메뉴 건너뛰기




Volumn 23, Issue 1, 2016, Pages 451-464

The thermal stability of nanocellulose and its acetates with different degree of polymerization

Author keywords

Acetylation; Degree of polymerization; Nanocellulose; Reducing ends; Thermal stability

Indexed keywords

CELLULOSE; HYDROLYSIS; POLYMERIZATION; STABILITY; STABILIZATION; THERMODYNAMIC STABILITY;

EID: 84955679250     PISSN: 09690239     EISSN: 1572882X     Source Type: Journal    
DOI: 10.1007/s10570-015-0813-x     Document Type: Article
Times cited : (64)

References (44)
  • 1
    • 81255141971 scopus 로고    scopus 로고
    • Green composites from sustainable cellulose nanofibrils: a review
    • COI: 1:CAS:528:DC%2BC3MXhsFWjsbbN
    • Abdul Khalil HPS, Bhat AH, Ireana Yusra AF (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87:963–979
    • (2012) Carbohydr Polym , vol.87 , pp. 963-979
    • Abdul Khalil, H.P.S.1    Bhat, A.H.2    Ireana Yusra, A.F.3
  • 2
    • 77954457746 scopus 로고    scopus 로고
    • Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods
    • COI: 1:CAS:528:DC%2BC3cXosVWnsbY%3D
    • Agarwal UP, Reiner RS, Ralph SA (2010) Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods. Cellulose 17:721–733
    • (2010) Cellulose , vol.17 , pp. 721-733
    • Agarwal, U.P.1    Reiner, R.S.2    Ralph, S.A.3
  • 3
    • 84891111952 scopus 로고    scopus 로고
    • Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion
    • COI: 1:CAS:528:DC%2BC2cXitFamtro%3D
    • Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydr Polym 102:369–375
    • (2014) Carbohydr Polym , vol.102 , pp. 369-375
    • Ashori, A.1    Babaee, M.2    Jonoobi, M.3    Hamzeh, Y.4
  • 4
    • 84906970694 scopus 로고    scopus 로고
    • Surface esterification of cellulose nanofibers by a simple organocatalytic methodology
    • Ávila Ramírez JA, Suriano CJ, Cerrutti P, Foresti ML (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114:416–423
    • (2014) Carbohydr Polym , vol.114 , pp. 416-423
    • Ávila Ramírez, J.A.1    Suriano, C.J.2    Cerrutti, P.3    Foresti, M.L.4
  • 5
    • 16344384008 scopus 로고    scopus 로고
    • Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field
    • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626
    • (2005) Biomacromolecules , vol.6 , pp. 612-626
    • Azizi Samir, M.A.S.1    Alloin, F.2    Dufresne, A.3
  • 6
    • 84939960669 scopus 로고    scopus 로고
    • New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor
    • Božič M, Vivod V, Kavčič S et al (2015) New findings about the lipase acetylation of nanofibrillated cellulose using acetic anhydride as acyl donor. Carbohydr Polym 125:340–351
    • (2015) Carbohydr Polym , vol.125 , pp. 340-351
    • Božič, M.1    Vivod, V.2    Kavčič, S.3
  • 7
    • 0018478688 scopus 로고
    • A kinetic model for pyrolysis of cellulose
    • COI: 1:CAS:528:DyaE1MXkt1altLY%3D
    • Bradbury AGW, Sakai Y, Shafizadeh F (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3280
    • (1979) J Appl Polym Sci , vol.23 , pp. 3271-3280
    • Bradbury, A.G.W.1    Sakai, Y.2    Shafizadeh, F.3
  • 8
    • 84874137434 scopus 로고    scopus 로고
    • Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications
    • COI: 1:CAS:528:DC%2BC3sXlt1amsL8%3D
    • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169
    • (2013) Carbohydr Polym , vol.94 , pp. 154-169
    • Brinchi, L.1    Cotana, F.2    Fortunati, E.3    Kenny, J.M.4
  • 9
    • 0024682285 scopus 로고
    • Thermogravimetric analysis of cellulose: effect of the molecular weight on thermal decomposition
