메뉴 건너뛰기




Volumn 26, Issue 1, 2019, Pages 507-528

Insight into thermal stability of cellulose nanocrystals from new hydrolysis methods with acid blends

Author keywords

Acid hydrolysis; Cellulose nanocrystals; Degree of polymerization; Nanocellulose; Phosphoric acid; Thermal stability

Indexed keywords

CELLULOSE; CHARGE DENSITY; CHEMICAL ANALYSIS; DEGRADATION; HYDROLYSIS; NANOCELLULOSE; NANOCRYSTALS; PHOSPHORIC ACID; POLYMERIZATION; SODIUM; STABILITY; SULFURIC ACID; SURFACE CHEMISTRY; THERMODYNAMIC STABILITY; THERMOGRAVIMETRIC ANALYSIS;

EID: 85058103428     PISSN: 09690239     EISSN: 1572882X     Source Type: Journal    
DOI: 10.1007/s10570-018-2175-7     Document Type: Article
Times cited : (131)

References (88)
  • 1
    • 84955755294 scopus 로고    scopus 로고
    • Probing crystallinity of never-dried wood cellulose with Raman spectroscopy
    • Agarwal UP, Ralph SA, Reiner RS, Baez C (2016) Probing crystallinity of never-dried wood cellulose with Raman spectroscopy. Cellulose 23:125–144. 10.1007/s10570-015-0788-7
    • (2016) Cellulose , vol.23 , pp. 125-144
    • Agarwal, U.P.1    Ralph, S.A.2    Reiner, R.S.3    Baez, C.4
  • 2
    • 84955679250 scopus 로고    scopus 로고
    • The thermal stability of nanocellulose and its acetates with different degree of polymerization
    • Agustin MB, Nakatsubo F, Yano H (2016) The thermal stability of nanocellulose and its acetates with different degree of polymerization. Cellulose 23:451–464. 10.1007/s10570-015-0813-x
    • (2016) Cellulose , vol.23 , pp. 451-464
    • Agustin, M.B.1    Nakatsubo, F.2    Yano, H.3
  • 3
    • 84958753866 scopus 로고    scopus 로고
    • Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials
    • Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086. 10.1007/s10570-016-0881-6
    • (2016) Cellulose , vol.23 , pp. 1073-1086
    • Ahvenainen, P.1    Kontro, I.2    Svedström, K.3
  • 4
    • 0032583052 scopus 로고    scopus 로고
    • Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose
    • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. 10.1016/S0927-7757(98)00404-X
    • (1998) Colloids Surf A Physicochem Eng Asp , vol.142 , pp. 75-82
    • Araki, J.1    Wada, M.2    Kuga, S.3    Okano, T.4
  • 5
    • 0035124535 scopus 로고    scopus 로고
    • Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting
    • Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir 17:21–27. 10.1021/la001070m
    • (2001) Langmuir , vol.17 , pp. 21-27
    • Araki, J.1    Wada, M.2    Kuga, S.3
  • 6
    • 84906970694 scopus 로고    scopus 로고
    • Surface esterification of cellulose nanofibers by a simple organocatalytic methodology
    • Ávila Ramírez JA, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423. 10.1016/j.carbpol.2014.08.020
    • (2014) Carbohydr Polym , vol.114 , pp. 416-423
    • Ávila Ramírez, J.A.1    Suriano, C.J.2    Cerrutti, P.3    Foresti, M.L.4
  • 7
    • 0011140640 scopus 로고
    • Hydrolysis and crystallization of cellulose
    • Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42:502–507. 10.1021/ie50483a029
    • (1950) Ind Eng Chem , vol.42 , pp. 502-507
    • Battista, O.A.1
  • 8
    • 0000362123 scopus 로고
    • Level-off degree of polymerization
    • Battista OA, Coppick S, Howsmon JA et al (1956) Level-off degree of polymerization. Ind Eng Chem 48:333–335. 10.1021/ie50554a046
    • (1956) Ind Eng Chem , vol.48 , pp. 333-335
    • Battista, O.A.1    Coppick, S.2    Howsmon, J.A.3
  • 9
    • 84894146532 scopus 로고    scopus 로고
    • Auto-catalyzed acidic desulfation of cellulose nanocrystals
    • Beck S, Bouchard J (2014) Auto-catalyzed acidic desulfation of cellulose nanocrystals. Nord Pulp Pap Res J 29:6–14. 10.3183/NPPRJ-2014-29-01-p006-014
    • (2014) Nord Pulp Pap Res J , vol.29 , pp. 6-14
    • Beck, S.1    Bouchard, J.2
  • 10
    • 84861177745 scopus 로고    scopus 로고
    • Dispersibility in water of dried nanocrystalline cellulose
    • Beck S, Bouchard J, Berry R (2012) Dispersibility in water of dried nanocrystalline cellulose. Biomacromol 13:1486–1494. 10.1021/bm300191k
    • (2012) Biomacromol , vol.13 , pp. 1486-1494
    • Beck, S.1    Bouchard, J.2    Berry, R.3
  • 11
    • 22144496510 scopus 로고    scopus 로고
    • Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions
    • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromol 6:1048–1054. 10.1021/bm049300p
    • (2005) Biomacromol , vol.6 , pp. 1048-1054
    • Beck-Candanedo, S.1    Roman, M.2    Gray, D.G.3
  • 12
    • 84975046541 scopus 로고    scopus 로고
    • DLS and zeta potential—What they are and what they are not?
