메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 171-209

Identification of probabilistic graphical network model for root-cause diagnosis in industrial processes

Author keywords

Cause effect relationship; Incidence matrix; Markov chain monte carlo simulation; Probabilistic graphical model; Root cause diagnosis; Structure learning

Indexed keywords

BAYESIAN NETWORKS; CHEMICAL PLANTS; MONTE CARLO METHODS;

EID: 84906501997     PISSN: 00981354     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compchemeng.2014.07.022     Document Type: Article
Times cited : (44)

References (51)
  • 1
    • 79955584261 scopus 로고    scopus 로고
    • Using Bayesian networks for root cause analysis in statistical process control
    • Alaeddini A., Dogan I. Using Bayesian networks for root cause analysis in statistical process control. Expert Syst Appl 2011, 38:11230-11243.
    • (2011) Expert Syst Appl , vol.38 , pp. 11230-11243
    • Alaeddini, A.1    Dogan, I.2
  • 2
    • 44649107251 scopus 로고    scopus 로고
    • A practical method for identifying the propagation path of plant-wide disturbances
    • Bauer M., Thornhill N.F. A practical method for identifying the propagation path of plant-wide disturbances. J Process Control 2008, 18:707-719.
    • (2008) J Process Control , vol.18 , pp. 707-719
    • Bauer, M.1    Thornhill, N.F.2
  • 3
    • 33846085471 scopus 로고    scopus 로고
    • Finding the direction of disturbance propagation in a chemical process using transfer entropy
    • Bauer M., Cox J.W., Caveness M.H., Downs J.J., Downs F. Finding the direction of disturbance propagation in a chemical process using transfer entropy. IEEE Trans Control Syst Technol 2007, 15:12-21.
    • (2007) IEEE Trans Control Syst Technol , vol.15 , pp. 12-21
    • Bauer, M.1    Cox, J.W.2    Caveness, M.H.3    Downs, J.J.4    Downs, F.5
  • 5
    • 9444266483 scopus 로고    scopus 로고
    • A discrete-time Bayesian network reliability modeling and analysis framework
    • Boudali H., Dugan J.B. A discrete-time Bayesian network reliability modeling and analysis framework. Reliab Eng Syst Saf 2005, 87:337-349.
    • (2005) Reliab Eng Syst Saf , vol.87 , pp. 337-349
    • Boudali, H.1    Dugan, J.B.2
  • 6
    • 27144507855 scopus 로고    scopus 로고
    • Soft sensor modeling based on DICA-SVR
    • Chen A., Song Z., Li P. Soft sensor modeling based on DICA-SVR. Lect Notes Comput Sci 2005, 3644:868-877.
    • (2005) Lect Notes Comput Sci , vol.3644 , pp. 868-877
    • Chen, A.1    Song, Z.2    Li, P.3
  • 7
    • 0037470096 scopus 로고    scopus 로고
    • Process monitoring using causal map and multivariate statistics fault detection and identification
    • Chiang L.H., Braatz R.D. Process monitoring using causal map and multivariate statistics fault detection and identification. Chemom Intell Lab Syst 2003, 65:159-178.
    • (2003) Chemom Intell Lab Syst , vol.65 , pp. 159-178
    • Chiang, L.H.1    Braatz, R.D.2
  • 9
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • Chickeringn D.M. Learning equivalence classes of Bayesian-network structures. J Mach Learn Res 2002, 2:445-498.
    • (2002) J Mach Learn Res , vol.2 , pp. 445-498
    • Chickeringn, D.M.1
  • 10
    • 27444433806 scopus 로고    scopus 로고
    • Soft-sensor development for fed-batch bioreactors using support vector regression
    • Desai K., Badhe Y., Tambe S.S., Kulkarni B.D. Soft-sensor development for fed-batch bioreactors using support vector regression. Biochem Eng J 2006, 27(3):225-239.
    • (2006) Biochem Eng J , vol.27 , Issue.3 , pp. 225-239
    • Desai, K.1    Badhe, Y.2    Tambe, S.S.3    Kulkarni, B.D.4
  • 11
    • 7044247417 scopus 로고    scopus 로고
    • A Bayesian network approach to root cause diagnosis of process variations
    • Dey S., Stori J.A. A Bayesian network approach to root cause diagnosis of process variations. Int J Mach Tools Manuf 2005, 45:75-91.
