메뉴 건너뛰기




Volumn 62, Issue 1, 2014, Pages 1-43

TSclust: An R package for time series clustering

Author keywords

Clustering; Dissimilarity measure; Time series data; Validation indices

Indexed keywords


EID: 84920439414     PISSN: 15487660     EISSN: None     Source Type: Journal    
DOI: 10.18637/jss.v062.i01     Document Type: Article
Times cited : (364)

References (75)
  • 2
    • 35549004167 scopus 로고    scopus 로고
    • Integration of Stochastic Models by Minimizing α-Divergence
    • Amari S (2007). “Integration of Stochastic Models by Minimizing α-Divergence." Neural Computation, 19(10), 2780-2796.
    • (2007) Neural Computation , vol.19 , Issue.10 , pp. 2780-2796
    • Amari, S.1
  • 5
    • 0000286376 scopus 로고
    • Using Dynamic Time Warping to Find Patterns in Time Series
    • Berndt DJ, Clifford J (1994). “Using Dynamic Time Warping to Find Patterns in Time Series." In KDD Workshop, pp. 359-370.
    • (1994) In KDD Workshop , pp. 359-370
    • Berndt, D.J.1    Clifford, J.2
  • 9
    • 46749142532 scopus 로고    scopus 로고
    • ClValid: An R Package for Cluster Validation
    • Brock G, Pihur V, Datta S, Datta S (2008). “ClValid: An R Package for Cluster Validation." Journal of Statistical Software, 25(4), 1-22.URL http://www.jstatsoft.org/v25/i04/.
    • (2008) Journal of Statistical Software , vol.25 , Issue.4 , pp. 1-22
    • Brock, G.1    Pihur, V.2    Datta, S.3    Datta, S.4
  • 10
  • 13
    • 0038294452 scopus 로고    scopus 로고
    • Haar Wavelets for Efficient Similarity Search of Time- Series: With and without Time Warping
    • Chan FK, Fu AW, Yu C (2003). “Haar Wavelets for Efficient Similarity Search of Time- Series: With and without Time Warping." IEEE Transactions on Knowledge and Data Engineering, 15(3), 686-705.
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.3 , pp. 686-705
    • Chan, F.K.1    Fu, A.W.2    Yu, C.3
  • 16
    • 84902780300 scopus 로고    scopus 로고
    • Mining Time Series Data: A Selective Survey
    • F Palumbo, CN Lauro, MJ Greenacre (eds.), Data Analysis, and Knowledge Organization, Springer-Verlag
    • Corduas M (2010). “Mining Time Series Data: A Selective Survey." In F Palumbo, CN Lauro, MJ Greenacre (eds.), Data Analysis and Classification, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 355-362. Springer-Verlag.
    • (2010) Data Analysis and Classification, Studies in Classification , pp. 355-362
    • Corduas, M.1
  • 18
    • 84867136666 scopus 로고    scopus 로고
    • Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures
    • Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008). “Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures." Proceedings of the VLDB Endowment, 1(2), 1542-1552.
    • (2008) Proceedings of the VLDB Endowment , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 20
    • 70449527565 scopus 로고    scopus 로고
    • Autocorrelation-Based Fuzzy Clustering of Time Series
    • D'Urso P, Maharaj EA (2009). “Autocorrelation-Based Fuzzy Clustering of Time Series." Fuzzy Sets and Systems, 160(24), 3565-3589.
    • (2009) Fuzzy Sets and Systems , vol.160 , Issue.24 , pp. 3565-3589
    • D'urso, P.1    Maharaj, E.A.2
  • 23
    • 0041021846 scopus 로고    scopus 로고
    • Automatic Local Smoothing for Spectral Density Estimation
    • Fan J, Kreutzberger E (1998). “Automatic Local Smoothing for Spectral Density Estimation." Scandinavian Journal of Statistics, 25(2), 359-369.
    • (1998) Scandinavian Journal of Statistics , vol.25 , Issue.2 , pp. 359-369
    • Fan, J.1    Kreutzberger, E.2
  • 24
    • 24644498139 scopus 로고    scopus 로고
    • Generalised Likelihood Ratio Tests for Spectral Density
    • Fan J, Zhang W (2004).”Generalised Likelihood Ratio Tests for Spectral Density."Biometrika, 91(1), 195-209.
    • (2004) Biometrika , vol.91 , Issue.1 , pp. 195-209
    • Fan, J.1    Zhang, W.2
  • 29
    • 84920387870 scopus 로고    scopus 로고
    • longitudinalData: Longitudinal Data. R package version 2.2, URL