    • Bhattacharjee S (2016) DLS and zeta potential—What they are and what they are not? J Control Release 235:337–351. 10.1016/j.jconrel.2016.06.017
    • (2016) J Control Release , vol.235 , pp. 337-351
    • Bhattacharjee, S.1
  • 13
    • 33645891642 scopus 로고    scopus 로고
    • Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis
    • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13:171–180. 10.1007/s10570-006-9061-4
    • (2006) Cellulose , vol.13 , pp. 171-180
    • Bondeson, D.1    Mathew, A.2    Oksman, K.3
  • 14
    • 84983374436 scopus 로고    scopus 로고
    • Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature
    • Bouchard J, Méthot M, Fraschini C, Beck S (2016) Effect of oligosaccharide deposition on the surface of cellulose nanocrystals as a function of acid hydrolysis temperature. Cellulose 23:3555–3567. 10.1007/s10570-016-1036-5
    • (2016) Cellulose , vol.23 , pp. 3555-3567
    • Bouchard, J.1    Méthot, M.2    Fraschini, C.3    Beck, S.4
  • 15
    • 0018478688 scopus 로고
    • A kinetic model for pyrolysis of cellulose
    • Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3280. 10.1002/app.1979.070231112
    • (1979) J Appl Polym Sci , vol.23 , pp. 3271-3280
    • Bradbury, A.G.W.1    Sakai, Y.2    Shafizadeh, F.3
  • 16
    • 84976869141 scopus 로고    scopus 로고
    • Correlating cellulose nanocrystal particle size and surface area
    • Brinkmann A, Chen M, Couillard M et al (2016) Correlating cellulose nanocrystal particle size and surface area. Langmuir 32:6105–6114. 10.1021/acs.langmuir.6b01376
    • (2016) Langmuir , vol.32 , pp. 6105-6114
    • Brinkmann, A.1    Chen, M.2    Couillard, M.3
  • 17
    • 84875994473 scopus 로고    scopus 로고
    • Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis
    • Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromol 14:1223–1230. 10.1021/bm400219u
    • (2013) Biomacromol , vol.14 , pp. 1223-1230
    • Camarero Espinosa, S.1    Kuhnt, T.2    Foster, E.J.3    Weder, C.4
  • 18
    • 84919360277 scopus 로고    scopus 로고
    • The influence of cellulose nanocrystal additions on the performance of cement paste
    • Cao Y, Zavaterri P, Youngblood J et al (2015) The influence of cellulose nanocrystal additions on the performance of cement paste. Cem Concr Compos 56:73–83. 10.1016/j.cemconcomp.2014.11.008
    • (2015) Cem Concr Compos , vol.56 , pp. 73-83
    • Cao, Y.1    Zavaterri, P.2    Youngblood, J.3
  • 19
    • 84989311373 scopus 로고    scopus 로고
    • The influence of cellulose nanocrystals on the microstructure of cement paste
    • Cao Y, Tian N, Bahr D et al (2016) The influence of cellulose nanocrystals on the microstructure of cement paste. Cem Concr Compos 74:164–173. 10.1016/j.cemconcomp.2016.09.008
    • (2016) Cem Concr Compos , vol.74 , pp. 164-173
    • Cao, Y.1    Tian, N.2    Bahr, D.3
  • 21
    • 84937758344 scopus 로고    scopus 로고
    • Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis
    • Chen L, Wang Q, Hirth K et al (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762. 10.1007/s10570-015-0615-1
    • (2015) Cellulose , vol.22 , pp. 1753-1762
    • Chen, L.1    Wang, Q.2    Hirth, K.3
  • 22
    • 84976600304 scopus 로고    scopus 로고
    • Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids
    • Chen L, Zhu JY, Baez C et al (2016) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18:3835–3843. 10.1039/C6GC00687F
    • (2016) Green Chem , vol.18 , pp. 3835-3843
    • Chen, L.1    Zhu, J.Y.2    Baez, C.3
  • 23
    • 0034147275 scopus 로고    scopus 로고
    • A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy
    • Cherif M, Mgaidi A, Ammar N et al (2000) A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J Solut Chem 29:255–269. 10.1023/A:1005150400746
    • (2000) J Solut Chem , vol.29 , pp. 255-269
    • Cherif, M.1    Mgaidi, A.2    Ammar, N.3
  • 24
    • 4243747552 scopus 로고
    • Size exclusion chromatography of cellulose and cellulose derivatives
    • Wu CS, (ed), 1, Marcel Dekker, New York
