메뉴 건너뛰기




Volumn 3, Issue , 2015, Pages

Threshold-Free Measures for Assessing the Performance of Medical Screening Tests

Author keywords

area under the ROC curve; average positive predictive value; biomarker; low prevalence rate; mammography

Indexed keywords


EID: 85045254050     PISSN: None     EISSN: 22962565     Source Type: Journal    
DOI: 10.3389/fpubh.2015.00057     Document Type: Article
Times cited : (25)

References (19)
  • 5
    • 84880739463 scopus 로고    scopus 로고
    • View learning for statistical relational learning: with an application to mammography
    • Edinburgh, Scotland, UK; 2005 Jul 30–Aug 5;, p
    • Davis J Burnside ES de Castro Dutra I Page D Ramakrishnan R Costa VS et al. View learning for statistical relational learning: with an application to mammography. In IJCAI; 2005 Jul 30–Aug 5; Edinburgh, Scotland, UK (2005). p. 677–83.
    • (2005) IJCAI , pp. 677-683
    • Davis, J.1    Burnside, E.S.2    de Castro Dutra, I.3    Page, D.4    Ramakrishnan, R.5    Costa, V.S.6
  • 6
    • 22944485317 scopus 로고    scopus 로고
    • Learning ensembles of first-order clauses for recall-precision curves: a case study in biomedical information extraction
    • Porto, Portugal, Berlin Heidelberg: Springer; 2004 Sep 6–8;, p
    • Goadrich M Oliphant L Shavlik J. Learning ensembles of first-order clauses for recall-precision curves: a case study in biomedical information extraction. In Inductive Logic Programming; 2004 Sep 6–8; Porto, Portugal. Berlin Heidelberg: Springer (2004). p. 98–115.
    • (2004) Inductive Logic Programming , pp. 98-115
    • Goadrich, M.1    Oliphant, L.2    Shavlik, J.3
  • 7
    • 34250727580 scopus 로고    scopus 로고
    • The relationship between precision-recall and ROC curves
    • New York, NY, ACM; 2006 Jun 25–29; Carnegie Mellon University Pittsburgh, PA, USA., :, p
    • Davis J Goadrich M. The relationship between precision-recall and ROC curves. In Proceedings of the 23rd International Conference on Machine Learning; 2006 Jun 25–29; Carnegie Mellon University in Pittsburgh, PA, USA. New York, NY: ACM (2006). p. 233–40.
    • (2006) Proceedings of the 23rd International Conference on Machine Learning , pp. 233-240
    • Davis, J.1    Goadrich, M.2
  • 8
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett (2006) 27:861–74.10.1016/j.patrec.2005.10.010
    • (2006) Pattern Recognit Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 9
    • 3843083955 scopus 로고    scopus 로고
    • Augmenting naive Bayes classifiers with statistical language models
    • Peng F Schuurmans D Wang S. Augmenting naive Bayes classifiers with statistical language models. Inf Retr Boston (2004) 7:317–45.10.1023/B:INRT.0000011209.19643.e2
    • (2004) Inf Retr Boston , vol.7 , pp. 317-345
    • Peng, F.1    Schuurmans, D.2    Wang, S.3
  • 10
    • 84901310438 scopus 로고    scopus 로고
    • Is the area under an ROC curve a valid measure of the performance of a screening or diagnostic test?
    • 24407586
    • Wald NJ Bestwick JP. Is the area under an ROC curve a valid measure of the performance of a screening or diagnostic test? J Med Screen (2014) 21:51–6.10.1177/096914131351749724407586
    • (2014) J Med Screen , vol.21 , pp. 51-56
    • Wald, N.J.1    Bestwick, J.P.2
  • 11
    • 0036645099 scopus 로고    scopus 로고
    • Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men
    • 12097261
    • Adam BL Qu Y Davis JW Ward MD Clements MA Cazares LH et al. Serum protein fingerprinting coupled with a pattern-matching algorithm distinguishes prostate cancer from benign prostate hyperplasia and healthy men. Cancer Res (2002) 62:3609–14.12097261
    • (2002) Cancer Res , vol.62 , pp. 3609-3614
    • Adam, B.L.1    Qu, Y.2    Davis, J.W.3    Ward, M.D.4    Clements, M.A.5    Cazares, L.H.6
  • 12
    • 0036079692 scopus 로고    scopus 로고
    • The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification
    • 11922607
    • Issaq HJ Veenstra TD Conrads TP Felschow D. The SELDI-TOF MS approach to proteomics: protein profiling and biomarker identification. Biochem Biophys Res Commun (2002) 292:587–92.10.1006/bbrc.2002.667811922607
    • (2002) Biochem Biophys Res Commun , vol.292 , pp. 587-592
    • Issaq, H.J.1    Veenstra, T.D.2    Conrads, T.P.3    Felschow, D.4
  • 13
    • 79953154460 scopus 로고    scopus 로고
    • Marker selection via maximizing the partial area under the ROC curve of linear risk scores
    • 20729218
    • Wang Z Chang YC. Marker selection via maximizing the partial area under the ROC curve of linear risk scores. Biostatistics (2011) 12:369–85.10.1093/biostatistics/kxq05220729218
    • (2011) Biostatistics , vol.12 , pp. 369-385
    • Wang, Z.1    Chang, Y.C.2
  • 14
    • 27344458270 scopus 로고    scopus 로고
    • Diagnostic performance of digital versus film mammography for breast-cancer screening
    • 16169887
    • Pisano ED Gatsonis C Hendrick E Yaffe M Baum JK Acharyya S et al. Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med (2005) 353:1773–83.10.1056/NEJMoa05291116169887
    • (2005) N Engl J Med , vol.353 , pp. 1773-1783
    • Pisano, E.D.1    Gatsonis, C.2    Hendrick, E.3    Yaffe, M.4    Baum, J.K.5    Acharyya, S.6
  • 18
    • 79960505344 scopus 로고    scopus 로고
    • Risk assessment tools for identifying individuals at risk of developing type 2 diabetes
    • 21622851
    • Buijsse B Simmons RK Griffin SJ Schulze MB. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol Rev (2011) 33:46–62.10.1093/epirev/mxq01921622851
    • (2011) Epidemiol Rev , vol.33 , pp. 46-62
    • Buijsse, B.1    Simmons, R.K.2    Griffin, S.J.3    Schulze, M.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.