    • COI: 1:CAS:528:DyaL1MXksVWmu7o%3D
    • Calahorra ME, Cortazar M, Eguiazabal JI (1989) Thermogravimetric analysis of cellulose: effect of the molecular weight on thermal decomposition. J Appl Polym Sci 37:3305–3314
    • (1989) J Appl Polym Sci , vol.37 , pp. 3305-3314
    • Calahorra, M.E.1    Cortazar, M.2    Eguiazabal, J.I.3
  • 10
    • 84875994473 scopus 로고    scopus 로고
    • Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis
    • COI: 1:CAS:528:DC%2BC3sXjsVymt7o%3D
    • Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14:1223–1230
    • (2013) Biomacromolecules , vol.14 , pp. 1223-1230
    • Camarero Espinosa, S.1    Kuhnt, T.2    Foster, E.J.3    Weder, C.4
  • 11
    • 70449704504 scopus 로고    scopus 로고
    • Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions
    • Çetin NS, Tingaut P, Özmen N et al (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003
    • (2009) Macromol Biosci , vol.9 , pp. 997-1003
    • Çetin, N.S.1    Tingaut, P.2    Özmen, N.3
  • 12
    • 84904310610 scopus 로고    scopus 로고
    • Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption
    • COI: 1:CAS:528:DC%2BC2cXhtVGnsr%2FP
    • Cunha AG, Zhou Q, Larsson PT, Berglund LA (2014) Topochemical acetylation of cellulose nanopaper structures for biocomposites: mechanisms for reduced water vapour sorption. Cellulose 21:2773–2787
    • (2014) Cellulose , vol.21 , pp. 2773-2787
    • Cunha, A.G.1    Zhou, Q.2    Larsson, P.T.3    Berglund, L.A.4
  • 13
    • 84950542609 scopus 로고
    • Acid hydrolysis of cellulose
    • Daruwalla EH, Nabar GM (1956) Acid hydrolysis of cellulose. J Polym Sci XX:205–208
    • (1956) J Polym Sci , vol.XX , pp. 205-208
    • Daruwalla, E.H.1    Nabar, G.M.2
  • 14
    • 72949122812 scopus 로고    scopus 로고
    • Review: current international research into cellulose nanofibres and nanocomposites
    • Eichhorn SJ, Dufresne A, Aranguren M et al (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33
    • (2009) J Mater Sci , vol.45 , pp. 1-33
    • Eichhorn, S.J.1    Dufresne, A.2    Aranguren, M.3
  • 15
    • 84904327181 scopus 로고    scopus 로고
    • Acetylation and stepwise solvent-exchange to modify hydrophilic cellulose whiskers to polychloroprene-compatible nanofiller
    • COI: 1:CAS:528:DC%2BC2cXosVeksLw%3D
    • Fahma F, Takemura A, Saito Y (2014) Acetylation and stepwise solvent-exchange to modify hydrophilic cellulose whiskers to polychloroprene-compatible nanofiller. Cellulose 21:2519–2527
    • (2014) Cellulose , vol.21 , pp. 2519-2527
    • Fahma, F.1    Takemura, A.2    Saito, Y.3
  • 16
    • 0029309103 scopus 로고
    • Nanocomposite materials from latex and cellulose whiskers
    • COI: 1:CAS:528:DyaK2MXmsVSntr4%3D
    • Favier V, Canova GR, Cavaille JY et al (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355
    • (1995) Polym Adv Technol , vol.6 , pp. 351-355
    • Favier, V.1    Canova, G.R.2    Cavaille, J.Y.3
  • 17
    • 0027132261 scopus 로고
    • Assessment of endo- 1,4-beta-d-glucanase activity by a rapid colorimetric assay using disodium 2,2′-bicinchoninate
    • COI: 1:CAS:528:DyaK2cXlslentbs%3D
    • Garcia E, Johnston D, Whitaker JR, Shoemaker SP (1993) Assessment of endo- 1,4-beta-d-glucanase activity by a rapid colorimetric assay using disodium 2,2′-bicinchoninate. J Food Biochem 17:135–145
    • (1993) J Food Biochem , vol.17 , pp. 135-145
    • Garcia, E.1    Johnston, D.2    Whitaker, J.R.3    Shoemaker, S.P.4
  • 18
    • 83255163137 scopus 로고    scopus 로고
    • Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition
    • COI: 1:CAS:528:DC%2BC38XhsVOit7s%3D
    • Gurgel LVA, Marabezi K, Ramos LA, Curvelo AADS (2012) Characterization of depolymerized residues from extremely low acid hydrolysis (ELA) of sugarcane bagasse cellulose: effects of degree of polymerization, crystallinity and crystallite size on thermal decomposition. Ind Crops Prod 36:560–571
    • (2012) Ind Crops Prod , vol.36 , pp. 560-571
    • Gurgel, L.V.A.1    Marabezi, K.2    Ramos, L.A.3    Curvelo, A.A.D.S.4
  • 19
    • 84893855703 scopus 로고    scopus 로고
    • Key advances in the chemical modification of nanocelluloses
    • COI: 1:CAS:528:DC%2BC2cXitFWhtro%3D
    • Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43:1519–1542
    • (2014) Chem Soc Rev , vol.43 , pp. 1519-1542
    • Habibi, Y.1
  • 20
    • 78650518881 scopus 로고    scopus 로고
    • Solvent-free acetylation of bacterial cellulose under moderate conditions
    • COI: 1:CAS:528:DC%2BC3cXhs1Wmsb%2FL
    • Hu W, Chen S, Xu Q, Wang H (2011) Solvent-free acetylation of bacterial cellulose under moderate conditions. Carbohydr Polym 83:1575–1581
    • (2011) Carbohydr Polym , vol.83 , pp. 1575-1581
    • Hu, W.1    Chen, S.2    Xu, Q.3    Wang, H.4
  • 21
    • 34347329332 scopus 로고    scopus 로고
    • Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS
    • COI: 1:CAS:528:DC%2BD2sXksFCiu74%3D
    • Ifuku S, Nogi M, Abe K et al (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: dependence on acetyl-group DS. Biomacromolecules 8:1973–1978
    • (2007) Biomacromolecules , vol.8 , pp. 1973-1978
    • Ifuku, S.1    Nogi, M.2    Abe, K.3
  • 22
    • 79961029948 scopus 로고    scopus 로고
    • Influence of steam explosion on the thermal stability of cellulose fibres
    • COI: 1:CAS:528:DC%2BC3MXps1SrtL4%3D
    • Jacquet N, Quiévy N, Vanderghem C et al (2011) Influence of steam explosion on the thermal stability of cellulose fibres. Polym Degrad Stab 96:1582–1588
    • (2011) Polym Degrad Stab , vol.96 , pp. 1582-1588
    • Jacquet, N.1    Quiévy, N.2    Vanderghem, C.3
  • 23
    • 0041173296 scopus 로고    scopus 로고
    • Kinetic measurements of cellulase activity on insoluble substrates using disodium 2,2′ bicinchoninate
    • COI: 1:CAS:528:DyaK1cXntFOnsrw%3D
    • Johnston DB, Shoemaker SP, Smith GM, Whitaker JR (1998) Kinetic measurements of cellulase activity on insoluble substrates using disodium 2,2′ bicinchoninate. J Food Biochem 22:301–319
    • (1998) J Food Biochem , vol.22 , pp. 301-319
    • Johnston, D.B.1    Shoemaker, S.P.2    Smith, G.M.3    Whitaker, J.R.4
  • 24
    • 70450221769 scopus 로고    scopus 로고
    • Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers
    • COI: 1:CAS:528:DC%2BD1MXotVyrsb8%3D
    • Jonoobi M, Harun J, Shakeri A, Misra M (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4:626–639
    • (2009) BioResources , vol.4 , pp. 626-639
    • Jonoobi, M.1    Harun, J.2    Shakeri, A.3    Misra, M.4
  • 25
    • 84877575755 scopus 로고    scopus 로고
    • Effects of chemical treatments on hemp fibre structure
    • COI: 1:CAS:528:DC%2BC3sXmsFans7g%3D
    • Kabir MM, Wang H, Lau KT, Cardona F (2013) Effects of chemical treatments on hemp fibre structure. Appl Surf Sci 276:13–23
    • (2013) Appl Surf Sci , vol.276 , pp. 13-23
    • Kabir, M.M.1    Wang, H.2    Lau, K.T.3    Cardona, F.4
  • 26
    • 79958021496 scopus 로고    scopus 로고
    • Nanocelluloses: a new family of nature-based materials
    • COI: 1:CAS:528:DC%2BC3MXmsValtLw%3D
    • Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466
    • (2011) Angew Chem Int Ed Engl , vol.50 , pp. 5438-5466
    • Klemm, D.1    Kramer, F.2    Moritz, S.3
  • 27
    • 79955858158 scopus 로고    scopus 로고
    • Surface only modification of bacterial cellulose nanofibres with organic acids
    • COI: 1:CAS:528:DC%2BC3MXlsFKiu70%3D
    • Lee K-Y, Quero F, Blaker JJ et al (2011) Surface only modification of bacterial cellulose nanofibres with organic acids. Cellulose 18:595–605
    • (2011) Cellulose , vol.18 , pp. 595-605
    • Lee, K.-Y.1    Quero, F.2    Blaker, J.J.3
  • 28
    • 70349556803 scopus 로고    scopus 로고
    • Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst
    • COI: 1:CAS:528:DC%2BD1MXhtFyis73J
    • Li J, Zhang LP, Peng F et al (2009) Microwave-assisted solvent-free acetylation of cellulose with acetic anhydride in the presence of iodine as a catalyst. Molecules 14:3551–3566
    • (2009) Molecules , vol.14 , pp. 3551-3566
    • Li, J.1    Zhang, L.P.2    Peng, F.3
  • 29
    • 79953656436 scopus 로고    scopus 로고
    • Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers
    • Martínez-Sanz M, Lopez-Rubio A, Lagaron JM (2011) Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr Polym 85:228–236
    • (2011) Carbohydr Polym , vol.85 , pp. 228-236
    • Martínez-Sanz, M.1    Lopez-Rubio, A.2    Lagaron, J.M.3
  • 30
    • 79957858572 scopus 로고    scopus 로고
    • Reducing end-group of cellulose as a reactive site for thermal discoloration
    • COI: 1:CAS:528:DC%2BC3MXmvFWhtbY%3D
    • Matsuoka S, Kawamoto H, Saka S (2011a) Reducing end-group of cellulose as a reactive site for thermal discoloration. Polym Degrad Stab 96:1242–1247
    • (2011) Polym Degrad Stab , vol.96 , pp. 1242-1247
    • Matsuoka, S.1    Kawamoto, H.2    Saka, S.3
  • 31
    • 78651374155 scopus 로고    scopus 로고
    • Thermal glycosylation and degradation reactions occurring at the reducing ends of cellulose during low-temperature pyrolysis
    • COI: 1:CAS:528:DC%2BC3MXot12jug%3D%3D
    • Matsuoka S, Kawamoto H, Saka S (2011b) Thermal glycosylation and degradation reactions occurring at the reducing ends of cellulose during low-temperature pyrolysis. Carbohydr Res 346:272–279
    • (2011) Carbohydr Res , vol.346 , pp. 272-279
    • Matsuoka, S.1    Kawamoto, H.2    Saka, S.3
  • 32
    • 84896729752 scopus 로고    scopus 로고
    • What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end
    • COI: 1:CAS:528:DC%2BC2cXhvV2htLY%3D
    • Matsuoka S, Kawamoto H, Saka S (2014) What is active cellulose in pyrolysis? An approach based on reactivity of cellulose reducing end. J Anal Appl Pyrolysis 106:138–146
    • (2014) J Anal Appl Pyrolysis , vol.106 , pp. 138-146
    • Matsuoka, S.1    Kawamoto, H.2    Saka, S.3
  • 34
    • 79551469273 scopus 로고    scopus 로고
    • Acetylation of plant cellulose fiber in supercritical carbon dioxide
    • COI: 1:CAS:528:DC%2BC3MXhtlKqsrc%3D
    • Nishino T, Kotera M, Suetsugu M et al (2011) Acetylation of plant cellulose fiber in supercritical carbon dioxide. Polymer (Guildf) 52:830–836
    • (2011) Polymer (Guildf) , vol.52 , pp. 830-836
    • Nishino, T.1    Kotera, M.2    Suetsugu, M.3
  • 35
    • 33845419665 scopus 로고    scopus 로고
    • Property enhancement of optically transparent bionanofiber composites by acetylation
    • Nogi M, Abe K, Handa K et al (2006) Property enhancement of optically transparent bionanofiber composites by acetylation. Appl Phys Lett 89:233123
    • (2006) Appl Phys Lett , vol.89 , pp. 233123
    • Nogi, M.1    Abe, K.2    Handa, K.3