    • Conner A (1995) Size exclusion chromatography of cellulose and cellulose derivatives. In: Wu CS (ed) Handbook of size exclusion chromatography, 1st edn. Marcel Dekker, New York, pp 331–352
    • (1995) Handbook of size exclusion chromatography , pp. 331-352
    • Conner, A.1
  • 25
    • 33749567613 scopus 로고    scopus 로고
    • Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose
    • Cranston ED, Gray DG (2006) Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose. Biomacromol 7:2522–2530. 10.1021/bm0602886
    • (2006) Biomacromol , vol.7 , pp. 2522-2530
    • Cranston, E.D.1    Gray, D.G.2
  • 26
    • 85014079439 scopus 로고    scopus 로고
    • Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties
    • Criado P, Fraschini C, Jamshidian M et al (2017) Gamma-irradiation of cellulose nanocrystals (CNCs): investigation of physicochemical and antioxidant properties. Cellulose 24:2111–2124. 10.1007/s10570-017-1241-x
    • (2017) Cellulose , vol.24 , pp. 2111-2124
    • Criado, P.1    Fraschini, C.2    Jamshidian, M.3
  • 27
    • 85034783163 scopus 로고    scopus 로고
    • Pressure sensitive adhesive property modification using cellulose nanocrystals
    • Dastjerdi Z, Cranston ED, Dubé MA (2018) Pressure sensitive adhesive property modification using cellulose nanocrystals. Int J Adhes Adhes 81:36. 10.1016/j.ijadhadh.2017.11.009
    • (2018) Int J Adhes Adhes , vol.81 , pp. 36
    • Dastjerdi, Z.1    Cranston, E.D.2    Dubé, M.A.3
  • 28
    • 70249147950 scopus 로고    scopus 로고
    • Thermal degradation of carboxymethylcellulose in different salty forms
    • de Britto D, Assis OBG (2009) Thermal degradation of carboxymethylcellulose in different salty forms. Thermochim Acta 494:115–122. 10.1016/j.tca.2009.04.028
    • (2009) Thermochim Acta , vol.494 , pp. 115-122
    • de Britto, D.1    Assis, O.B.G.2
  • 29
    • 85019868510 scopus 로고    scopus 로고
    • Review of hydrogels and aerogels containing nanocellulose
    • De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. 10.1021/acs.chemmater.7b00531
    • (2017) Chem Mater , vol.29 , pp. 4609-4631
    • De France, K.J.1    Hoare, T.2    Cranston, E.D.3
  • 30
    • 84904367724 scopus 로고    scopus 로고
    • The potential of cellulose nanocrystals in tissue engineering strategies
    • Domingues RMAR, Gomes MEM, Reis RRL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromol 15:2327–2346. 10.1021/bm500524s
    • (2014) Biomacromol , vol.15 , pp. 2327-2346
    • Domingues, R.M.A.R.1    Gomes, M.E.M.2    Reis, R.R.L.3
  • 31
    • 0001975196 scopus 로고    scopus 로고
    • Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose
    • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32. 10.1023/A:1009260511939
    • (1998) Cellulose , vol.5 , pp. 19-32
    • Dong, X.M.1    Revol, J.-F.2    Gray, D.G.3
  • 32
    • 84958581527 scopus 로고    scopus 로고
    • Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study
    • Dong S, Bortner MJ, Roman M (2016) Analysis of the sulfuric acid hydrolysis of wood pulp for cellulose nanocrystal production: a central composite design study. Ind Crops Prod 93:76–87. 10.1016/j.indcrop.2016.01.048
    • (2016) Ind Crops Prod , vol.93 , pp. 76-87
    • Dong, S.1    Bortner, M.J.2    Roman, M.3
  • 33
    • 79251475562 scopus 로고    scopus 로고
    • Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials
    • Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Crystallogr 44:184–192. 10.1107/S0021889810043955
    • (2011) J Appl Crystallogr , vol.44 , pp. 184-192
    • Driemeier, C.1    Calligaris, G.A.2
  • 34
    • 84903649489 scopus 로고    scopus 로고
    • Surface modification of cellulose nanocrystals
    • Eyley SS, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6:7764–7779. 10.1039/c4nr01756k
    • (2014) Nanoscale , vol.6 , pp. 7764-7779
    • Eyley, S.S.1    Thielemans, W.2
  • 35
    • 85045926984 scopus 로고    scopus 로고
    • Current characterization methods for cellulose nanomaterials