    • (2005) Int J Mach Tools Manuf , vol.45 , pp. 75-91
    • Dey, S.1    Stori, J.A.2
  • 12
    • 0027561446 scopus 로고
    • Plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. Plant-wide industrial process control problem. Comput Chem Eng 1993, 17:245-255.
    • (1993) Comput Chem Eng , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 13
    • 0032188415 scopus 로고    scopus 로고
    • Nonlinear inferential control for process applications
    • Doyle F.J. Nonlinear inferential control for process applications. J Process Control 1998, 8:339-353.
    • (1998) J Process Control , vol.8 , pp. 339-353
    • Doyle, F.J.1
  • 14
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N., Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn 2003, 50:95-125.
    • (2003) Mach Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 15
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., Peer D. Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601-620.
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Peer, D.4
  • 16
    • 0024122587 scopus 로고
    • Survey of model-based failure detection and isolation in complex plants
    • Gertler J.J. Survey of model-based failure detection and isolation in complex plants. IEEE Control Syst Mag 1988, 8:3-11.
    • (1988) IEEE Control Syst Mag , vol.8 , pp. 3-11
    • Gertler, J.J.1
  • 17
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • Gevaert O., Smet F.D., Timmerman D., Moreau Y., Moor B.D. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 2006, 22:184-190.
    • (2006) Bioinformatics , vol.22 , pp. 184-190
    • Gevaert, O.1    Smet, F.D.2    Timmerman, D.3    Moreau, Y.4    Moor, B.D.5
  • 18
    • 0022865373 scopus 로고
    • Future paths for integer programming and links to artificial intelligence
    • Glover F. Future paths for integer programming and links to artificial intelligence. Comput Oper Res 1986, 13:533-549.
    • (1986) Comput Oper Res , vol.13 , pp. 533-549
    • Glover, F.1
  • 19
    • 52049095060 scopus 로고    scopus 로고
    • Bayesian methods for control loop monitoring and diagnosis
    • Huang B. Bayesian methods for control loop monitoring and diagnosis. J Process Control 2008, 18:829-838.
    • (2008) J Process Control , vol.18 , pp. 829-838
    • Huang, B.1
  • 20
    • 58449118276 scopus 로고    scopus 로고
    • Development of a new soft sensor method using independent component analysis and partial least squares
    • Kaneko H., Arakawa M., Funatsu K. Development of a new soft sensor method using independent component analysis and partial least squares. AIChE J 2009, 55:87-98.
    • (2009) AIChE J , vol.55 , pp. 87-98
    • Kaneko, H.1    Arakawa, M.2    Funatsu, K.3
  • 22
    • 0000080198 scopus 로고    scopus 로고
    • Improved process understanding using multiway principal component analysis
    • Kosanovich K.A., Dahl K.S., Piovoso M.J. Improved process understanding using multiway principal component analysis. Ind Eng Chem Res 1996, 35:138-146.
    • (1996) Ind Eng Chem Res , vol.35 , pp. 138-146
    • Kosanovich, K.A.1    Dahl, K.S.2    Piovoso, M.J.3
  • 23
    • 0028460607 scopus 로고
    • Development of inferential process models using PLS
    • Kresta J.V., Marlin T.E., MacGregor J.F. Development of inferential process models using PLS. Comput Chem Eng 1994, 18:597-611.
    • (1994) Comput Chem Eng , vol.18 , pp. 597-611
    • Kresta, J.V.1    Marlin, T.E.2    MacGregor, J.F.3
  • 24
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.M., Yoo C.K., Lee I.B. Statistical process monitoring with independent component analysis. J Process Control 2004, 14:467-485.
    • (2004) J Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 26
    • 3142733714 scopus 로고    scopus 로고
    • Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheets
    • Maurya M.R., Rengaswamy R., Venkatasubramanian V. Application of signed digraphs-based analysis for fault diagnosis of chemical process flowsheets. Eng Appl Artif Intell 2004, 17:501-518.
