-
1
-
-
84955755294
-
Probing crystallinity of never-dried wood cellulose with Raman spectroscopy
-
Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144. 10.1007/s10570-015-0788-7
-
(2016)
Cellulose
, vol.23
, pp. 125-144
-
-
Agarwal, U.P.1
Ralph, S.A.2
Reiner, R.S.3
Baez, C.4
-
2
-
-
84955679250
-
The thermal stability of nanocellulose and its acetates with different degree of polymerization
-
Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464. 10.1007/s10570-015-0813-x
-
(2016)
Cellulose
, vol.23
, pp. 451-464
-
-
Agustin, M.B.1
Nakatsubo, F.2
Yano, H.3
-
3
-
-
84958753866
-
Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials
-
Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. 10.1007/s10570-016-0881-6
-
(2016)
Cellulose
, vol.23
, pp. 1073-1086
-
-
Ahvenainen, P.1
Kontro, I.2
Svedström, K.3
-
4
-
-
0032583052
-
Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose
-
Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. 10.1016/S0927-7757(98)00404-X
-
(1998)
Colloids Surf A Physicochem Eng Asp
, vol.142
, pp. 75-82
-
-
Araki, J.1
Wada, M.2
Kuga, S.3
Okano, T.4
-
5
-
-
0035124535
-
Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting
-
Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27. 10.1021/la001070m
-
(2001)
Langmuir
, vol.17
, pp. 21-27
-
-
Araki, J.1
Wada, M.2
Kuga, S.3
-
6
-
-
84906970694
-
Surface esterification of cellulose nanofibers by a simple organocatalytic methodology
-
Ávila Ramírez JA, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423. 10.1016/j.carbpol.2014.08.020
-
(2014)
Carbohydr Polym
, vol.114
, pp. 416-423
-
-
Ávila Ramírez, J.A.1
Suriano, C.J.2
Cerrutti, P.3
Foresti, M.L.4
-
7
-
-
0011140640
-
Hydrolysis and crystallization of cellulose
-
Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507. 10.1021/ie50483a029
-
(1950)
Ind Eng Chem
, vol.42
, pp. 502-507
-
-
Battista, O.A.1
-
9
-
-
84894146532
-
Auto-catalyzed acidic desulfation of cellulose nanocrystals
-
Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29:6–14. 10.3183/NPPRJ-2014-29-01-p006-014
-
(2014)
Nord Pulp Pap Res J
, vol.29
, pp. 6-14
-
-
Beck, S.1
Bouchard, J.2
-
10
-
-
84861177745
-
Dispersibility in water of dried nanocrystalline cellulose
-
Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494. 10.1021/bm300191k
-
(2012)
Biomacromol
, vol.13
, pp. 1486-1494
-
-
Beck, S.1
Bouchard, J.2
Berry, R.3
-
11
-
-
22144496510
-
Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions
-
Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054. 10.1021/bm049300p
-
(2005)
Biomacromol
, vol.6
, pp. 1048-1054
-
-
Beck-Candanedo, S.1
Roman, M.2
Gray, D.G.3
-
12
-
-
84975046541
-
DLS and zeta potential—What they are and what they are not?