    • Foster EJ, Moon RJ, Agarwal UP et al (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47:2609–2679. 10.1039/c6cs00895j
    • (2018) Chem Soc Rev , vol.47 , pp. 2609-2679
    • Foster, E.J.1    Moon, R.J.2    Agarwal, U.P.3
  • 36
    • 84872337504 scopus 로고    scopus 로고
    • Cellulose polymorphy, crystallite size, and the segal crystallinity index
    • French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20:583–588. 10.1007/s10570-012-9833-y
    • (2013) Cellulose , vol.20 , pp. 583-588
    • French, A.D.1    Santiago Cintrón, M.2
  • 37
    • 77955518178 scopus 로고    scopus 로고
    • Thermal stabilization of TEMPO-oxidized cellulose
    • Fukuzumi H, Saito T, Okita Y, Isogai A (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95:1502–1508. 10.1016/j.polymdegradstab.2010.06.015
    • (2010) Polym Degrad Stab , vol.95 , pp. 1502-1508
    • Fukuzumi, H.1    Saito, T.2    Okita, Y.3    Isogai, A.4
  • 38
    • 84944096784 scopus 로고    scopus 로고
    • Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials
    • Ghanadpour M, Carosio F, Larsson PT, Wågberg L (2015) Phosphorylated cellulose nanofibrils: a renewable nanomaterial for the preparation of intrinsically flame-retardant materials. Biomacromol 16:3399–3410. 10.1021/acs.biomac.5b01117
    • (2015) Biomacromol , vol.16 , pp. 3399-3410
    • Ghanadpour, M.1    Carosio, F.2    Larsson, P.T.3    Wågberg, L.4
  • 39
    • 85027950856 scopus 로고    scopus 로고
    • Functional materials from cellulose-derived liquid-crystal templates
    • Giese M, Blusch LK, Khan MK, MacLachlan MJ (2015) Functional materials from cellulose-derived liquid-crystal templates. Angew Chem Int Ed 54:2888–2910. 10.1002/anie.201407141
    • (2015) Angew Chem Int Ed , vol.54 , pp. 2888-2910
    • Giese, M.1    Blusch, L.K.2    Khan, M.K.3    MacLachlan, M.J.4
  • 40
    • 0033005620 scopus 로고    scopus 로고
    • A round-Robin study of cellulose pyrolysis kinetics by thermogravimetry
    • Grønli M, Antal MJ, Várhegyi G (1999) A round-Robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind Eng Chem Res 38:2238–2244. 10.1021/ie980601n
    • (1999) Ind Eng Chem Res , vol.38 , pp. 2238-2244
    • Grønli, M.1    Antal, M.J.2    Várhegyi, G.3
  • 41
    • 84893855703 scopus 로고    scopus 로고
    • Key advances in the chemical modification of nanocelluloses
    • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542. 10.1039/C3CS60204D
    • (2014) Chem Soc Rev , vol.43 , pp. 1519-1542
    • Habibi, Y.1
  • 42
    • 77953296073 scopus 로고    scopus 로고
    • Cellulose nanocrystals: chemistry, self assembly, and applications
    • Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self assembly, and applications. Chem Rev 110:3479–3500. 10.1021/cr900339w
    • (2010) Chem Rev , vol.110 , pp. 3479-3500
    • Habibi, Y.1    Lucia, L.A.2    Rojas, O.J.3
  • 43
    • 84988953906 scopus 로고    scopus 로고
    • Temperature stability of nanocellulose dispersions
    • Heggset EB, Chinga-Carrasco G, Syverud K (2017) Temperature stability of nanocellulose dispersions. Carbohydr Polym 157:114–121. 10.1016/j.carbpol.2016.09.077
    • (2017) Carbohydr Polym , vol.157 , pp. 114-121
    • Heggset, E.B.1    Chinga-Carrasco, G.2    Syverud, K.3
  • 44
    • 85047360003 scopus 로고    scopus 로고
    • Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation
    • Honorato-Rios C, Lehr C, Schütz C et al (2018) Fractionation of cellulose nanocrystals: enhancing liquid crystal ordering without promoting gelation. NPG Asia Mater 10:455–465. 10.1038/s41427-018-0046-1
    • (2018) NPG Asia Mater , vol.10 , pp. 455-465
    • Honorato-Rios, C.1    Lehr, C.2    Schütz, C.3
  • 45
    • 78650518881 scopus 로고    scopus 로고
    • Solvent-free acetylation of bacterial cellulose under moderate conditions
    • Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581. 10.1016/j.carbpol.2010.10.016
    • (2011) Carbohydr Polym , vol.83 , pp. 1575-1581
    • Hu, W.1    Chen, S.2    Xu, Q.3    Wang, H.4
  • 46
