-
1
-
-
33750321036
-
Time Series Clustering Based on Forecast Densities
-
Alonso AM, Berrendero JR, Hernandez A, Justel A (2006). “Time Series Clustering Based on Forecast Densities." Computational Statistics & Data Analysis, 51, 762-776.
-
(2006)
Computational Statistics & Data Analysis
, vol.51
, pp. 762-776
-
-
Alonso, A.M.1
Berrendero, J.R.2
Hernandez, A.3
Justel, A.4
-
2
-
-
35549004167
-
Integration of Stochastic Models by Minimizing α-Divergence
-
Amari S (2007). “Integration of Stochastic Models by Minimizing α-Divergence." Neural Computation, 19(10), 2780-2796.
-
(2007)
Neural Computation
, vol.19
, Issue.10
, pp. 2780-2796
-
-
Amari, S.1
-
4
-
-
84866041459
-
“A Complexity-Invariant Distance Measure for Time Series."
-
SIAM, Mesa
-
Batista GEAPA, Wang X, Keogh EJ (2011). “A Complexity-Invariant Distance Measure for Time Series." In Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM'11, pp. 699-710.SIAM, Mesa.
-
(2011)
Proceedings of the Eleventh SIAM International Conference on Data Mining, SDM'11
, pp. 699-710
-
-
Batista, G.E.A.P.A.1
Wang, X.2
Keogh, E.J.3
-
5
-
-
0000286376
-
Using Dynamic Time Warping to Find Patterns in Time Series
-
Berndt DJ, Clifford J (1994). “Using Dynamic Time Warping to Find Patterns in Time Series." In KDD Workshop, pp. 359-370.
-
(1994)
In KDD Workshop
, pp. 359-370
-
-
Berndt, D.J.1
Clifford, J.2
-
6
-
-
0001982675
-
Clustering of Time Series
-
In MM Barritt, D Wishart (eds.), Physica- Verlag, Heidelberg
-
Bohte Z, Cepar D, Košmelj K (1980). “Clustering of Time Series." In MM Barritt, D Wishart (eds.), COMPTSTAT 80, Proceedings in Computational Statistics, pp. 587-593.Physica- Verlag, Heidelberg.
-
(1980)
COMPTSTAT 80, Proceedings in Computational Statistics
, pp. 587-593
-
-
Bohte, Z.1
Cepar, D.2
Košmelj, K.3
-
9
-
-
46749142532
-
ClValid: An R Package for Cluster Validation
-
Brock G, Pihur V, Datta S, Datta S (2008). “ClValid: An R Package for Cluster Validation." Journal of Statistical Software, 25(4), 1-22.URL http://www.jstatsoft.org/v25/i04/.
-
(2008)
Journal of Statistical Software
, vol.25
, Issue.4
, pp. 1-22
-
-
Brock, G.1
Pihur, V.2
Datta, S.3
Datta, S.4
-
10
-
-
33646082004
-
A Periodogram-Based Metric for Time Series Classification
-
Caiado J, Crato N, Peña D (2006). “A Periodogram-Based Metric for Time Series Classification." Computational Statistics & Data Analysis, 50(10), 2668-2684.
-
(2006)
Computational Statistics & Data Analysis
, vol.50
, Issue.10
, pp. 2668-2684
-
-
Caiado, J.1
Crato, N.2
Peña, D.3
-
13
-
-
0038294452
-
Haar Wavelets for Efficient Similarity Search of Time- Series: With and without Time Warping
-
Chan FK, Fu AW, Yu C (2003). “Haar Wavelets for Efficient Similarity Search of Time- Series: With and without Time Warping." IEEE Transactions on Knowledge and Data Engineering, 15(3), 686-705.