-
Bhattacharjee S (2016) DLS and zeta potential—What they are and what they are not? J Control Release 235:337–351. 10.1016/j.jconrel.2016.06.017
-
(2016)
J Control Release
, vol.235
, pp. 337-351
-
-
Bhattacharjee, S.1
-
13
-
-
33645891642
-
Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis
-
Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. 10.1007/s10570-006-9061-4
-
(2006)
Cellulose
, vol.13
, pp. 171-180
-
-
Bondeson, D.1
Mathew, A.2
Oksman, K.3
-
14
-
-
84983374436
-
Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature
-
Bouchard J, Méthot M, Fraschini C, Beck S (2016) Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23:3555–3567. 10.1007/s10570-016-1036-5
-
(2016)
Cellulose
, vol.23
, pp. 3555-3567
-
-
Bouchard, J.1
Méthot, M.2
Fraschini, C.3
Beck, S.4
-
15
-
-
0018478688
-
A kinetic model for pyrolysis of cellulose
-
Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3280. 10.1002/app.1979.070231112
-
(1979)
J Appl Polym Sci
, vol.23
, pp. 3271-3280
-
-
Bradbury, A.G.W.1
Sakai, Y.2
Shafizadeh, F.3
-
16
-
-
84976869141
-
Correlating cellulose nanocrystal particle size and surface area
-
Brinkmann A, Chen M, Couillard M et al (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114. 10.1021/acs.langmuir.6b01376
-
(2016)
Langmuir
, vol.32
, pp. 6105-6114
-
-
Brinkmann, A.1
Chen, M.2
Couillard, M.3
-
17
-
-
84875994473
-
Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis
-
Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. 10.1021/bm400219u
-
(2013)
Biomacromol
, vol.14
, pp. 1223-1230
-
-
Camarero Espinosa, S.1
Kuhnt, T.2
Foster, E.J.3
Weder, C.4
-
18
-
-
84919360277
-
The influence of cellulose nanocrystal additions on the performance of cement paste
-
Cao Y, Zavaterri P, Youngblood J et al (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos 56:73–83. 10.1016/j.cemconcomp.2014.11.008
-
(2015)
Cem Concr Compos
, vol.56
, pp. 73-83
-
-
Cao, Y.1
Zavaterri, P.2
Youngblood, J.3
-
19
-
-
84989311373
-
The influence of cellulose nanocrystals on the microstructure of cement paste
-
Cao Y, Tian N, Bahr D et al (2016) The influence of cellulose nanocrystals on the microstructure of cement paste. Cem Concr Compos 74:164–173. 10.1016/j.cemconcomp.2016.09.008
-
(2016)
Cem Concr Compos
, vol.74
, pp. 164-173
-
-
Cao, Y.1
Tian, N.2
Bahr, D.3
-
21
-
-
84937758344
-
Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis
-
Chen L, Wang Q, Hirth K et al (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. 10.1007/s10570-015-0615-1
-
(2015)
Cellulose
, vol.22
, pp. 1753-1762
-
-
Chen, L.1
Wang, Q.2
Hirth, K.3
-
22
-
-
84976600304
-
Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
-
Chen L, Zhu JY, Baez C et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843. 10.1039/C6GC00687F
-
(2016)
Green Chem
, vol.18
, pp. 3835-3843
-
-
Chen, L.1
Zhu, J.Y.2
Baez, C.3
-
23
-
-
0034147275
-
A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy
-
Cherif M, Mgaidi A, Ammar N et al (2000) A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J Solut Chem 29:255–269. 10.1023/A:1005150400746
-
(2000)
J Solut Chem
, vol.29
, pp. 255-269
-
-
Cherif, M.1
Mgaidi, A.2
Ammar, N.3
-
24
-
-
4243747552
-
Size exclusion chromatography of cellulose and cellulose derivatives
-
Wu CS, (ed), 1, Marcel Dekker, New York
-
Conner A (1995) Size exclusion chromatography of cellulose and cellulose derivatives. In: Wu CS (ed) Handbook of size exclusion chromatography, 1st edn. Marcel Dekker, New York, pp 331–352
-
(1995)
Handbook of size exclusion chromatography
, pp. 331-352
-
-
Conner, A.1
-
25
-
-
33749567613
-
Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose
-
Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromol 7:2522–2530. 10.1021/bm0602886
-
(2006)
Biomacromol
, vol.7
