메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 21-25

Multi-Scale multi-band densenets for audio source separation

Author keywords

convolutional neural networks; DenseNet; multi band; source separation

Indexed keywords

AUDIO ACOUSTICS; AUDIO SIGNAL PROCESSING; CONVOLUTION; DEEP NEURAL NETWORKS; NETWORK ARCHITECTURE; NEURAL NETWORKS; SEPARATION; SIGNAL PROCESSING;

EID: 85042372303     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WASPAA.2017.8169987     Document Type: Conference Paper
Times cited : (180)

References (29)
  • 1
    • 77955675017 scopus 로고    scopus 로고
    • Underdetermined reverberant audio source separation using a fullrank spatial covariance model
    • N. Q. K. Duong, E. Vincent, and R. Gribonval, "Underdetermined reverberant audio source separation using a fullrank spatial covariance model, " IEEE Trans. Audio, Speech & Language Processing, vol. 18, no. 7, pp. 1830-1840, 2010.
    • (2010) IEEE Trans. Audio, Speech & Language Processing , vol.18 , Issue.7 , pp. 1830-1840
    • Duong, N.Q.K.1    Vincent, E.2    Gribonval, R.3
  • 7
    • 76949094445 scopus 로고    scopus 로고
    • Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation
    • A. Ozerov and C. Févotte, "Multichannel nonnegative matrix factorization in convolutive mixtures for audio source separation, " IEEE Trans. Audio, Speech & Language Processing, vol. 18, no. 3, pp. 550-563, 2010.
    • (2010) IEEE Trans. Audio, Speech & Language Processing , vol.18 , Issue.3 , pp. 550-563
    • Ozerov, A.1    Févotte, C.2
  • 10
    • 85013463259 scopus 로고    scopus 로고
    • Multichannel music separation with deep neural networks
    • A. A. Nugraha, A. Liutkus, and E. Vincent, "Multichannel music separation with deep neural networks, " in Proc. EUSIPCO, 2015.
    • (2015) Proc. EUSIPCO
    • Nugraha, A.A.1    Liutkus, A.2    Vincent, E.3
  • 11
    • 84944676216 scopus 로고    scopus 로고
    • Deep neural network based instrument extraction from music
    • S. Uhlich, F. Giron, and Y. Mitsufuji, "Deep neural network based instrument extraction from music, " in Proc. ICASSP, 2015, pp. 2135-2139.
    • (2015) Proc. ICASSP , pp. 2135-2139
    • Uhlich, S.1    Giron, F.2    Mitsufuji, Y.3
  • 12
    • 85023774072 scopus 로고    scopus 로고
    • Improving music source separation based on deep networks through data augmentation and augmentation and network blending
    • S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, and Y. Mitsufuji, "Improving Music Source Separation Based On Deep Networks Through Data Augmentation And Augmentation And Network Blending, " in Proc. ICASSP, 2017, pp. 261-265.
    • (2017) Proc. ICASSP , pp. 261-265
    • Uhlich, S.1    Porcu, M.2    Giron, F.3    Enenkl, M.4    Kemp, T.5    Takahashi, N.6    Mitsufuji, Y.7
  • 13
    • 0032203257 scopus 로고    scopus 로고
    • Gradient based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient based learning applied to document recognition, " in Proc. of the IEEE, vol. 86, no. 11, 1998, pp. 2278-2324.
    • (1998) Proc. of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 14
    • 84973324686 scopus 로고    scopus 로고
    • Very deep multilingual convolutional neural networks for LVCSR
    • T. Sercu, C. Puhrsch, B. Kingsbury, and Y. LeCun, "Very deep multilingual convolutional neural networks for LVCSR, " in Proc. ICASSP, 2016, pp. 4955-4959.
    • (2016) Proc. ICASSP , pp. 4955-4959
    • Sercu, T.1    Puhrsch, C.2    Kingsbury, B.3    LeCun, Y.4
  • 15
    • 84994226439 scopus 로고    scopus 로고
    • Deep convolutional neural networks and data augmentation for acoustic event detection
    • N. Takahashi, M. Gygli, B. Pfister, and L. Van Gool, "Deep Convolutional Neural Networks and Data Augmentation for Acoustic Event Detection, " in Proc. Interspeech, 2016.
    • (2016) Proc. Interspeech
    • Takahashi, N.1    Gygli, M.2    Pfister, B.3    Van Gool, L.4
  • 18
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " in Proc. CVPR, 2016.
    • (2016) Proc. CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 21
    • 77956002520 scopus 로고    scopus 로고
    • Learning multiple layers of features from tiny images
    • A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny images, " Tech Report, 2009.
    • (2009) Tech Report
    • Krizhevsky, A.1    Hinton, G.2
  • 24
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy, " Batch normalization: Accelerating deep network training by reducing internal covariate shift, " in Proc. ICML, 2015.
    • (2015) Proc ICML
    • Ioffe, S.1    Szegedy, C.2
  • 26
    • 84906214784 scopus 로고    scopus 로고
    • Exploring convolutional neural network structures and optimization techniques for speech recognition
    • O. Abdel-Hamid, L. Deng, and D. Yu, "Exploring Convolutional Neural Network Structures and Optimization Techniques for Speech Recognition, " in Proc. Interspeech, 2013.
    • (2013) Proc. Interspeech
    • Abdel-Hamid, O.1    Deng, L.2    Yu, D.3
  • 28
    • 84933551108 scopus 로고    scopus 로고
    • MedleyDB: A multitrack dataset for annotationintensive MIR research
    • R. M. Bittner, J. Salamon, M. Tierney, C. C. M. Mauch, , and J. P. Bello, "MedleyDB: A multitrack dataset for annotationintensive MIR research, " in Proc.ISMIR, 2014, pp. 66-70.
    • (2014) Proc.ISMIR , pp. 66-70
    • Bittner, R.M.1    Salamon, J.2    Tierney, M.3    Mauch, C.C.M.4    Bello, J.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.