메뉴 건너뛰기




Volumn 45, Issue 1, 2016, Pages 69-76

K-Shape: Efficient and Accurate Clustering of Time Series

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; HIERARCHICAL CLUSTERING; ITERATIVE METHODS; TIME SERIES;

EID: 85112863727     PISSN: 01635808     EISSN: None     Source Type: Journal    
DOI: 10.1145/2949741.2949758     Document Type: Article
Times cited : (172)

References (71)
  • 1
    • 85112863793 scopus 로고    scopus 로고
    • The UCR Time Series Classification/Clustering Homepage. Accessed: May
    • The UCR Time Series Classification/Clustering Homepage. http://www.cs.ucr.edu/eamonn/time_series_data. Accessed: May 2014.
    • (2014)
  • 2
    • 85006228721 scopus 로고
    • Efficient similarity search in sequence databases
    • R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence databases. In FODO, pages 69-84, 1993.
    • (1993) FODO , pp. 69-84
    • Agrawal, R.1    Faloutsos, C.2    Swami, A.N.3
  • 3
    • 0042014578 scopus 로고    scopus 로고
    • Discovering clusters in motion time-series data
    • J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters in motion time-series data. In CVPR, pages 375-381, 2003.
    • (2003) CVPR , pp. 375-381
    • Alon, J.1    Sclaroff, S.2    Kollios, G.3    Pavlovic, V.4
  • 4
    • 12244286336 scopus 로고    scopus 로고
    • Clustering time series from ARMA models with clipped data
    • A. J. Bagnall and G. J. Janacek. Clustering time series from ARMA models with clipped data. In KDD, pages 49-58, 2004.
    • (2004) KDD , pp. 49-58
    • Bagnall, A.J.1    Janacek, G.J.2
  • 7
    • 0000286376 scopus 로고
    • Using dynamic time warping to find patterns in time series
    • D. J. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In AAAI Workshop on KDD, pages 359-370, 1994.
    • (1994) AAAI Workshop on KDD , pp. 359-370
    • Berndt, D.J.1    Clifford, J.2
  • 8
    • 3142777878 scopus 로고    scopus 로고
    • Indexing spatio-temporal trajectories with Chebyshev polynomials
    • Y. Cai and R. Ng. Indexing spatio-temporal trajectories with Chebyshev polynomials. In SIGMOD, pages 599-610, 2004.
    • (2004) SIGMOD , pp. 599-610
    • Cai, Y.1    Ng, R.2
  • 9
    • 85135872226 scopus 로고    scopus 로고
    • On the marriage of Lp-norms and edit distance
    • L. Chen and R. Ng. On the marriage of Lp-norms and edit distance. In VLDB, pages 792-803, 2004.
    • (2004) VLDB , pp. 792-803
    • Chen, L.1    Ng, R.2
  • 10
    • 29844444110 scopus 로고    scopus 로고
    • Robust and fast similarity search for moving object trajectories
    • L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for moving object trajectories. In SIGMOD, pages 491-502, 2005.
    • (2005) SIGMOD , pp. 491-502
    • Chen, L.1    Özsu, M.T.2    Oria, V.3
  • 11
    • 85011026173 scopus 로고    scopus 로고
    • Indexable PLA for efficient similarity search
    • Q. Chen, L. Chen, X. Lian, Y. Liu, and J. X. Yu. Indexable PLA for efficient similarity search. In VLDB, pages 435-446, 2007.
    • (2007) VLDB , pp. 435-446
    • Chen, Q.1    Chen, L.2    Lian, X.3    Liu, Y.4    Yu, J.X.5
  • 12
    • 34548788470 scopus 로고    scopus 로고
    • Spade: On shape-based pattern detection in streaming time series
    • Y. Chen, M. A. Nascimento, B. C. Ooi, and A. K. Tung. Spade: On shape-based pattern detection in streaming time series. In ICDE, pages 786-795, 2007.
    • (2007) ICDE , pp. 786-795
    • Chen, Y.1    Nascimento, M.A.2    Ooi, B.C.3    Tung, A.K.4
  • 13
    • 84968470212 scopus 로고
    • An algorithm for the machine calculation of complex Fourier series
    • J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation, 19(90):297-301, 1965.
    • (1965) Mathematics of Computation , vol.19 , Issue.90 , pp. 297-301
    • Cooley, J.W.1    Tukey, J.W.2
  • 15
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and mining of time series data: Experimental comparison of representations and distance measures. PVLDB, 1(2):1542-1552, 2008.
    • (2008) PVLDB , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 16
    • 0028447023 scopus 로고
    • Fast subsequence matching in time-series databases
    • C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-series databases. In SIGMOD, pages 419-429, 1994.