, pp. 2522-2530
-
-
Cranston, E.D.1
Gray, D.G.2
-
26
-
-
85014079439
-
Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties
-
Criado P, Fraschini C, Jamshidian M et al (2017) Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties. Cellulose 24:2111–2124. 10.1007/s10570-017-1241-x
-
(2017)
Cellulose
, vol.24
, pp. 2111-2124
-
-
Criado, P.1
Fraschini, C.2
Jamshidian, M.3
-
27
-
-
85034783163
-
Pressure sensitive adhesive property modification using cellulose nanocrystals
-
Dastjerdi Z, Cranston ED, Dubé MA (2018) Pressure sensitive adhesive property modification using cellulose nanocrystals. Int J Adhes Adhes 81:36. 10.1016/j.ijadhadh.2017.11.009
-
(2018)
Int J Adhes Adhes
, vol.81
, pp. 36
-
-
Dastjerdi, Z.1
Cranston, E.D.2
Dubé, M.A.3
-
28
-
-
70249147950
-
Thermal degradation of carboxymethylcellulose in different salty forms
-
de Britto D, Assis OBG (2009) Thermal degradation of carboxymethylcellulose in different salty forms. Thermochim Acta 494:115–122. 10.1016/j.tca.2009.04.028
-
(2009)
Thermochim Acta
, vol.494
, pp. 115-122
-
-
de Britto, D.1
Assis, O.B.G.2
-
29
-
-
85019868510
-
Review of hydrogels and aerogels containing nanocellulose
-
De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. 10.1021/acs.chemmater.7b00531
-
(2017)
Chem Mater
, vol.29
, pp. 4609-4631
-
-
De France, K.J.1
Hoare, T.2
Cranston, E.D.3
-
30
-
-
84904367724
-
The potential of cellulose nanocrystals in tissue engineering strategies
-
Domingues RMAR, Gomes MEM, Reis RRL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346. 10.1021/bm500524s
-
(2014)
Biomacromol
, vol.15
, pp. 2327-2346
-
-
Domingues, R.M.A.R.1
Gomes, M.E.M.2
Reis, R.R.L.3
-
31
-
-
0001975196
-
Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
-
Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32. 10.1023/A:1009260511939
-
(1998)
Cellulose
, vol.5
, pp. 19-32
-
-
Dong, X.M.1
Revol, J.-F.2
Gray, D.G.3
-
32
-
-
84958581527
-
Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study
-
Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87. 10.1016/j.indcrop.2016.01.048
-
(2016)
Ind Crops Prod
, vol.93
, pp. 76-87
-
-
Dong, S.1
Bortner, M.J.2
Roman, M.3
-
33
-
-
79251475562
-
Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials
-
Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192. 10.1107/S0021889810043955
-
(2011)
J Appl Crystallogr
, vol.44
, pp. 184-192
-
-
Driemeier, C.1
Calligaris, G.A.2
-
34
-
-
84903649489
-
Surface modification of cellulose nanocrystals
-
Eyley SS, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. 10.1039/c4nr01756k
-
(2014)
Nanoscale
, vol.6
, pp. 7764-7779
-
-
Eyley, S.S.1
Thielemans, W.2
-
35
-
-
85045926984
-
Current characterization methods for cellulose nanomaterials
-
Foster EJ, Moon RJ, Agarwal UP et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. 10.1039/c6cs00895j
-
(2018)
Chem Soc Rev
, vol.47
, pp. 2609-2679
-
-
Foster, E.J.1
Moon, R.J.2
Agarwal, U.P.3
-
36
-
-
84872337504
-
Cellulose polymorphy, crystallite size, and the segal crystallinity index
-
French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588. 10.1007/s10570-012-9833-y
-
(2013)
Cellulose
, vol.20
, pp. 583-588
-
-
French, A.D.1
Santiago Cintrón, M.2
-
37
-
-
77955518178
-
Thermal stabilization of TEMPO-oxidized cellulose
-
Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508. 10.1016/j.polymdegradstab.2010.06.015
-
(2010)
Polym Degrad Stab
, vol.95
, pp. 1502-1508
-
-
Fukuzumi, H.1
Saito, T.2
Okita, Y.3
Isogai, A.4
-
38
-
-
84944096784
-
Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials
-
Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410. 10.1021/acs.biomac.5b01117
-
(2015)
Biomacromol
, vol.16
, pp. 3399-3410
-
-
Ghanadpour, M.1
Carosio, F.2
Larsson, P.T.3
Wågberg, L.4
-
39
-
-
85027950856