-
(2003)
IEEE Transactions on Knowledge and Data Engineering
, vol.15
, Issue.3
, pp. 686-705
-
-
Chan, F.K.1
Fu, A.W.2
Yu, C.3
-
16
-
-
84902780300
-
Mining Time Series Data: A Selective Survey
-
F Palumbo, CN Lauro, MJ Greenacre (eds.), Data Analysis, and Knowledge Organization, Springer-Verlag
-
Corduas M (2010). “Mining Time Series Data: A Selective Survey." In F Palumbo, CN Lauro, MJ Greenacre (eds.), Data Analysis and Classification, Studies in Classification, Data Analysis, and Knowledge Organization, pp. 355-362. Springer-Verlag.
-
(2010)
Data Analysis and Classification, Studies in Classification
, pp. 355-362
-
-
Corduas, M.1
-
17
-
-
0037330341
-
A Review of Symbolic Analysis of Experimental Data
-
Daw CS, Finney CEA, Tracy ER (2003). “A Review of Symbolic Analysis of Experimental Data." Review of Scienti_c Instruments, 74(2), 915-930.
-
(2003)
Review of Scienti_c Instruments
, vol.74
, Issue.2
, pp. 915-930
-
-
Daw, C.S.1
Finney, C.E.A.2
Tracy, E.R.3
-
18
-
-
84867136666
-
Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures
-
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008). “Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures." Proceedings of the VLDB Endowment, 1(2), 1542-1552.
-
(2008)
Proceedings of the VLDB Endowment
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
20
-
-
70449527565
-
Autocorrelation-Based Fuzzy Clustering of Time Series
-
D'Urso P, Maharaj EA (2009). “Autocorrelation-Based Fuzzy Clustering of Time Series." Fuzzy Sets and Systems, 160(24), 3565-3589.
-
(2009)
Fuzzy Sets and Systems
, vol.160
, Issue.24
, pp. 3565-3589
-
-
D'urso, P.1
Maharaj, E.A.2
-
23
-
-
0041021846
-
Automatic Local Smoothing for Spectral Density Estimation
-
Fan J, Kreutzberger E (1998). “Automatic Local Smoothing for Spectral Density Estimation." Scandinavian Journal of Statistics, 25(2), 359-369.
-
(1998)
Scandinavian Journal of Statistics
, vol.25
, Issue.2
, pp. 359-369
-
-
Fan, J.1
Kreutzberger, E.2
-
24
-
-
24644498139
-
Generalised Likelihood Ratio Tests for Spectral Density
-
Fan J, Zhang W (2004).”Generalised Likelihood Ratio Tests for Spectral Density."Biometrika, 91(1), 195-209.
-
(2004)
Biometrika
, vol.91
, Issue.1
, pp. 195-209
-
-
Fan, J.1
Zhang, W.2
-
28
-
-
0034593048
-
Mining the Stock Market: Which Measure is Best?"
-
ACM
-
Gavrilov M, Anguelov D, Indyk P, Motwani R (2000). “Mining the Stock Market: Which Measure is Best?" In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'00, pp. 487-496.ACM.
-
(2000)
In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'00
, pp. 487-496
-
-
Gavrilov, M.1
Anguelov, D.2
Indyk, P.3
Motwani, R.4
-
29
-
-
84920387870
-
-
longitudinalData: Longitudinal Data. R package version 2.2, URL
-
Genolini C (2014). longitudinalData: Longitudinal Data. R package version 2.2, URL http://CRAN.R-project.org/package=longitudinalData.
-
(2014)
-
-
Genolini, C.1
-
30
-
-
70349448250
-
Computing and Visualizing Dynamic TimeWarping Alignments in R: The dtw Package
-
Giorgino T (2009).”Computing and Visualizing Dynamic TimeWarping Alignments in R: The dtw Package." Journal of Statistical Software, 31(7), 1-24.URL http://www.jstatsoft.org/v31/i07/.
