Shi, Z.S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.