-
Functional materials from cellulose-derived liquid-crystal templates
-
Giese M, Blusch LK, Khan MK, MacLachlan MJ (2015) Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed 54:2888–2910. 10.1002/anie.201407141
-
(2015)
Angew Chem Int Ed
, vol.54
, pp. 2888-2910
-
-
Giese, M.1
Blusch, L.K.2
Khan, M.K.3
MacLachlan, M.J.4
-
40
-
-
0033005620
-
A round-Robin study of cellulose pyrolysis kinetics by thermogravimetry
-
Grønli M, Antal MJ, Várhegyi G (1999) A round-Robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res 38:2238–2244. 10.1021/ie980601n
-
(1999)
Ind Eng Chem Res
, vol.38
, pp. 2238-2244
-
-
Grønli, M.1
Antal, M.J.2
Várhegyi, G.3
-
41
-
-
84893855703
-
Key advances in the chemical modification of nanocelluloses
-
Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. 10.1039/C3CS60204D
-
(2014)
Chem Soc Rev
, vol.43
, pp. 1519-1542
-
-
Habibi, Y.1
-
42
-
-
77953296073
-
Cellulose nanocrystals: chemistry, self assembly, and applications
-
Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self assembly, and applications. Chem Rev 110:3479–3500. 10.1021/cr900339w
-
(2010)
Chem Rev
, vol.110
, pp. 3479-3500
-
-
Habibi, Y.1
Lucia, L.A.2
Rojas, O.J.3
-
43
-
-
84988953906
-
Temperature stability of nanocellulose dispersions
-
Heggset EB, Chinga-Carrasco G, Syverud K (2017) Temperature stability of nanocellulose dispersions. Carbohydr Polym 157:114–121. 10.1016/j.carbpol.2016.09.077
-
(2017)
Carbohydr Polym
, vol.157
, pp. 114-121
-
-
Heggset, E.B.1
Chinga-Carrasco, G.2
Syverud, K.3
-
44
-
-
85047360003
-
Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation
-
Honorato-Rios C, Lehr C, Schütz C et al (2018) Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Mater 10:455–465. 10.1038/s41427-018-0046-1
-
(2018)
NPG Asia Mater
, vol.10
, pp. 455-465
-
-
Honorato-Rios, C.1
Lehr, C.2
Schütz, C.3
-
45
-
-
78650518881
-
Solvent-free acetylation of bacterial cellulose under moderate conditions
-
Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581. 10.1016/j.carbpol.2010.10.016
-
(2011)
Carbohydr Polym
, vol.83
, pp. 1575-1581
-
-
Hu, W.1
Chen, S.2
Xu, Q.3
Wang, H.4
-
46
-
-
78651515343
-
TEMPO-oxidized cellulose nanofibers
-
Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. 10.1039/c0nr00583e
-
(2011)
Nanoscale
, vol.3
, pp. 71-85
-
-
Isogai, A.1
Saito, T.2
Fukuzumi, H.3
-
47
-
-
0348160918
-
Thermal degradation of cellulose and its esters in air
-
Jain R, Lal K, Bhatnagar H (1982) Thermal degradation of cellulose and its esters in air. Indian J Text Res 7:49–55
-
(1982)
Indian J Text Res
, vol.7
, pp. 49-55
-
-
Jain, R.1
Lal, K.2
Bhatnagar, H.3
-
48
-
-
84860361454
-
Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers
-
Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. 10.1007/s10570-012-9684-6
-
(2012)
Cellulose
, vol.19
, pp. 855-866
-
-
Kargarzadeh, H.1
Ahmad, I.2
Abdullah, I.3
-
49
-
-
84981928052
-
Thermal degradation studies of cellulose phosphates and cellulose thiophosphates
-
Kaur B, Gur IS, Bhatnagar HL (1987) Thermal degradation studies of cellulose phosphates and cellulose thiophosphates. Die Angew Makromol Chem 147:157–183. 10.1002/apmc.1987.051470115
-
(1987)
Die Angew Makromol Chem
, vol.147
, pp. 157-183
-
-
Kaur, B.1
Gur, I.S.2
Bhatnagar, H.L.3
-
50
-
-
85052147921
-
Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting
-
Kedzior SA, Kiriakou M, Niinivaara E et al (2018) Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting. ACS Macro Lett 7:990–996. 10.1021/acsmacrolett.8b00334
-
(2018)
ACS Macro Lett
, vol.7
, pp. 990-996
-
-
Kedzior, S.A.1
Kiriakou, M.2
Niinivaara, E.3
-
51
-
-
77949914438
-
Thermal decomposition of native cellulose: influence on crystallite size
-
Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781. 10.1016/j.polymdegradstab.2010.02.009