-
(2009)
Journal of Statistical Software
, vol.31
, Issue.7
, pp. 1-24
-
-
Giorgino, T.1
-
31
-
-
0031856564
-
A New Correlation- Based Fuzzy Logic Clustering Algorithm for fMRI
-
Golay X, Kollias S, Stoll G, Meier D, Valavanis A, Boesiger P (2005). “A New Correlation- Based Fuzzy Logic Clustering Algorithm for fMRI." Magnetic Resonance in Medicine, 40(2), 249-260.
-
(2005)
Magnetic Resonance in Medicine
, vol.40
, Issue.2
, pp. 249-260
-
-
Golay, X.1
Kollias, S.2
Stoll, G.3
Meier, D.4
Valavanis, A.5
Boesiger, P.6
-
32
-
-
84920474295
-
-
fpc: Flexible Procedures for Clustering. R package version 2.1-9, URL
-
Hennig C (2014). fpc: Flexible Procedures for Clustering. R package version 2.1-9, URL http://CRAN.R-project.org/package=fpc.
-
(2014)
-
-
Hennig, C.1
-
33
-
-
0032343819
-
Discrimination and Clustering for Multivariate Time Series
-
Kakizawa Y, Shumway RH, Taniguchi M (1998). “Discrimination and Clustering for Multivariate Time Series." Journal of the American Statistical Association, 93(441), 328-340.
-
(1998)
Journal of the American Statistical Association
, vol.93
, Issue.441
, pp. 328-340
-
-
Kakizawa, Y.1
Shumway, R.H.2
Taniguchi, M.3
-
34
-
-
78149299418
-
Distance Measures for Effective Clustering of ARIMA Time-Series
-
In N Cercone, TY Lin, X Wu (eds.)
-
Kalpakis K, Gada D, Puttagunta V (2001). “Distance Measures for Effective Clustering of ARIMA Time-Series." In N Cercone, TY Lin, X Wu (eds.), Proceedings 2001 IEEE International Conference on Data Mining, pp. 273-280.
-
(2001)
Proceedings 2001 IEEE International Conference on Data Mining
, pp. 273-280
-
-
Kalpakis, K.1
Gada, D.2
Puttagunta, V.3
-
36
-
-
85040241330
-
Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases
-
Keogh E, Chakrabarti K, Pazzani M, Mehrotra S (2000). “Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases." Journal of Knowledge and Information Systems, 3(3), 263-286.
-
(2000)
Journal of Knowledge and Information Systems
, vol.3
, Issue.3
, pp. 263-286
-
-
Keogh, E.1
Chakrabarti, K.2
Pazzani, M.3
Mehrotra, S.4
-
37
-
-
0042711018
-
On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration
-
Keogh E, Kasetty S (2003). “On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration." Data Mining and Knowledge Discovery, 7(4), 349-371.
-
(2003)
Data Mining and Knowledge Discovery
, vol.7
, Issue.4
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
38
-
-
10644281769
-
Towards Parameter-Free Data Mining
-
ACM, New York
-
Keogh E, Lonardi S, Ratanamahatana CA (2004). “Towards Parameter-Free Data Mining." In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'04, pp. 206-215.ACM, New York.
-
(2004)
In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD'04
, pp. 206-215
-
-
Keogh, E.1
Lonardi, S.2
Ratanamahatana, C.A.3
-
39
-
-
33847394102
-
Compression- Based Data Mining of Sequential Data
-
Keogh E, Lonardi S, Ratanamahatana CA, Wei L, Lee SH, Handley J (2007). “Compression- Based Data Mining of Sequential Data." Data Mining and Knowledge Discovery, 14(1), 99-129.
-
(2007)
Data Mining and Knowledge Discovery
, vol.14
, Issue.1
, pp. 99-129
-
-
Keogh, E.1
Lonardi, S.2
Ratanamahatana, C.A.3
Wei, L.4
Lee, S.H.5
Handley, J.6
-
40
-
-
38049149222
-
-
Keogh E, Zhu Q, Hu B, Hao Y, Xi X, Wei L, Ratanamahatana CA (2011). “The UCR Time Series Classification/Clustering Homepage." URL http://www.cs.ucr.edu/∼eamonn/time_series_data/.