    • (2004) Eng Appl Artif Intell , vol.17 , pp. 501-518
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 27
    • 36348991361 scopus 로고    scopus 로고
    • A signed directed graph and qualitative trend analysis-based framework for incipient fault diagnosis
    • Maurya M.R., Rengaswamy R., Venkatasubramanian V. A signed directed graph and qualitative trend analysis-based framework for incipient fault diagnosis. Chem Eng Res Des 2007, 85:1407-1422.
    • (2007) Chem Eng Res Des , vol.85 , pp. 1407-1422
    • Maurya, M.R.1    Rengaswamy, R.2    Venkatasubramanian, V.3
  • 28
    • 0026360534 scopus 로고
    • Estimation of distillation compositions from multiple temperature measurements using partial least-squares regression
    • Mejdell T., Skogestad S. Estimation of distillation compositions from multiple temperature measurements using partial least-squares regression. Ind Eng Chem Res 1991, 30:2543-2555.
    • (1991) Ind Eng Chem Res , vol.30 , pp. 2543-2555
    • Mejdell, T.1    Skogestad, S.2
  • 29
    • 5744249209 scopus 로고
    • Equation of state calculation by fast computing machines
    • Metropolis N., Rosenbluth M., Rosenbluth A. Equation of state calculation by fast computing machines. J Chem Phys 1953, 21:1087-1092.
    • (1953) J Chem Phys , vol.21 , pp. 1087-1092
    • Metropolis, N.1    Rosenbluth, M.2    Rosenbluth, A.3
  • 31
    • 84892439536 scopus 로고    scopus 로고
    • A quality relevant non-Gaussian latent subspace projection method for chemical process monitoring and fault detection
    • Mori J., Yu J. A quality relevant non-Gaussian latent subspace projection method for chemical process monitoring and fault detection. AIChE J 2014, 60:485-499.
    • (2014) AIChE J , vol.60 , pp. 485-499
    • Mori, J.1    Yu, J.2
  • 32
    • 84890854491 scopus 로고    scopus 로고
    • Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach
    • Mori J., Yu J. Quality relevant nonlinear batch process performance monitoring using a kernel based multiway non-Gaussian latent subspace projection approach. J Process Control 2014, 24:57-71.
    • (2014) J Process Control , vol.24 , pp. 57-71
    • Mori, J.1    Yu, J.2
  • 33
    • 0034215972 scopus 로고    scopus 로고
    • Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics
    • Nikovski D. Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics. Trans Knowl Data Eng 2000, 12:509-516.
    • (2000) Trans Knowl Data Eng , vol.12 , pp. 509-516
    • Nikovski, D.1
  • 34
    • 0029252734 scopus 로고
    • Multivariate SPC charts for monitoring batch processes
    • Nomikos P., MacGregor J.F. Multivariate SPC charts for monitoring batch processes. Technometrics 1995, 37(1):41-59.
    • (1995) Technometrics , vol.37 , Issue.1 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 35
    • 0036804970 scopus 로고    scopus 로고
    • Multivariate statistics for process control
    • Piovoso M.J., Hoo K.A. Multivariate statistics for process control. IEEE Control Syst Mag 2002, 22:8-9.
    • (2002) IEEE Control Syst Mag , vol.22 , pp. 8-9
    • Piovoso, M.J.1    Hoo, K.A.2
  • 36
  • 37
    • 0027624558 scopus 로고
    • Application of artificial neural networks in process fault diagnosis
    • Sorsa T., Koivo H.N. Application of artificial neural networks in process fault diagnosis. Automatica 1993, 29:843-849.
    • (1993) Automatica , vol.29 , pp. 843-849
    • Sorsa, T.1    Koivo, H.N.2
  • 38
    • 12244251218 scopus 로고    scopus 로고
    • On the use of skeletons when learning in Bayesian networks
    • Steck H. On the use of skeletons when learning in Bayesian networks. Proceedings of UAI-2000 2000, 558-565.
    • (2000) Proceedings of UAI-2000 , pp. 558-565
    • Steck, H.1
  • 40
    • 0032825185 scopus 로고    scopus 로고
    • PCA-SDG based process monitoring and fault diagnosis
    • Vedam H., Venkatasubramanian V. PCA-SDG based process monitoring and fault diagnosis. Control Eng Pract 1999, 7:903-917.