    • Genolini C (2014). longitudinalData: Longitudinal Data. R package version 2.2, URL http://CRAN.R-project.org/package=longitudinalData.
    • (2014)
    • Genolini, C.1
  • 30
    • 70349448250 scopus 로고    scopus 로고
    • Computing and Visualizing Dynamic TimeWarping Alignments in R: The dtw Package
    • Giorgino T (2009).”Computing and Visualizing Dynamic TimeWarping Alignments in R: The dtw Package." Journal of Statistical Software, 31(7), 1-24.URL http://www.jstatsoft.org/v31/i07/.
    • (2009) Journal of Statistical Software , vol.31 , Issue.7 , pp. 1-24
    • Giorgino, T.1
  • 32
    • 84920474295 scopus 로고    scopus 로고
    • fpc: Flexible Procedures for Clustering. R package version 2.1-9, URL
    • Hennig C (2014). fpc: Flexible Procedures for Clustering. R package version 2.1-9, URL http://CRAN.R-project.org/package=fpc.
    • (2014)
    • Hennig, C.1
  • 37
    • 0042711018 scopus 로고    scopus 로고
    • On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
    • Keogh E, Kasetty S (2003). “On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration." Data Mining and Knowledge Discovery, 7(4), 349-371.
    • (2003) Data Mining and Knowledge Discovery , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 42
    • 0035102453 scopus 로고    scopus 로고
    • An Information-Based Sequence Distance and Its Application to Whole Mitochondrial Genome Phylogeny
    • Li M, Badger JH, Chen X, Kwong S, Kearney P, Zhang H (2001). “An Information-Based Sequence Distance and Its Application to Whole Mitochondrial Genome Phylogeny." Bioinformatics, 17(2), 149-154.
    • (2001) Bioinformatics , vol.17 , Issue.2 , pp. 149-154
    • Li, M.1    Badger, J.H.2    Chen, X.3    Kwong, S.4    Kearney, P.5    Zhang, H.6
  • 44
    • 0003680739 scopus 로고    scopus 로고
    • An Introduction to Kolmogorov Complexity and Its Applications
    • Springer-Verlag
    • Li M, Vitányi P (2007). An Introduction to Kolmogorov Complexity and Its Applications. Text and Monographs in Computer Science. Springer-Verlag.
    • (2007) Text and Monographs in Computer Science
    • Li, M.1    Vitányi, P.2
  • 45
    • 24044470614 scopus 로고    scopus 로고
    • Clustering of Time Series Data: A Survey
    • Liao TW (2005). “Clustering of Time Series Data: A Survey." Pattern Recognition, 38(11), 1857-1874.
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 1857-1874
    • Liao, T.W.1
  • 47
    • 34548093287 scopus 로고    scopus 로고
    • Experiencing SAX: A Novel Symbolic Representation of Time Series
    • Lin J, Keogh E, Wei L, Lonardi S (2007). “Experiencing SAX: A Novel Symbolic Representation of Time Series." Data Mining and Knowledge Discovery, 15(2), 107-144.
    • (2007) Data Mining and Knowledge Discovery , vol.15 , Issue.2 , pp. 107-144
    • Lin, J.1    Keogh, E.2    Wei, L.3    Lonardi, S.4
  • 48
    • 69049104535 scopus 로고    scopus 로고
    • Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation
    • SSDBM 2009, Springer-Verlag, Berlin. ISBN 978-3-642-02278-4
    • Lin J, Li Y (2009). “Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation." In Proceedings of the 21st International Conference on Scientific and Statistical Database Management, SSDBM 2009, pp. 461-477.Springer-Verlag, Berlin. ISBN 978-3-642-02278-4.
    • (2009) Proceedings of the 21st International Conference on Scientific and Statistical Database Management , pp. 461-477
    • Lin, J.1    Li, Y.2
  • 49
    • 84920405633 scopus 로고    scopus 로고
    • cluster: Cluster Analysis Basics and Extensions. R package version 1.15.3
    • Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014). cluster: Cluster Analysis Basics and Extensions. R package version 1.15.3, URL http://CRAN.R-project.org/package=cluster.
    • (2014)
    • Maechler, M.1    Rousseeuw, P.2    Struyf, A.3    Hubert, M.4    Hornik, K.5
  • 51
    • 0034340199 scopus 로고    scopus 로고
    • Clusters of Time Series
    • Maharaj EA (2000). “Clusters of Time Series." Journal of Classification, 17(2), 297-314.
    • (2000) Journal of Classification , vol.17 , Issue.2 , pp. 297-314
