메뉴 건너뛰기




Volumn 58, Issue , 2015, Pages 330-347

Process monitoring using kernel density estimation and Bayesian networking with an industrial case study

Author keywords

Bayesian networks; Kernel density estimation; Process monitoring

Indexed keywords

BAYESIAN NETWORKS; FAULT DETECTION; GAUSSIAN DISTRIBUTION; INDEPENDENT COMPONENT ANALYSIS; PROCESS CONTROL; PROCESS MONITORING; STATISTICS;

EID: 84943580159     PISSN: 00190578     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isatra.2015.04.001     Document Type: Article
Times cited : (86)

References (33)
  • 1
    • 0002400707 scopus 로고    scopus 로고
    • Adequately address abnormal situation operations
    • I. Nimmo Adequately address abnormal situation operations Chem Eng Progr 91 9 2003 36 45
    • (2003) Chem Eng Progr , vol.91 , Issue.9 , pp. 36-45
    • Nimmo, I.1
  • 2
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part I: Quantitative model-based methods
    • V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S.N. Kavuri A review of process fault detection and diagnosis Part I: quantitative model-based methods Comput Chem Eng 27 2003 293 311
    • (2003) Comput Chem Eng , vol.27 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 3
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part II: Qualitative models and search strategies
    • V. Venkatasubramanian, R. Rengaswamy, and S.N. Kavuri A review of process fault detection and diagnosis Part II: qualitative models and search strategies Comput Chem Eng 27 2003 313 326
    • (2003) Comput Chem Eng , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 4
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis Part III: Process history based methods
    • V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S.N. Kavuri A review of process fault detection and diagnosis Part III: process history based methods Comput Chem Eng 27 2003 327 346
    • (2003) Comput Chem Eng , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 5
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson On lines and planes of closest fit to systems of points in space Philos Mag Ser B 2 1901 559 572
    • (1901) Philos Mag ser B , vol.2 , pp. 559-572
    • Pearson, K.1
  • 9
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • J. Lee, I. Lee, and S. Qin Fault detection and diagnosis based on modified independent component analysis AIChE J 52 2006 3501 3514
    • (2006) AIChE J , vol.52 , pp. 3501-3514
    • Lee, J.1    Lee, I.2    Qin, S.3
  • 10
    • 0029342346 scopus 로고
    • Detection of gross errors in data reconciliation by principal component analysis
    • H. Tong, and C.M. Crowe Detection of gross errors in data reconciliation by principal component analysis AIChE J 41 7 1995 1712 1722
    • (1995) AIChE J , vol.41 , Issue.7 , pp. 1712-1722
    • Tong, H.1    Crowe, C.M.2
  • 11
    • 84899491622 scopus 로고    scopus 로고
    • Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis
    • H. Yamamoto, T. Fujimori, H. Sato, G. Ishikawa, K. Kami, and Y. Ohashi Statistical hypothesis testing of factor loading in principal component analysis and its application to metabolite set enrichment analysis BMC Bioinform 15 2014 51 60
    • (2014) BMC Bioinform , vol.15 , pp. 51-60
    • Yamamoto, H.1    Fujimori, T.2    Sato, H.3    Ishikawa, G.4    Kami, K.5    Ohashi, Y.6
  • 12
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Z. Ge, and Z. Song Mixture Bayesian regularization method of PPCA for multimode process monitoring Process Syst Eng AIChE 56 11 2010 2838 2849
    • (2010) Process Syst Eng AIChE , vol.56 , Issue.11 , pp. 2838-2849
    • Ge, Z.1    Song, Z.2
  • 13
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • D. Kim, and I. Lee Process monitoring based on probabilistic PCA Chem Intell Lab Syst 67 2003 109 123
    • (2003) Chem Intell Lab Syst , vol.67 , pp. 109-123
    • Kim, D.1    Lee, I.2
  • 14
    • 0038959172 scopus 로고    scopus 로고
    • Probabilistic principal component analysis
    • M. Tipping, and C. Bishop Probabilistic principal component analysis J R Stat Soc 61 1999 611 622
    • (1999) J R Stat Soc , vol.61 , pp. 611-622
    • Tipping, M.1    Bishop, C.2
  • 15
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysis
    • M. Tipping, and C. Bishop Mixtures of probabilistic principal component analysis Neural Comput 11 1999 443 482
    • (1999) Neural Comput , vol.11 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 16