-
(2010)
Polym Degrad Stab
, vol.95
, pp. 778-781
-
-
Kim, U.J.1
Eom, S.H.2
Wada, M.3
-
52
-
-
79751517209
-
Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure
-
Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305. 10.1002/smll.201001715
-
(2011)
Small
, vol.7
, pp. 302-305
-
-
Leung, A.C.W.1
Hrapovic, S.2
Lam, E.3
-
53
-
-
84981215611
-
Hydrothermal gelation of aqueous cellulose nanocrystal suspensions
-
Lewis L, Derakhshandeh M, Hatzikiriakos SG et al (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromol 17:2747–2754. 10.1021/acs.biomac.6b00906
-
(2016)
Biomacromol
, vol.17
, pp. 2747-2754
-
-
Lewis, L.1
Derakhshandeh, M.2
Hatzikiriakos, S.G.3
-
54
-
-
84899522444
-
Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees
-
Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. 10.1039/c3nr06761k
-
(2014)
Nanoscale
, vol.6
, pp. 5384-5393
-
-
Lin, N.1
Dufresne, A.2
-
55
-
-
72149099093
-
Kinetics and mechanism of cellulose pyrolysis kinetics and mechanism of cellulose pyrolysis
-
Lin Y, Cho J, Tompsett GA et al (2009) Kinetics and mechanism of cellulose pyrolysis kinetics and mechanism of cellulose pyrolysis. Cellulose 113:20097–20107. 10.1021/jp906702p
-
(2009)
Cellulose
, vol.113
, pp. 20097-20107
-
-
Lin, Y.1
Cho, J.2
Tompsett, G.A.3
-
56
-
-
77955421490
-
Preparation and properties of cellulose nanocrystals: rods, spheres, and network
-
Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. 10.1016/j.carbpol.2010.04.073
-
(2010)
Carbohydr Polym
, vol.82
, pp. 329-336
-
-
Lu, P.1
Hsieh, Y.L.2
-
57
-
-
84900470075
-
Cellulose nanocrystals and related nanocomposites: review of some properties and challenges
-
Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806. 10.1002/polb.23490
-
(2014)
J Polym Sci Part B Polym Phys
, vol.52
, pp. 791-806
-
-
Mariano, M.1
El Kissi, N.2
Dufresne, A.3
-
58
-
-
84896729752
-
What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end
-
Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrolysis 106:138–146. 10.1016/j.jaap.2014.01.011
-
(2014)
J Anal Appl Pyrolysis
, vol.106
, pp. 138-146
-
-
Matsuoka, S.1
Kawamoto, H.2
Saka, S.3
-
59
-
-
84962420520
-
Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—premises for use of CNC in enhanced oil recovery
-
Molnes SN, Torrijos IP, Strand S et al (2016) Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—premises for use of CNC in enhanced oil recovery. Ind Crops Prod 93:152–160. 10.1016/j.indcrop.2016.03.019
-
(2016)
Ind Crops Prod
, vol.93
, pp. 152-160
-
-
Molnes, S.N.1
Torrijos, I.P.2
Strand, S.3
-
60
-
-
85028565735
-
The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery
-
Molnes SN, Paso KG, Strand S, Syverud K (2017) The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose. 10.1007/s10570-017-1437-0
-
(2017)
Cellulose
-
-
Molnes, S.N.1
Paso, K.G.2
Strand, S.3
Syverud, K.4
-
61
-
-
79959459258
-
Cellulose nanomaterials review: structure, properties and nanocomposites
-
Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. 10.1039/C0CS00108B
-
(2011)
Chem Soc Rev
, vol.40
, pp. 3941-3994
-
-
Moon, R.J.1
Martini, A.2
Nairn, J.3
-
62
-
-
0010254889
-
X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid
-
Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511. 10.1016/0006-3002(53)90295-9
-
(1953)
Biochim Biophys Acta
, vol.10
, pp. 499-511
-
-
Mukherjee, S.M.1
Woods, H.J.2
-
63
-
-
0042765708
-
Determination of the leveling-off degree of polymerization of cotton and rayon
-
Nelson ML, Tkipp VW (1949) Determination of the leveling-off degree of polymerization of cotton and rayon. J Polym Sci X:577–586. 10.1002/pol.1953.120100608
-
(1949)
J Polym Sci
, vol.10
, pp. 577-586
-
-
Nelson, M.L.1
Tkipp, V.W.2
-
64
-
-
84955482449
-