    • (1994) SIGMOD , pp. 419-429
    • Faloutsos, C.1    Ranganathan, M.2    Manolopoulos, Y.3
  • 17
  • 18
    • 34548722068 scopus 로고    scopus 로고
    • Index-based most similar trajectory search
    • E. Frentzos, K. Gratsias, and Y. Theodoridis. Index-based most similar trajectory search. In ICDE, pages 816-825, 2007.
    • (2007) ICDE , pp. 816-825
    • Frentzos, E.1    Gratsias, K.2    Theodoridis, Y.3
  • 19
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association, 32:675-701, 1937.
    • (1937) Journal of the American Statistical Association , vol.32 , pp. 675-701
    • Friedman, M.1
  • 20
    • 20744449792 scopus 로고    scopus 로고
    • The design and implementation of FFTW3
    • M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE, 93(2):216-231, 2005.
    • (2005) Proceedings of the IEEE , vol.93 , Issue.2 , pp. 216-231
    • Frigo, M.1    Johnson, S.G.2
  • 21
    • 0034593048 scopus 로고    scopus 로고
    • Mining the stock market: Which measure is best?
    • M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Mining the stock market: Which measure is best? In KDD, pages 487-496, 2000.
    • (2000) KDD , pp. 487-496
    • Gavrilov, M.1    Anguelov, D.2    Indyk, P.3    Motwani, R.4
  • 22
    • 84894214415 scopus 로고    scopus 로고
    • An empirical comparison of dissimilarity measures for time series classification
    • R. Giusti and G. E. Batista. An empirical comparison of dissimilarity measures for time series classification. In BRACIS, pages 82-88, 2013.
    • (2013) BRACIS , pp. 82-88
    • Giusti, R.1    Batista, G.E.2
  • 24
    • 84958044742 scopus 로고
    • On similarity queries for time-series data: Constraint specification and implementation
    • D. Q. Goldin and P. C. Kanellakis. On similarity queries for time-series data: Constraint specification and implementation. In CP, pages 137-153, 1995.
    • (1995) CP , pp. 137-153
    • Goldin, D.Q.1    Kanellakis, P.C.2
  • 29
    • 0036645475 scopus 로고    scopus 로고
    • Mining of moving objects from time-series images and its application to satellite weather imagery
    • R. Honda, S. Wang, T. Kikuchi, and O. Konishi. Mining of moving objects from time-series images and its application to satellite weather imagery. Journal of Intelligent Information Systems, 19(1):79-93, 2002.
    • (2002) Journal of Intelligent Information Systems , vol.19 , Issue.1 , pp. 79-93
    • Honda, R.1    Wang, S.2    Kikuchi, T.3    Konishi, O.4
  • 30
    • 84960076541 scopus 로고    scopus 로고
    • Time series classification under more realistic assumptions
    • B. Hu, Y. Chen, and E. Keogh. Time series classification under more realistic assumptions. In SDM, pages 578-586, 2013.
    • (2013) SDM , pp. 578-586
    • Hu, B.1    Chen, Y.2    Keogh, E.3
  • 31
    • 78149299418 scopus 로고    scopus 로고
    • Distance measures for effective clustering of ARIMA time-series
    • K. Kalpakis, D. Gada, and V. Puttagunta. Distance measures for effective clustering of ARIMA time-series. In ICDM, pages 273-280, 2001.
    • (2001) ICDM , pp. 273-280
    • Kalpakis, K.1    Gada, D.2    Puttagunta, V.3
  • 34
    • 84988316460 scopus 로고    scopus 로고
    • A decade of progress in indexing and mining large time series databases
    • E. Keogh. A decade of progress in indexing and mining large time series databases. In VLDB, pages 1268-1268, 2006.
    • (2006) VLDB , pp. 1268-1268
    • Keogh, E.1
  • 35
    • 0034832364 scopus 로고    scopus 로고
    • Locally adaptive dimensionality reduction for indexing large time series databases
    • E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Locally adaptive dimensionality reduction for indexing large time series databases. In SIGMOD, pages 151-162, 2001.
    • (2001) SIGMOD , pp. 151-162
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 36
    • 21844471761 scopus 로고    scopus 로고
    • Clustering of time-series subsequences is meaningless: Implications for previous and future research
    • E. Keogh and J. Lin. Clustering of time-series subsequences is meaningless: Implications for previous and future research. Knowledge and Information Systems, 8(2):154-177, 2005.