-
(2011)
The UCR Time Series Classification/Clustering Homepage
-
-
Keogh, E.1
Zhu, Q.2
Hu, B.3
Hao, Y.4
Xi, X.5
Wei, L.6
Ratanamahatana, C.A.7
-
41
-
-
84884917864
-
Classification of Time Series with Applications to the Leading Indicator Selection
-
Kobe, Japan, March 27-30, Springer-Verlag
-
Kovacić ZJ (1998). “Classification of Time Series with Applications to the Leading Indicator Selection." In Data Science, Classification, and Related Methods - Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96), Kobe, Japan, March 27-30, 1996, pp. 204-207.Springer-Verlag.
-
(1998)
Data Science, Classification, and Related Methods - Proceedings of the Fifth Conference of the International Federation of Classification Societies (IFCS-96)
, pp. 204-207
-
-
Kovacić, Z.J.1
-
42
-
-
0035102453
-
An Information-Based Sequence Distance and Its Application to Whole Mitochondrial Genome Phylogeny
-
Li M, Badger JH, Chen X, Kwong S, Kearney P, Zhang H (2001). “An Information-Based Sequence Distance and Its Application to Whole Mitochondrial Genome Phylogeny." Bioinformatics, 17(2), 149-154.
-
(2001)
Bioinformatics
, vol.17
, Issue.2
, pp. 149-154
-
-
Li, M.1
Badger, J.H.2
Chen, X.3
Kwong, S.4
Kearney, P.5
Zhang, H.6
-
43
-
-
10644294829
-
The Similarity Metric
-
Li M, Chen X, Li X, Ma B, Vitányi PMB (2004). “The Similarity Metric." IEEE Transactions on Information Theory, 50(12), 3250-3264.
-
(2004)
IEEE Transactions on Information Theory
, vol.50
, Issue.12
, pp. 3250-3264
-
-
Li, M.1
Chen, X.2
Li, X.3
Ma, B.4
Vitányi, P.M.B.5
-
44
-
-
0003680739
-
An Introduction to Kolmogorov Complexity and Its Applications
-
Springer-Verlag
-
Li M, Vitányi P (2007). An Introduction to Kolmogorov Complexity and Its Applications. Text and Monographs in Computer Science. Springer-Verlag.
-
(2007)
Text and Monographs in Computer Science
-
-
Li, M.1
Vitányi, P.2
-
45
-
-
24044470614
-
Clustering of Time Series Data: A Survey
-
Liao TW (2005). “Clustering of Time Series Data: A Survey." Pattern Recognition, 38(11), 1857-1874.
-
(2005)
Pattern Recognition
, vol.38
, Issue.11
, pp. 1857-1874
-
-
Liao, T.W.1
-
46
-
-
33745781710
-
A Symbolic Representation of Time Series, with Implications for Streaming Algorithms
-
ACM, New York
-
Lin J, Keogh E, Lonardi S, Chiu B (2003). “A Symbolic Representation of Time Series, with Implications for Streaming Algorithms." In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD'03, pp. 2-11.ACM, New York.
-
(2003)
In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, DMKD'03
, pp. 2-11
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Chiu, B.4
-
47
-
-
34548093287
-
Experiencing SAX: A Novel Symbolic Representation of Time Series
-
Lin J, Keogh E, Wei L, Lonardi S (2007). “Experiencing SAX: A Novel Symbolic Representation of Time Series." Data Mining and Knowledge Discovery, 15(2), 107-144.