    • Maharaj, E.A.1
  • 52
    • 0037189758 scopus 로고    scopus 로고
    • Comparison of Non-stationary Time Series in the Frequency Domain
    • Maharaj EA (2002). “Comparison of Non-stationary Time Series in the Frequency Domain." Computational Statistics & Data Analysis, 40(1), 131-141.
    • (2002) Computational Statistics & Data Analysis , vol.40 , Issue.1 , pp. 131-141
    • Maharaj, E.A.1
  • 53
    • 84920423552 scopus 로고    scopus 로고
    • clv: Cluster Validation Techniques. R package version 0.3-2.1
    • Nieweglowski L (2013). clv: Cluster Validation Techniques. R package version 0.3-2.1, URL http://CRAN.R-project.org/package=clv.
    • (2013)
    • Nieweglowski, L.1
  • 57
    • 84871904170 scopus 로고    scopus 로고
    • Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study
    • Pértega S, Vilar JA (2010). “Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study." Journal of Classification, 27(3), 333-362.
    • (2010) Journal of Classification , vol.27 , Issue.3 , pp. 333-362
    • Pértega, S.1    Vilar, J.A.2
  • 58
    • 84981470151 scopus 로고
    • A Distance Measure for Classifying ARIMA Models
    • Piccolo D (1990). “A Distance Measure for Classifying ARIMA Models." Journal of Time Series Analysis, 11(2), 153-164.
    • (1990) Journal of Time Series Analysis , vol.11 , Issue.2 , pp. 153-164
    • Piccolo, D.1
  • 62
    • 84920497390 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • Vienna, Austria. URL
    • R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
    • (2014) R Foundation for Statistical Computing
    • Team, R.C.1
  • 65
    • 65749098156 scopus 로고    scopus 로고
    • Compression and Machine Learning: A New Perspective on Feature Space Vectors
    • IEEE Computer Society, Washington
    • Sculley D, Brodley CE (2006). “Compression and Machine Learning: A New Perspective on Feature Space Vectors." In Proceedings of the Data Compression Conference, DCC'06, pp. 332-332. IEEE Computer Society, Washington.
    • (2006) Proceedings of the Data Compression Conference, DCC'06 , pp. 332
    • Sculley, D.1    Brodley, C.E.2
  • 67
  • 70
    • 0008155417 scopus 로고    scopus 로고
    • On Tests for Self-Exciting Threshold Autoregressive-Type Non- Linearity in Partially Observed Time Series
    • Tong H, Yeung I (2000). “On Tests for Self-Exciting Threshold Autoregressive-Type Non- Linearity in Partially Observed Time Series." Journal of the Royal Statistical Society C, 40(1), 43-62.
    • (2000) Journal of the Royal Statistical Society C , vol.40 , Issue.1 , pp. 43-62
    • Tong, H.1    Yeung, I.2
  • 71
    • 77955275664 scopus 로고    scopus 로고
    • Non-Linear Time Series Clustering Based on Non- Parametric Forecast Densities
    • Vilar JA, Alonso AM, Vilar JM (2010). “Non-Linear Time Series Clustering Based on Non- Parametric Forecast Densities." Computational Statistics & Data Analysis, 54(11), 2850-2865.
    • (2010) Computational Statistics & Data Analysis , vol.54 , Issue.11 , pp. 2850-2865
    • Vilar, J.A.1    Alonso, A.M.2    Vilar, J.M.3
  • 72
    • 2542542746 scopus 로고    scopus 로고
    • Discriminant and Cluster Analysis for Gaussian Stationary Processes: Local Linear Fitting Approach
    • Vilar JA, Pértega S (2004). “Discriminant and Cluster Analysis for Gaussian Stationary Processes: Local Linear Fitting Approach." Journal of Nonparametric Statistics, 16(3-4), 443-462.
    • (2004) Journal of Nonparametric Statistics , vol.16 , Issue.3-4 , pp. 443-462
    • Vilar, J.A.1    Pértega, S.2
  • 75
    • 33845236924 scopus 로고    scopus 로고
    • Unsupervised Feature Extraction for Time Series Clustering Using Orthogonal Wavelet Transform
    • Zhang H, Ho TB, Zhang Y, Lin MS (2006). “Unsupervised Feature Extraction for Time Series Clustering Using Orthogonal Wavelet Transform." Informatica, 30(3), 305-319.
    • (2006) Informatica , vol.30 , Issue.3 , pp. 305-319
    • Zhang, H.1    Ho, T.B.2    Zhang, Y.3    Lin, M.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.