    • 78651515343 scopus 로고    scopus 로고
    • TEMPO-oxidized cellulose nanofibers
    • Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85. 10.1039/c0nr00583e
    • (2011) Nanoscale , vol.3 , pp. 71-85
    • Isogai, A.1    Saito, T.2    Fukuzumi, H.3
  • 47
    • 0348160918 scopus 로고
    • Thermal degradation of cellulose and its esters in air
    • Jain R, Lal K, Bhatnagar H (1982) Thermal degradation of cellulose and its esters in air. Indian J Text Res 7:49–55
    • (1982) Indian J Text Res , vol.7 , pp. 49-55
    • Jain, R.1    Lal, K.2    Bhatnagar, H.3
  • 48
    • 84860361454 scopus 로고    scopus 로고
    • Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers
    • Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19:855–866. 10.1007/s10570-012-9684-6
    • (2012) Cellulose , vol.19 , pp. 855-866
    • Kargarzadeh, H.1    Ahmad, I.2    Abdullah, I.3
  • 49
    • 84981928052 scopus 로고
    • Thermal degradation studies of cellulose phosphates and cellulose thiophosphates
    • Kaur B, Gur IS, Bhatnagar HL (1987) Thermal degradation studies of cellulose phosphates and cellulose thiophosphates. Die Angew Makromol Chem 147:157–183. 10.1002/apmc.1987.051470115
    • (1987) Die Angew Makromol Chem , vol.147 , pp. 157-183
    • Kaur, B.1    Gur, I.S.2    Bhatnagar, H.L.3
  • 50
    • 85052147921 scopus 로고    scopus 로고
    • Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting
    • Kedzior SA, Kiriakou M, Niinivaara E et al (2018) Incorporating cellulose nanocrystals into the core of polymer latex particles via polymer grafting. ACS Macro Lett 7:990–996. 10.1021/acsmacrolett.8b00334
    • (2018) ACS Macro Lett , vol.7 , pp. 990-996
    • Kedzior, S.A.1    Kiriakou, M.2    Niinivaara, E.3
  • 51
    • 77949914438 scopus 로고    scopus 로고
    • Thermal decomposition of native cellulose: influence on crystallite size
    • Kim UJ, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781. 10.1016/j.polymdegradstab.2010.02.009
    • (2010) Polym Degrad Stab , vol.95 , pp. 778-781
    • Kim, U.J.1    Eom, S.H.2    Wada, M.3
  • 52
    • 79751517209 scopus 로고    scopus 로고
    • Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure
    • Leung ACW, Hrapovic S, Lam E et al (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305. 10.1002/smll.201001715
    • (2011) Small , vol.7 , pp. 302-305
    • Leung, A.C.W.1    Hrapovic, S.2    Lam, E.3
  • 53
    • 84981215611 scopus 로고    scopus 로고
    • Hydrothermal gelation of aqueous cellulose nanocrystal suspensions
    • Lewis L, Derakhshandeh M, Hatzikiriakos SG et al (2016) Hydrothermal gelation of aqueous cellulose nanocrystal suspensions. Biomacromol 17:2747–2754. 10.1021/acs.biomac.6b00906
    • (2016) Biomacromol , vol.17 , pp. 2747-2754
    • Lewis, L.1    Derakhshandeh, M.2    Hatzikiriakos, S.G.3
  • 54
    • 84899522444 scopus 로고    scopus 로고
    • Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees
    • Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. 10.1039/c3nr06761k
    • (2014) Nanoscale , vol.6 , pp. 5384-5393
    • Lin, N.1    Dufresne, A.2
  • 55
    • 72149099093 scopus 로고    scopus 로고
    • Kinetics and mechanism of cellulose pyrolysis kinetics and mechanism of cellulose pyrolysis
    • Lin Y, Cho J, Tompsett GA et al (2009) Kinetics and mechanism of cellulose pyrolysis kinetics and mechanism of cellulose pyrolysis. Cellulose 113:20097–20107. 10.1021/jp906702p
    • (2009) Cellulose , vol.113 , pp. 20097-20107
    • Lin, Y.1    Cho, J.2    Tompsett, G.A.3
  • 56
    • 77955421490 scopus 로고    scopus 로고
    • Preparation and properties of cellulose nanocrystals: rods, spheres, and network
    • Lu P, Hsieh YL (2010) Preparation and properties of cellulose nanocrystals: rods, spheres, and network. Carbohydr Polym 82:329–336. 10.1016/j.carbpol.2010.04.073
    • (2010) Carbohydr Polym , vol.82 , pp. 329-336
    • Lu, P.1    Hsieh, Y.L.2
  • 57
    • 84900470075 scopus 로고    scopus 로고
    • Cellulose nanocrystals and related nanocomposites: review of some properties and challenges
    • Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Part B Polym Phys 52:791–806. 10.1002/polb.23490
    • (2014) J Polym Sci Part B Polym Phys , vol.52 , pp. 791-806
    • Mariano, M.1    El Kissi, N.2    Dufresne, A.3
  • 58
    • 84896729752 scopus 로고    scopus 로고
    • What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end
    • Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrolysis 106:138–146. 10.1016/j.jaap.2014.01.011
    • (2014) J Anal Appl Pyrolysis , vol.106 , pp. 138-146
    • Matsuoka, S.1    Kawamoto, H.2    Saka, S.3
  • 59
    • 84962420520 scopus 로고    scopus 로고
    • Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—premises for use of CNC in enhanced oil recovery
    • Molnes SN, Torrijos IP, Strand S et al (2016) Sandstone injectivity and salt stability of cellulose nanocrystals (CNC) dispersions—premises for use of CNC in enhanced oil recovery. Ind Crops Prod 93:152–160. 10.1016/j.indcrop.2016.03.019
    • (2016) Ind Crops Prod , vol.93 , pp. 152-160
    • Molnes, S.N.1    Torrijos, I.P.2    Strand, S.3
  • 60
    • 85028565735 scopus 로고    scopus 로고
    • The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery
    • Molnes SN, Paso KG, Strand S, Syverud K (2017) The effects of pH, time and temperature on the stability and viscosity of cellulose nanocrystal (CNC) dispersions: implications for use in enhanced oil recovery. Cellulose. 10.1007/s10570-017-1437-0
    • (2017) Cellulose
    • Molnes, S.N.1    Paso, K.G.2    Strand, S.3    Syverud, K.4
  • 61
    • 79959459258 scopus 로고    scopus 로고
    • Cellulose nanomaterials review: structure, properties and nanocomposites
    • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994. 10.1039/C0CS00108B
    • (2011) Chem Soc Rev , vol.40 , pp. 3941-3994
    • Moon, R.J.1    Martini, A.2    Nairn, J.3
  • 62
    • 0010254889 scopus 로고
    • X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid
    • Mukherjee SM, Woods HJ (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim Biophys Acta 10:499–511. 10.1016/0006-3002(53)90295-9
    • (1953) Biochim Biophys Acta , vol.10 , pp. 499-511
    • Mukherjee, S.M.1    Woods, H.J.2
  • 63
    • 0042765708 scopus 로고
    • Determination of the leveling-off degree of polymerization of cotton and rayon
    • Nelson ML, Tkipp VW (1949) Determination of the leveling-off degree of polymerization of cotton and rayon. J Polym Sci X:577–586. 10.1002/pol.1953.120100608
    • (1949) J Polym Sci , vol.10 , pp. 577-586
    • Nelson, M.L.1    Tkipp, V.W.2
  • 64
    • 84955482449 scopus 로고    scopus 로고
    • American process: production of low cost nanocellulose for renewable, advanced materials applications
    • Nelson K, Retsina T, Iakovlev M et al (2016) American process: production of low cost nanocellulose for renewable, advanced materials applications. Springer Ser Mater Sci 224:267–302. 10.1007/978-3-319-23419-9_9
    • (2016) Springer Ser Mater Sci , vol.224 , pp. 267-302
    • Nelson, K.1    Retsina, T.2    Iakovlev, M.3
  • 65
    • 0043266978 scopus 로고
    • Cellulose intercrystalline structure
    • Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39:1507–1512. 10.1021/ie50455a024
    • (1947) Ind Eng Chem , vol.39 , pp. 1507-1512
    • Nickerson, R.F.1    Habrle, J.A.2
  • 66
    • 0042698363 scopus 로고    scopus 로고
    • Periodic disorder along ramie cellulose microfibrils
    • Nishiyama Y, Kim UJ, Kim DY et al (2003a) Periodic disorder along ramie cellulose microfibrils. Biomacromol 4:1013–1017. 10.1021/bm025772x
    • (2003) Biomacromol , vol.4 , pp. 1013-1017
    • Nishiyama, Y.1    Kim, U.J.2    Kim, D.Y.3
  • 67
    • 0344443362 scopus 로고    scopus 로고
    • Crystal structure and hydrogen bonding system in cellulose iα from synchrotron X-ray and neutron fiber diffraction
    • Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003b) Crystal structure and hydrogen bonding system in cellulose iα from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 125:14300–14306. 10.1021/ja037055w