-
(2007)
Data Mining and Knowledge Discovery
, vol.15
, Issue.2
, pp. 107-144
-
-
Lin, J.1
Keogh, E.2
Wei, L.3
Lonardi, S.4
-
48
-
-
69049104535
-
Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation
-
SSDBM 2009, Springer-Verlag, Berlin. ISBN 978-3-642-02278-4
-
Lin J, Li Y (2009). “Finding Structural Similarity in Time Series Data Using Bag-of-Patterns Representation." In Proceedings of the 21st International Conference on Scientific and Statistical Database Management, SSDBM 2009, pp. 461-477.Springer-Verlag, Berlin. ISBN 978-3-642-02278-4.
-
(2009)
Proceedings of the 21st International Conference on Scientific and Statistical Database Management
, pp. 461-477
-
-
Lin, J.1
Li, Y.2
-
49
-
-
84920405633
-
-
cluster: Cluster Analysis Basics and Extensions. R package version 1.15.3
-
Maechler M, Rousseeuw P, Struyf A, Hubert M, Hornik K (2014). cluster: Cluster Analysis Basics and Extensions. R package version 1.15.3, URL http://CRAN.R-project.org/package=cluster.
-
(2014)
-
-
Maechler, M.1
Rousseeuw, P.2
Struyf, A.3
Hubert, M.4
Hornik, K.5
-
51
-
-
0034340199
-
Clusters of Time Series
-
Maharaj EA (2000). “Clusters of Time Series." Journal of Classification, 17(2), 297-314.
-
(2000)
Journal of Classification
, vol.17
, Issue.2
, pp. 297-314
-
-
Maharaj, E.A.1
-
52
-
-
0037189758
-
Comparison of Non-stationary Time Series in the Frequency Domain
-
Maharaj EA (2002). “Comparison of Non-stationary Time Series in the Frequency Domain." Computational Statistics & Data Analysis, 40(1), 131-141.
-
(2002)
Computational Statistics & Data Analysis
, vol.40
, Issue.1
, pp. 131-141
-
-
Maharaj, E.A.1
-
53
-
-
84920423552
-
-
clv: Cluster Validation Techniques. R package version 0.3-2.1
-
Nieweglowski L (2013). clv: Cluster Validation Techniques. R package version 0.3-2.1, URL http://CRAN.R-project.org/package=clv.
-
(2013)
-
-
Nieweglowski, L.1
-
57
-
-
84871904170
-
Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study
-
Pértega S, Vilar JA (2010). “Comparing Several Parametric and Nonparametric Approaches to Time Series Clustering: A Simulation Study." Journal of Classification, 27(3), 333-362.
-
(2010)
Journal of Classification
, vol.27
, Issue.3
, pp. 333-362
-
-
Pértega, S.1
Vilar, J.A.2
-
58
-
-
84981470151
-
A Distance Measure for Classifying ARIMA Models
-
Piccolo D (1990). “A Distance Measure for Classifying ARIMA Models." Journal of Time Series Analysis, 11(2), 153-164.
-
(1990)
Journal of Time Series Analysis
, vol.11
, Issue.2
, pp. 153-164
-
-
Piccolo, D.1
-
60
-
-
84866037385
-
Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping
-
ACM, New York
-
Rakthanmanon T, Campana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012). “Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping." In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '12, pp. 262-270.ACM, New York.
-
(2012)
Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '12
, pp. 262-270
-
-
Rakthanmanon, T.1
Campana, B.2
Mueen, A.3
Batista, G.4
Westover, B.5
Zhu, Q.6
Zakaria, J.7
Keogh, E.8
-
61
-
-
0036532775
-
Bayesian Clustering by Dynamics
-
Ramoni M, Sebastiani P, Cohen P (2002). “Bayesian Clustering by Dynamics." Machine Learning, 47(1), 91-121.
-
(2002)
Machine Learning
, vol.47
, Issue.1
, pp. 91-121
-
-
Ramoni, M.1
Sebastiani, P.2
Cohen, P.3
-
62
-
-
84920497390
-
R: A Language and Environment for Statistical Computing
-
Vienna, Austria. URL
-
R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
-
(2014)
R Foundation for Statistical Computing
-
-
Team, R.C.1
-
63
-
-
84947934780
-
An Effective Bandwidth Selector for Local Least Squares Regression
-
Ruppert D, Sheather SJ, Wand MP (1995). “An Effective Bandwidth Selector for Local Least Squares Regression." Journal of the American Statistical Association, 90(432), 1257-1270.