    • (2005) Knowledge and Information Systems , vol.8 , Issue.2 , pp. 154-177
    • Keogh, E.1    Lin, J.2
  • 38
    • 0032688141 scopus 로고    scopus 로고
    • Efficient time series matching by wavelets
    • C. Kin-pong and F. Ada. Efficient time series matching by wavelets. In ICDE, pages 126-133, 1999.
    • (1999) ICDE , pp. 126-133
    • Kin-Pong, C.1    Ada, F.2
  • 39
    • 0031166708 scopus 로고    scopus 로고
    • Efficiently supporting ad hoc queries in large datasets of time sequences
    • F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries in large datasets of time sequences. In SIGMOD, pages 289-300, 1997.
    • (1997) SIGMOD , pp. 289-300
    • Korn, F.1    Jagadish, H.V.2    Faloutsos, C.3
  • 40
    • 0242686243 scopus 로고    scopus 로고
    • MALM: A framework for mining sequence database at multiple abstraction levels
    • C.-S. Li, P. S. Yu, and V. Castelli. MALM: A framework for mining sequence database at multiple abstraction levels. In CIKM, pages 267-272, 1998.
    • (1998) CIKM , pp. 267-272
    • Li, C.-S.1    Yu, P.S.2    Castelli, V.3
  • 41
    • 34548749167 scopus 로고    scopus 로고
    • Similarity match over high speed time-series streams
    • X. Lian, L. Chen, J. X. Yu, G. Wang, and G. Yu. Similarity match over high speed time-series streams. In ICDE, pages 1086-1095, 2007.
    • (2007) ICDE , pp. 1086-1095
    • Lian, X.1    Chen, L.2    Yu, J.X.3    Wang, G.4    Yu, G.5
  • 42
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. In BSMSP, pages 281-297, 1967.
    • (1967) BSMSP , pp. 281-297
    • MacQueen, J.1
  • 45
    • 28444432990 scopus 로고    scopus 로고
    • A multiresolution symbolic representation of time series
    • V. Megalooikonomou, Q. Wang, G. Li, and C. Faloutsos. A multiresolution symbolic representation of time series. In ICDE, pages 668-679, 2005.
    • (2005) ICDE , pp. 668-679
    • Megalooikonomou, V.1    Wang, Q.2    Li, G.3    Faloutsos, C.4
  • 46
    • 35449007318 scopus 로고    scopus 로고
    • An efficient and accurate method for evaluating time series similarity
    • M. D. Morse and J. M. Patel. An efficient and accurate method for evaluating time series similarity. In SIGMOD, pages 569-580, 2007.
    • (2007) SIGMOD , pp. 569-580
    • Morse, M.D.1    Patel, J.M.2
  • 47
    • 80052669927 scopus 로고    scopus 로고
    • Logical-shapelets: An expressive primitive for time series classification
    • A. Mueen, E. Keogh, and N. Young. Logical-shapelets: An expressive primitive for time series classification. In KDD, pages 1154-1162, 2011.
    • (2011) KDD , pp. 1154-1162
    • Mueen, A.1    Keogh, E.2    Young, N.3
  • 49
    • 84899013108 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm. In NIPS, pages 849-856, 2002.
    • (2002) NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.I.2    Weiss, Y.3
  • 50
  • 51
    • 0002317477 scopus 로고    scopus 로고
    • Identifying distinctive subsequences in multivariate time series by clustering
    • T. Oates. Identifying distinctive subsequences in multivariate time series by clustering. In KDD, pages 322-326, 1999.
    • (1999) KDD , pp. 322-326
    • Oates, T.1
  • 52
    • 80052349421 scopus 로고    scopus 로고
    • Embedding-based subsequence matching in time-series databases
    • P. Papapetrou, V. Athitsos, M. Potamias, G. Kollios, and D. Gunopulos. Embedding-based subsequence matching in time-series databases. TODS, 36(3):17, 2011.
    • (2011) TODS , vol.36 , Issue.3 , pp. 17
    • Papapetrou, P.1    Athitsos, V.2    Potamias, M.3    Kollios, G.4    Gunopulos, D.5
  • 53
    • 84957603873 scopus 로고    scopus 로고
    • K-Shape: Efficient and accurate clustering of time series
    • J. Paparrizos and L. Gravano. k-Shape: Efficient and accurate clustering of time series. In SIGMOD, pages 1855-1870, 2015.
    • (2015) SIGMOD , pp. 1855-1870
    • Paparrizos, J.1    Gravano, L.2
  • 54
    • 78649324794 scopus 로고    scopus 로고
    • A global averaging method for dynamic time warping, with applications to clustering
    • F. Petitjean, A. Ketterlin, and P. Gançarski. A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognition, 44(3):678-693, 2011.