  • 36
    • 79959617856 scopus 로고    scopus 로고
    • Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites
    • COI: 1:CAS:528:DC%2BC3MXosF2msLg%3D
    • Okahisa Y, Abe K, Nogi M et al (2011) Effects of delignification in the production of plant-based cellulose nanofibers for optically transparent nanocomposites. Compos Sci Technol 71:1342–1347
    • (2011) Compos Sci Technol , vol.71 , pp. 1342-1347
    • Okahisa, Y.1    Abe, K.2    Nogi, M.3
  • 37
    • 84884414553 scopus 로고    scopus 로고
    • Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity
    • COI: 1:CAS:528:DC%2BC3sXhsVOlur%2FF
    • Peng Y, Gardner DJ, Han Y et al (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392
    • (2013) Cellulose , vol.20 , pp. 2379-2392
    • Peng, Y.1    Gardner, D.J.2    Han, Y.3
  • 38
    • 75849163331 scopus 로고    scopus 로고
    • Influence of homogenization and drying on the thermal stability of microfibrillated cellulose
    • Quiévy N, Jacquet N, Sclavons M et al (2010) Influence of homogenization and drying on the thermal stability of microfibrillated cellulose. Polym Degrad Stab 95:306–314
    • (2010) Polym Degrad Stab , vol.95 , pp. 306-314
    • Quiévy, N.1    Jacquet, N.2    Sclavons, M.3
  • 39
    • 84948619838 scopus 로고
    • An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer
    • COI: 1:CAS:528:DyaF3cXjvFCq
    • Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794
    • (1959) Text Res J , vol.29 , pp. 786-794
    • Segal, L.1    Creely, J.J.2    Martin, A.E.3    Conrad, C.M.4
  • 40
    • 79952857796 scopus 로고    scopus 로고
    • Cellulosic bionanocomposites: a review of preparation, properties and applications
    • COI: 1:CAS:528:DC%2BC3MXhvFyktbY%3D
    • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765
    • (2010) Polymers (Basel) , vol.2 , pp. 728-765
    • Siqueira, G.1    Bras, J.2    Dufresne, A.3
  • 41
    • 80052340489 scopus 로고    scopus 로고
    • Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts
    • Tomé LC, Freire MG, Rebelo LPN et al (2011) Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem 13:2464
    • (2011) Green Chem , vol.13 , pp. 2464
    • Tomé, L.C.1    Freire, M.G.2    Rebelo, L.P.N.3
  • 42
    • 84901242693 scopus 로고    scopus 로고
    • Influence of drying method and precipitated salts on pyrolysis for nanocelluloses
    • COI: 1:CAS:528:DC%2BC2cXosVels7w%3D
    • Uetani K, Watanabe Y, Abe K, Yano H (2014) Influence of drying method and precipitated salts on pyrolysis for nanocelluloses. Cellulose 21:1631–1639
    • (2014) Cellulose , vol.21 , pp. 1631-1639
    • Uetani, K.1    Watanabe, Y.2    Abe, K.3    Yano, H.4
  • 43
    • 13844256189 scopus 로고    scopus 로고
    • Optically transparent composites reinforced with networks of bacterial nanofibers
    • COI: 1:CAS:528:DC%2BD2MXht12ltL8%3D
    • Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155
    • (2005) Adv Mater , vol.17 , pp. 153-155
    • Yano, H.1    Sugiyama, J.2    Nakagaito, A.N.3
  • 44
    • 84875774089 scopus 로고    scopus 로고
    • Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93 % through hydrochloric acid hydrolysis under hydrothermal conditions
    • COI: 1:CAS:528:DC%2BC3sXjtlWqtrc%3D
    • Yu H, Qin Z, Liang B et al (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93 % through hydrochloric acid hydrolysis under hydrothermal conditions. J Mater Chem A 1:3938
    • (2013) J Mater Chem A , vol.1 , pp. 3938
    • Yu, H.1    Qin, Z.2    Liang, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.