-
(1995)
Journal of the American Statistical Association
, vol.90
, Issue.432
, pp. 1257-1270
-
-
Ruppert, D.1
Sheather, S.J.2
Wand, M.P.3
-
65
-
-
65749098156
-
Compression and Machine Learning: A New Perspective on Feature Space Vectors
-
IEEE Computer Society, Washington
-
Sculley D, Brodley CE (2006). “Compression and Machine Learning: A New Perspective on Feature Space Vectors." In Proceedings of the Data Compression Conference, DCC'06, pp. 332-332. IEEE Computer Society, Washington.
-
(2006)
Proceedings of the Data Compression Conference, DCC'06
, pp. 332
-
-
Sculley, D.1
Brodley, C.E.2
-
68
-
-
84956861323
-
The Haar Wavelet in the Time Series Similarity Paradigm
-
PKDD-99, Prague, Czech Republic, September 15-18, Springer-Verlag
-
Struzik ZR, Siebes A (1999). “The Haar Wavelet in the Time Series Similarity Paradigm." In Principles of Data Mining and Knowledge Discovery - Proceedings of the Third European Conference, PKDD-99, Prague, Czech Republic, September 15-18, 1999, pp. 12-22.Springer-Verlag.
-
(1999)
Principles of Data Mining and Knowledge Discovery - Proceedings of the Third European Conference
, pp. 12-22
-
-
Struzik, Z.R.1
Siebes, A.2
-
70
-
-
0008155417
-
On Tests for Self-Exciting Threshold Autoregressive-Type Non- Linearity in Partially Observed Time Series
-
Tong H, Yeung I (2000). “On Tests for Self-Exciting Threshold Autoregressive-Type Non- Linearity in Partially Observed Time Series." Journal of the Royal Statistical Society C, 40(1), 43-62.
-
(2000)
Journal of the Royal Statistical Society C
, vol.40
, Issue.1
, pp. 43-62
-
-
Tong, H.1
Yeung, I.2
-
71
-
-
77955275664
-
Non-Linear Time Series Clustering Based on Non- Parametric Forecast Densities
-
Vilar JA, Alonso AM, Vilar JM (2010). “Non-Linear Time Series Clustering Based on Non- Parametric Forecast Densities." Computational Statistics & Data Analysis, 54(11), 2850-2865.
-
(2010)
Computational Statistics & Data Analysis
, vol.54
, Issue.11
, pp. 2850-2865
-
-
Vilar, J.A.1
Alonso, A.M.2
Vilar, J.M.3
-
72
-
-
2542542746
-
Discriminant and Cluster Analysis for Gaussian Stationary Processes: Local Linear Fitting Approach
-
Vilar JA, Pértega S (2004). “Discriminant and Cluster Analysis for Gaussian Stationary Processes: Local Linear Fitting Approach." Journal of Nonparametric Statistics, 16(3-4), 443-462.
-
(2004)
Journal of Nonparametric Statistics
, vol.16
, Issue.3-4
, pp. 443-462
-
-
Vilar, J.A.1
Pértega, S.2
-
75
-
-
33845236924
-
Unsupervised Feature Extraction for Time Series Clustering Using Orthogonal Wavelet Transform
-
Zhang H, Ho TB, Zhang Y, Lin MS (2006). “Unsupervised Feature Extraction for Time Series Clustering Using Orthogonal Wavelet Transform." Informatica, 30(3), 305-319.
-
(2006)
Informatica
, vol.30
, Issue.3
, pp. 305-319
-
-
Zhang, H.1
Ho, T.B.2
Zhang, Y.3
Lin, M.S.4
|