    • (2003) J Am Chem Soc , vol.125 , pp. 14300-14306
    • Nishiyama, Y.1    Sugiyama, J.2    Chanzy, H.3    Langan, P.4
  • 68
    • 85008512317 scopus 로고    scopus 로고
    • Complete nanofibrillation of cellulose prepared by phosphorylation
    • Noguchi Y, Homma I, Matsubara Y (2017) Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose 24:1295–1305. 10.1007/s10570-017-1191-3
    • (2017) Cellulose , vol.24 , pp. 1295-1305
    • Noguchi, Y.1    Homma, I.2    Matsubara, Y.3
  • 69
    • 77952511855 scopus 로고    scopus 로고
    • Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance
    • Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:1–10. 10.1186/1754-6834-3-10
    • (2010) Biotechnol Biofuels , vol.3 , pp. 1-10
    • Park, S.1    Baker, J.O.2    Himmel, M.E.3
  • 70
    • 84857444831 scopus 로고    scopus 로고
    • Thermal decomposition of wood: influence of wood components and cellulose crystallite size
    • Poletto M, Zattera AJ, Forte MMC, Santana RMC (2012) Thermal decomposition of wood: influence of wood components and cellulose crystallite size. Bioresour Technol 109:148–153. 10.1016/j.biortech.2011.11.122
    • (2012) Bioresour Technol , vol.109 , pp. 148-153
    • Poletto, M.1    Zattera, A.J.2    Forte, M.M.C.3    Santana, R.M.C.4
  • 71
    • 5044225001 scopus 로고
    • Aqueous colloidal solutions of cellulose micelles
    • Rånby BG, Banderet A, Sillén LG (1949) Aqueous colloidal solutions of cellulose micelles. Acta Chem Scand 3:649–650. 10.3891/acta.chem.scand.03-0649
    • (1949) Acta Chem Scand , vol.3 , pp. 649-650
    • Rånby, B.G.1    Banderet, A.2    Sillén, L.G.3
  • 72
    • 85013629931 scopus 로고    scopus 로고
    • Benchmarking cellulose nanocrystals: from the laboratory to industrial production
    • Reid MS, Villalobos M, Cranston ED (2017) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33:1583–1598. 10.1021/acs.langmuir.6b03765
    • (2017) Langmuir , vol.33 , pp. 1583-1598
    • Reid, M.S.1    Villalobos, M.2    Cranston, E.D.3
  • 73
    • 84923085343 scopus 로고    scopus 로고
    • Toxicity of cellulose nanocrystals: a review
    • Roman M (2015) Toxicity of cellulose nanocrystals: a review. Ind Biotechnol 11:25–33. 10.1089/ind.2014.0024
    • (2015) Ind Biotechnol , vol.11 , pp. 25-33
    • Roman, M.1
  • 74
    • 5044230319 scopus 로고    scopus 로고
    • Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose
    • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromol 5:1671–1677. 10.1021/bm034519+
    • (2004) Biomacromol , vol.5 , pp. 1671-1677
    • Roman, M.1    Winter, W.T.2
  • 75
    • 80052046323 scopus 로고    scopus 로고
    • Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface
    • Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. 10.1007/s10853-011-5696-0
    • (2011) J Mater Sci , vol.46 , pp. 7344-7355
    • Sadeghifar, H.1    Filpponen, I.2    Clarke, S.P.3
  • 76
    • 0025958055 scopus 로고
    • Super absorbent materials from lignocellulosic materials by phosphorylation
    • Saito N, Seki K, Aoyama M (1991) Super absorbent materials from lignocellulosic materials by phosphorylation. Sen’i Gakkaishi 47:255–258. 10.2115/fiber.47.255
    • (1991) Sen’i Gakkaishi , vol.47 , pp. 255-258
    • Saito, N.1    Seki, K.2    Aoyama, M.3
  • 77
    • 0034817510 scopus 로고    scopus 로고
    • Overview of water evolution during the thermal degradation of cellulose
    • Scherirs J, Camino G, Tumiatti W (2001) Overview of water evolution during the thermal degradation of cellulose. Eur Polym J 37:933–942
    • (2001) Eur Polym J , vol.37 , pp. 933-942
    • Scherirs, J.1    Camino, G.2    Tumiatti, W.3
  • 78
    • 0018440782 scopus 로고
    • Thermal-degradation of cellulose in air and nitrogen at low-temperatures
    • Shafizadeh F, Bradbury AGW (1979) Thermal-degradation of cellulose in air and nitrogen at low-temperatures. J Appl Polym Sci 23:1431–1442. 10.1002/app.1979.070230513