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • A. Hyvarinen, and E. Oja Independent component analysis: algorithms and applications Neural Netw 13 4-5 2000 411 430
    • (2000) Neural Netw , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 18
    • 3042632377 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • J. Lee, C. Yoo, and I. Lee Fault detection and diagnosis based on modified independent component analysis Chem Eng Sci 59 2004 2995 3006
    • (2004) Chem Eng Sci , vol.59 , pp. 2995-3006
    • Lee, J.1    Yoo, C.2    Lee, I.3
  • 19
    • 34548425643 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring of an industrial polypropylene catalyzer reactor with component analysis and kernel density estimation
    • L. Xiong, and J.L.J. Qian Multivariate statistical process monitoring of an industrial polypropylene catalyzer reactor with component analysis and kernel density estimation Chin J Chem Eng 15 4 2007 524 532
    • (2007) Chin J Chem Eng , vol.15 , Issue.4 , pp. 524-532
    • Xiong, L.1    Qian, J.L.J.2
  • 20
    • 0028424619 scopus 로고
    • Process monitoring and diagnosis by multiblock PLS methods
    • J.F. MacGregor, C. Jaeckle, C. Kiparissides, and M. Koutoudi Process monitoring and diagnosis by multiblock PLS methods AIChE J 40 5 1994 826 838
    • (1994) AIChE J , vol.40 , Issue.5 , pp. 826-838
    • MacGregor, J.F.1    Jaeckle, C.2    Kiparissides, C.3    Koutoudi, M.4
  • 21
    • 84906501997 scopus 로고    scopus 로고
    • Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes
    • J. Mori, V. Mahalec, and J. Yu "Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes." Computers & Chemical Engineering 71 2014 171 209
    • (2014) Computers & Chemical Engineering , vol.71 , pp. 171-209
    • Mori, J.1    Mahalec, V.2    Yu, J.3
  • 22
    • 24144448019 scopus 로고    scopus 로고
    • Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes
    • G. Weidl, A. Madsen, and S. Israelson Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes Comput Chem Eng 29 2005 1996 2009
    • (2005) Comput Chem Eng , vol.29 , pp. 1996-2009
    • Weidl, G.1    Madsen, A.2    Israelson, S.3
  • 23
    • 0034825119 scopus 로고    scopus 로고
    • Independence is good: Dependency-based histogram synopses for high-dimensional data
    • Santa Barbara, CA, USA
    • Deshpande A, Garofalakis M, Rastogi R. Independence is good: dependency-based histogram synopses for high-dimensional data. In: ACM Sigmod, Santa Barbara, CA, USA; 2001.
    • (2001) ACM Sigmod
    • Deshpande, A.1    Garofalakis, M.2    Rastogi, R.3
  • 24
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure a Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman, and D. Koller Being Bayesian about network structure a Bayesian approach to structure discovery in Bayesian networks Mach Learn 50 2003 95 125
    • (2003) Mach Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 26
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • E. Parsen On estimation of a probability density function and mode Ann Math Stat 33 3 1962 1065 1076
    • (1962) Ann Math Stat , vol.33 , Issue.3 , pp. 1065-1076
    • Parsen, E.1
  • 27
    • 21344497986 scopus 로고
    • Multivariate plug-in bandwidth selection
    • M. Wand, and M. Jones Multivariate plug-in bandwidth selection Comput Stat 9 1994 97 116
    • (1994) Comput Stat , vol.9 , pp. 97-116
    • Wand, M.1    Jones, M.2
  • 30
    • 0037292632 scopus 로고    scopus 로고
    • Plug-in bandwidth matrices for bivariate kernel density estimation
    • T. Duong, and M.L. Hazelton Plug-in bandwidth matrices for bivariate kernel density estimation J Nonparametr Stat 15 2003 17 30
    • (2003) J Nonparametr Stat , vol.15 , pp. 17-30
    • Duong, T.1    Hazelton, M.L.2
  • 31
    • 24344494438 scopus 로고    scopus 로고
    • Cross-validation bandwidth matrices for multivariate kernel density estimation
    • T. Duong, and M.L. Hazelton Cross-validation bandwidth matrices for multivariate kernel density estimation Scand J Stat 32 2005 485 506
    • (2005) Scand J Stat , vol.32 , pp. 485-506
    • Duong, T.1    Hazelton, M.L.2
  • 33
    • 33845879881 scopus 로고    scopus 로고
    • A variable bandwidth selector in multivariate kernel density estimation
    • T.-J. Wu, C.-F. Chen, and H.-Y. Chen A variable bandwidth selector in multivariate kernel density estimation Stat Probab Lett 77 2007 462 467
    • (2007) Stat Probab Lett , vol.77 , pp. 462-467
    • Wu, T.-J.1    Chen, C.-F.2    Chen, H.-Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.