American process: production of low cost nanocellulose for renewable, advanced materials applications
-
Nelson K, Retsina T, Iakovlev M et al (2016) American process: production of low cost nanocellulose for renewable, advanced materials applications. Springer Ser Mater Sci 224:267–302. 10.1007/978-3-319-23419-9_9
-
(2016)
Springer Ser Mater Sci
, vol.224
, pp. 267-302
-
-
Nelson, K.1
Retsina, T.2
Iakovlev, M.3
-
65
-
-
0043266978
-
Cellulose intercrystalline structure
-
Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39:1507–1512. 10.1021/ie50455a024
-
(1947)
Ind Eng Chem
, vol.39
, pp. 1507-1512
-
-
Nickerson, R.F.1
Habrle, J.A.2
-
66
-
-
0042698363
-
Periodic disorder along ramie cellulose microfibrils
-
Nishiyama Y, Kim UJ, Kim DY et al (2003a) Periodic disorder along ramie cellulose microfibrils. Biomacromol 4:1013–1017. 10.1021/bm025772x
-
(2003)
Biomacromol
, vol.4
, pp. 1013-1017
-
-
Nishiyama, Y.1
Kim, U.J.2
Kim, D.Y.3
-
67
-
-
0344443362
-
Crystal structure and hydrogen bonding system in cellulose iα from synchrotron X-ray and neutron fiber diffraction
-
Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003b) Crystal structure and hydrogen bonding system in cellulose iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. 10.1021/ja037055w
-
(2003)
J Am Chem Soc
, vol.125
, pp. 14300-14306
-
-
Nishiyama, Y.1
Sugiyama, J.2
Chanzy, H.3
Langan, P.4
-
68
-
-
85008512317
-
Complete nanofibrillation of cellulose prepared by phosphorylation
-
Noguchi Y, Homma I, Matsubara Y (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24:1295–1305. 10.1007/s10570-017-1191-3
-
(2017)
Cellulose
, vol.24
, pp. 1295-1305
-
-
Noguchi, Y.1
Homma, I.2
Matsubara, Y.3
-
69
-
-
77952511855
-
Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance
-
Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. 10.1186/1754-6834-3-10
-
(2010)
Biotechnol Biofuels
, vol.3
, pp. 1-10
-
-
Park, S.1
Baker, J.O.2
Himmel, M.E.3
-
70
-
-
84857444831
-
Thermal decomposition of wood: influence of wood components and cellulose crystallite size
-
Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153. 10.1016/j.biortech.2011.11.122
-
(2012)
Bioresour Technol
, vol.109
, pp. 148-153
-
-
Poletto, M.1
Zattera, A.J.2
Forte, M.M.C.3
Santana, R.M.C.4
-
71
-
-
5044225001
-
Aqueous colloidal solutions of cellulose micelles
-
Rånby BG, Banderet A, Sillén LG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650. 10.3891/acta.chem.scand.03-0649
-
(1949)
Acta Chem Scand
, vol.3
, pp. 649-650
-
-
Rånby, B.G.1
Banderet, A.2
Sillén, L.G.3
-
72
-
-
85013629931
-
Benchmarking cellulose nanocrystals: from the laboratory to industrial production
-
Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. 10.1021/acs.langmuir.6b03765
-
(2017)
Langmuir
, vol.33
, pp. 1583-1598
-
-
Reid, M.S.1
Villalobos, M.2
Cranston, E.D.3
-
73
-
-
84923085343
-
Toxicity of cellulose nanocrystals: a review
-
Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33. 10.1089/ind.2014.0024
-
(2015)
Ind Biotechnol
, vol.11
, pp. 25-33
-
-
Roman, M.1
-
74
-
-
5044230319
-
Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose
-
Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. 10.1021/bm034519+
-
(2004)
Biomacromol
, vol.5
, pp. 1671-1677
-
-
Roman, M.1
Winter, W.T.2
-
75
-
-
80052046323
-
Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface
-
Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. 10.1007/s10853-011-5696-0
-
(2011)
J Mater Sci
, vol.46
, pp. 7344-7355
-
-
Sadeghifar, H.1
Filpponen, I.2
Clarke, S.P.3
-
76
-
-
0025958055
-
Super absorbent materials from lignocellulosic materials by phosphorylation
-
Saito N, Seki K, Aoyama M (1991) Super absorbent materials from lignocellulosic materials by phosphorylation. Sen’i Gakkaishi 47:255–258. 10.2115/fiber.47.255