    • (2011) Pattern Recognition , vol.44 , Issue.3 , pp. 678-693
    • Petitjean, F.1    Ketterlin, A.2    Gançarski, P.3
  • 56
    • 84857163510 scopus 로고    scopus 로고
    • Time series epenthesis: Clustering time series streams requires ignoring some data
    • T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans. Time series epenthesis: Clustering time series streams requires ignoring some data. In ICDM, pages 547-556, 2011.
    • (2011) ICDM , pp. 547-556
    • Rakthanmanon, T.1    Keogh, E.J.2    Lonardi, S.3    Evans, S.4
  • 57
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66(336):846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 58
    • 2942525700 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints
    • C. A. Ratanamahatana and E. Keogh. Making time-series classification more accurate using learned constraints. In SDM, pages 11-22, 2004.
    • (2004) SDM , pp. 11-22
    • Ratanamahatana, C.A.1    Keogh, E.2
  • 59
    • 84858020958 scopus 로고    scopus 로고
    • Correlating financial time series with micro-blogging activity
    • E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and A. Jaimes. Correlating financial time series with micro-blogging activity. In WSDM, pages 513-522, 2012.
    • (2012) WSDM , pp. 513-522
    • Ruiz, E.J.1    Hristidis, V.2    Castillo, C.3    Gionis, A.4    Jaimes, A.5
  • 61
    • 15544379982 scopus 로고    scopus 로고
    • Fast and exact warping of time series using adaptive segmental approximations
    • Y. Shou, N. Mamoulis, and D. Cheung. Fast and exact warping of time series using adaptive segmental approximations. Machine Learning, 58(2-3):231-267, 2005.
    • (2005) Machine Learning , vol.58 , Issue.2-3 , pp. 231-267
    • Shou, Y.1    Mamoulis, N.2    Cheung, D.3
  • 62
    • 23044534321 scopus 로고    scopus 로고
    • Extraction of primitive motion and discovery of association rules from human motion data
    • K. Uehara and M. Shimada. Extraction of primitive motion and discovery of association rules from human motion data. In Progress in Discovery Science, pages 338-348. 2002.
    • (2002) Progress in Discovery Science , pp. 338-348
    • Uehara, K.1    Shimada, M.2
  • 64
    • 0036211177 scopus 로고    scopus 로고
    • Discovering similar multidimensional trajectories
    • M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajectories. In ICDE, pages 673-684, 2002.
    • (2002) ICDE , pp. 673-684
    • Vlachos, M.1    Kollios, G.2    Gunopulos, D.3
  • 65
    • 84894473104 scopus 로고    scopus 로고
    • Durable queries over historical time series
    • H. Wang, Y. Cai, Y. Yang, S. Zhang, and N. Mamoulis. Durable queries over historical time series. TKDE, 26(3):595-607, 2014.
    • (2014) TKDE , vol.26 , Issue.3 , pp. 595-607
    • Wang, H.1    Cai, Y.2    Yang, Y.3    Zhang, S.4    Mamoulis, N.5
  • 67
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of time series data-A survey
    • T. Warren Liao. Clustering of time series data-a survey. Pattern Recognition, 38(11):1857-1874, 2005.
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 1857-1874
    • Warren Liao, T.1
  • 68
    • 2642545237 scopus 로고    scopus 로고
    • Mixtures of ARMA models for model-based time series clustering
    • Y. Xiong and D.-Y. Yeung. Mixtures of ARMA models for model-based time series clustering. In ICDM, pages 717-720, 2002.
    • (2002) ICDM , pp. 717-720
    • Xiong, Y.1    Yeung, D.-Y.2
  • 69
    • 79952376390 scopus 로고    scopus 로고
    • Patterns of temporal variation in online media
    • J. Yang and J. Leskovec. Patterns of temporal variation in online media. In WSDM, pages 177-186, 2011.
    • (2011) WSDM , pp. 177-186
    • Yang, J.1    Leskovec, J.2
  • 70
    • 70350660908 scopus 로고    scopus 로고
    • Time series shapelets: A new primitive for data mining
    • L. Ye and E. Keogh. Time series shapelets: A new primitive for data mining. In KDD, pages 947-956, 2009.
    • (2009) KDD , pp. 947-956
    • Ye, L.1    Keogh, E.2
  • 71
    • 84874084961 scopus 로고    scopus 로고
    • Clustering time series using unsupervised-shapelets
    • J. Zakaria, A. Mueen, and E. Keogh. Clustering time series using unsupervised-shapelets. In ICDM, pages 785-794, 2012.
    • (2012) ICDM , pp. 785-794
    • Zakaria, J.1    Mueen, A.2    Keogh, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.