    • (1979) J Appl Polym Sci , vol.23 , pp. 1431-1442
    • Shafizadeh, F.1    Bradbury, A.G.W.2
  • 79
    • 0043093279 scopus 로고    scopus 로고
    • Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant cellulomonas fimi beta-1,4-glucanases
    • Stålbrand H, Mansfield SD, Saddler JN et al (1998) Analysis of molecular size distributions of cellulose molecules during hydrolysis of cellulose by recombinant cellulomonas fimi beta-1,4-glucanases. Appl Environ Microbiol 64:2374–2379
    • (1998) Appl Environ Microbiol , vol.64 , pp. 2374-2379
    • Stålbrand, H.1    Mansfield, S.D.2    Saddler, J.N.3
  • 80
    • 84932644496 scopus 로고    scopus 로고
    • Understanding nanocellulose chirality and structure-properties relationship at the single fibril level
    • Usov I, Nyström G, Adamcik J et al (2015) Understanding nanocellulose chirality and structure-properties relationship at the single fibril level. Nat Commun 6:7564. 10.1038/ncomms8564
    • (2015) Nat Commun , vol.6 , pp. 7564
    • Usov, I.1    Nyström, G.2    Adamcik, J.3
  • 81
    • 79951953023 scopus 로고    scopus 로고
    • New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction
    • Van Mao RL, Zhao Q, Dima G, Petraccone D (2011) New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catal Lett 141:271–276. 10.1007/s10562-010-0493-y
    • (2011) Catal Lett , vol.141 , pp. 271-276
    • Van Mao, R.L.1    Zhao, Q.2    Dima, G.3    Petraccone, D.4
  • 82
    • 85040048604 scopus 로고    scopus 로고
    • Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis
    • Vanderfleet OM, Osorio DA, Cranston ED (2018) Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis. Philos Trans R Soc Lond A Math Phys Eng Sci 376:1–7. 10.1098/rsta.2017.0041
    • (2018) Philos Trans R Soc Lond A Math Phys Eng Sci , vol.376 , pp. 1-7
    • Vanderfleet, O.M.1    Osorio, D.A.2    Cranston, E.D.3
  • 83
    • 34249033150 scopus 로고    scopus 로고
    • Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups
    • Wang N, Ding E, Cheng R (2007) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer (Guildf) 48:3486–3493. 10.1016/j.polymer.2007.03.062
    • (2007) Polymer (Guildf) , vol.48 , pp. 3486-3493
    • Wang, N.1    Ding, E.2    Cheng, R.3
  • 84
    • 84904102011 scopus 로고    scopus 로고
    • Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs)
    • Wang Q, Zhao X, Zhu JY (2014) Kinetics of strong acid hydrolysis of a bleached kraft pulp for producing cellulose nanocrystals (CNCs). Ind Eng Chem Res 53:11007–11014. 10.1021/ie501672m
    • (2014) Ind Eng Chem Res , vol.53 , pp. 11007-11014
    • Wang, Q.1    Zhao, X.2    Zhu, J.Y.3
  • 85
    • 85015732046 scopus 로고    scopus 로고
    • Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis
    • Wang R, Chen L, Zhu JY, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3:328–335. 10.1002/cnma.201700015
    • (2017) ChemNanoMat , vol.3 , pp. 328-335
    • Wang, R.1    Chen, L.2    Zhu, J.Y.3    Yang, R.4
  • 86
    • 84875774089 scopus 로고    scopus 로고
    • Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions
    • Yu H, Qin Z, Liang B et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938–3944. 10.1039/c3ta01150j
    • (2013) J Mater Chem A , vol.1 , pp. 3938-3944
    • Yu, H.1    Qin, Z.2    Liang, B.3
  • 87
    • 84966925969 scopus 로고    scopus 로고
    • New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants
    • Yu HY, Zhang DZ, Lu FF, Yao J (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643. 10.1021/acssuschemeng.6b00126
    • (2016) ACS Sustain Chem Eng , vol.4 , pp. 2632-2643
    • Yu, H.Y.1    Zhang, D.Z.2    Lu, F.F.3    Yao, J.4
  • 88
    • 84922274625 scopus 로고    scopus 로고
    • Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans
    • Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296. 10.1016/j.carbpol.2014.09.020
    • (2015) Carbohydr Polym , vol.117 , pp. 286-296
    • Zhao, Y.1    Zhang, Y.2    Lindström, M.E.3    Li, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.