-
(1991)
Sen’i Gakkaishi
, vol.47
, pp. 255-258
-
-
Saito, N.1
Seki, K.2
Aoyama, M.3
-
77
-
-
0034817510
-
Overview of water evolution during the thermal degradation of cellulose
-
Scherirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942
-
(2001)
Eur Polym J
, vol.37
, pp. 933-942
-
-
Scherirs, J.1
Camino, G.2
Tumiatti, W.3
-
78
-
-
0018440782
-
Thermal-degradation of cellulose in air and nitrogen at low-temperatures
-
Shafizadeh F, Bradbury AGW (1979) Thermal-degradation of cellulose in air and nitrogen at low-temperatures. J Appl Polym Sci 23:1431–1442. 10.1002/app.1979.070230513
-
(1979)
J Appl Polym Sci
, vol.23
, pp. 1431-1442
-
-
Shafizadeh, F.1
Bradbury, A.G.W.2
-
79
-
-
0043093279
-
Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant cellulomonas fimi beta-1,4-glucanases
-
Stålbrand H, Mansfield SD, Saddler JN et al (1998) Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant cellulomonas fimi beta-1,4-glucanases. Appl Environ Microbiol 64:2374–2379
-
(1998)
Appl Environ Microbiol
, vol.64
, pp. 2374-2379
-
-
Stålbrand, H.1
Mansfield, S.D.2
Saddler, J.N.3
-
80
-
-
84932644496
-
Understanding nanocellulose chirality and structure-properties relationship at the single fibril level
-
Usov I, Nyström G, Adamcik J et al (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564. 10.1038/ncomms8564
-
(2015)
Nat Commun
, vol.6
, pp. 7564
-
-
Usov, I.1
Nyström, G.2
Adamcik, J.3
-
81
-
-
79951953023
-
New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction
-
Van Mao RL, Zhao Q, Dima G, Petraccone D (2011) New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catal Lett 141:271–276. 10.1007/s10562-010-0493-y
-
(2011)
Catal Lett
, vol.141
, pp. 271-276
-
-
Van Mao, R.L.1
Zhao, Q.2
Dima, G.3
Petraccone, D.4
-
82
-
-
85040048604
-
Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis
-
Vanderfleet OM, Osorio DA, Cranston ED (2018) Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philos Trans R Soc Lond A Math Phys Eng Sci 376:1–7. 10.1098/rsta.2017.0041
-
(2018)
Philos Trans R Soc Lond A Math Phys Eng Sci
, vol.376
, pp. 1-7
-
-
Vanderfleet, O.M.1
Osorio, D.A.2
Cranston, E.D.3
-
83
-
-
34249033150
-
Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups
-
Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer (Guildf) 48:3486–3493. 10.1016/j.polymer.2007.03.062
-
(2007)
Polymer (Guildf)
, vol.48
, pp. 3486-3493
-
-
Wang, N.1
Ding, E.2
Cheng, R.3
-
84
-
-
84904102011
-
Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs)
-
Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53:11007–11014. 10.1021/ie501672m
-
(2014)
Ind Eng Chem Res
, vol.53
, pp. 11007-11014
-
-
Wang, Q.1
Zhao, X.2
Zhu, J.Y.3
-
85
-
-
85015732046
-
Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis
-
Wang R, Chen L, Zhu JY, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3:328–335. 10.1002/cnma.201700015
-
(2017)
ChemNanoMat
, vol.3
, pp. 328-335
-
-
Wang, R.1
Chen, L.2
Zhu, J.Y.3
Yang, R.4
-
86
-
-
84875774089
-
Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions
-
Yu H, Qin Z, Liang B et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944. 10.1039/c3ta01150j
-
(2013)
J Mater Chem A
, vol.1
, pp. 3938-3944
-
-
Yu, H.1
Qin, Z.2
Liang, B.3
-
87
-
-
84966925969
-
New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants
-
Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643. 10.1021/acssuschemeng.6b00126
-
(2016)
ACS Sustain Chem Eng
, vol.4
, pp. 2632-2643
-
-
Yu, H.Y.1
Zhang, D.Z.2
Lu, F.F.3
Yao, J.4
-
88
-
-
84922274625
-
Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans
-
Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296. 10.1016/j.carbpol.2014.09.020
-
(2015)
Carbohydr Polym
, vol.117
, pp. 286-296
-
-
Zhao, Y.1
Zhang, Y.2
Lindström, M.E.3
Li, J.4
|