    • (1999) Control Eng Pract , vol.7 , pp. 903-917
    • Vedam, H.1    Venkatasubramanian, V.2
  • 41
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: Part III. Process history based methods
    • Venkatasurbramanian V., Rengaswamy R., Kavuri S.N., Yin K. A review of process fault detection and diagnosis: Part III. Process history based methods. Comput Chem Eng 2003, 27:327-346.
    • (2003) Comput Chem Eng , vol.27 , pp. 327-346
    • Venkatasurbramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 42
    • 24144448019 scopus 로고    scopus 로고
    • Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes
    • Weidl G., Madsen A.L., Israelson S. Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes. Comput Chem Eng 2005, 29:1996-2009.
    • (2005) Comput Chem Eng , vol.29 , pp. 1996-2009
    • Weidl, G.1    Madsen, A.L.2    Israelson, S.3
  • 43
    • 2342567014 scopus 로고    scopus 로고
    • Soft sensing modeling based on support vector machine and Bayesian model selection
    • Yan W., Shao H., Wang X. Soft sensing modeling based on support vector machine and Bayesian model selection. Comput Chem Eng 2004, 28:1489-1498.
    • (2004) Comput Chem Eng , vol.28 , pp. 1489-1498
    • Yan, W.1    Shao, H.2    Wang, X.3
  • 44
    • 56949099324 scopus 로고    scopus 로고
    • Performance assessment of a novel fault diagnosis system based on support vector machines
    • Yélamos I., Escudero G., Graells M., Puigjaner L. Performance assessment of a novel fault diagnosis system based on support vector machines. Comput Chem Eng 2009, 33:244-255.
    • (2009) Comput Chem Eng , vol.33 , pp. 244-255
    • Yélamos, I.1    Escudero, G.2    Graells, M.3    Puigjaner, L.4
  • 45
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses
    • Yu J. A Bayesian inference based two-stage support vector regression framework for soft sensor development in batch bioprocesses. Comput Chem Eng 2012, 41:134-144.
    • (2012) Comput Chem Eng , vol.41 , pp. 134-144
    • Yu, J.1
  • 46
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chem Eng Sci 2012, 68:506-519.
    • (2012) Chem Eng Sci , vol.68 , pp. 506-519
    • Yu, J.1
  • 47
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J 2008, 54:1811-1829.
    • (2008) AIChE J , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, J.2
  • 48
    • 84879307272 scopus 로고    scopus 로고
    • A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis
    • Yu J., Rashid M.M. A novel dynamic Bayesian network-based networked process monitoring approach for fault detection, propagation identification, and root cause diagnosis. AIChE J 2013, 59:2348-2365.
    • (2013) AIChE J , vol.59 , pp. 2348-2365
    • Yu, J.1    Rashid, M.M.2
  • 49
    • 84897109593 scopus 로고    scopus 로고
    • Root cause diagnosis of plant-wide oscillations using Granger causality
    • Yuan T., Qin J. Root cause diagnosis of plant-wide oscillations using Granger causality. J Process Control 2014, 24:450-459.
    • (2014) J Process Control , vol.24 , pp. 450-459
    • Yuan, T.1    Qin, J.2
  • 50
    • 4444289955 scopus 로고    scopus 로고
    • Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis
    • Zamprogna E., Barolo M., Seborg D.E. Optimal selection of soft sensor inputs for batch distillation columns using principal component analysis. J Process Control 2005, 15:39-52.
    • (2005) J Process Control , vol.15 , pp. 39-52
    • Zamprogna, E.1    Barolo, M.2    Seborg, D.E.3
  • 51
    • 0141642162 scopus 로고    scopus 로고
    • Integrated condition monitoring and control of fed-batch fermentation processes
    • Zhang H., Lennox B. Integrated condition monitoring and control of fed-batch fermentation processes. J Process Control 2004, 14:41-50.
    • (2004) J Process Control , vol.14 , pp. 41-50
    • Zhang, H.1    Lennox, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.