메뉴 건너뛰기




Volumn 1, Issue 4, 2008, Pages 179-193

Ground-level ozone forecasting using data-driven methods

Author keywords

Air quality modeling and forecasting; Ground level ozone; Hamilton; Neural networks

Indexed keywords


EID: 79952706868     PISSN: 18739318     EISSN: 18739326     Source Type: Journal    
DOI: 10.1007/s11869-008-0023-x     Document Type: Article
Times cited : (25)

References (27)
  • 1
    • 16244417840 scopus 로고    scopus 로고
    • Principal component and multiple regression analysis in modeling of ground level ozone and factors affecting its concentration
    • doi:10.1016/j.envsoft.2004.09.001
    • Abdul-Wahab SA, Bakheit CS, Al-Alawi SM (2005) Principal component and multiple regression analysis in modeling of ground level ozone and factors affecting its concentration. Environ Model Softw 20:1263-1271. doi:10.1016/j.envsoft.2004.09.001
    • (2005) Environ Model Softw , vol.20 , pp. 1263-1271
    • Abdul-Wahab, S.A.1    Bakheit, C.S.2    Al-Alawi, S.M.3
  • 3
    • 34447620954 scopus 로고    scopus 로고
    • Nonlinear models for ground level ozone forecasting
    • doi:10.1007/BF02511489
    • Bordignon S, Gaetan C, Lisi F (2002) Nonlinear models for ground level ozone forecasting. Stat Methods Appl 11:227-245. doi:10.1007/BF02511489
    • (2002) Stat Methods Appl , vol.11 , pp. 227-245
    • Bordignon, S.1    Gaetan, C.2    Lisi, F.3
  • 5
    • 41549158279 scopus 로고    scopus 로고
    • Forecasting daily total ozone concentration- a comparison between neurocomputing and statistical approaches
    • doi:10.1080/01431160701373770
    • Chattopadhyay S, Chattopadhyay-Bandyopadhyay G (2008) Forecasting daily total ozone concentration- a comparison between neurocomputing and statistical approaches. Int J Remote Sens 29(7):1903-1916. doi:10.1080/01431160701373770
    • (2008) Int J Remote Sens , vol.29 , Issue.7 , pp. 1903-1916
    • Chattopadhyay, S.1    Chattopadhyay-Bandyopadhyay, G.2
  • 6
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • Comrie AC (1997) Comparing neural networks and regression models for ozone forecasting. Air Waste Manage Assoc 47:653-663
    • Air Waste Manage Assoc , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 7
    • 0034993945 scopus 로고    scopus 로고
    • ANN modeling of water table depth fluctuations
    • doi:10.1029/2000WR900368
    • Coulibaly P, Anctil F, Bobée B (2001a) ANN modeling of water table depth fluctuations. Water Resour Res 37 (4):885-869.doi:10.1029/2000WR900368
    • (2001) Water Resour Res , vol.37 , Issue.4 , pp. 885-869
    • Coulibaly, P.1    Anctil, F.2    Bobée, B.3
  • 8
    • 0035450182 scopus 로고    scopus 로고
    • Multivariate reservoir inflow forecasting using temporal neural networks
    • doi:10.1061/(ASCE)1084-0699(2001)6:5(367)
    • Coulibaly P, Anctil F, Bobee B (2001b) Multivariate reservoir inflow forecasting using temporal neural networks. J Hydrol Eng 6 (5):367-376. doi:10.1061/(ASCE)1084-0699(2001)6:5(367)
    • (2001) J Hydrol Eng , vol.6 , Issue.5 , pp. 367-376
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 9
    • 0031986457 scopus 로고    scopus 로고
    • Observation and interpretation of the seasonal cycles in the surface concentrations of ozone and carbon monoxide at Mace Head, Ireland from 1990 to 1994
    • doi:10.1016/S1352-2310(97)00338-5
    • Derwent RG, Simmonds PG, Seuring S, Dimmer C (1998) Observation and interpretation of the seasonal cycles in the surface concentrations of ozone and carbon monoxide at Mace Head, Ireland from 1990 to 1994. Atmos Environ 31(13):145-157. doi:10.1016/S1352-2310(97)00338-5
    • (1998) Atmos Environ , vol.31 , Issue.13 , pp. 145-157
    • Derwent, R.G.1    Simmonds, P.G.2    Seuring, S.3    Dimmer, C.4
  • 10
    • 33645989739 scopus 로고    scopus 로고
    • Temporal neural networks for downscaling climate variability and extremes
    • doi:10.1016/j.neunet.2006.01.003
    • Dibike YB, Coulibaly P (2006) Temporal neural networks for downscaling climate variability and extremes. Neural Netw 19:135-144. doi:10.1016/j.neunet.2006.01.003
    • (2006) Neural Netw , vol.19 , pp. 135-144
    • Dibike, Y.B.1    Coulibaly, P.2
  • 11
    • 26444565569 scopus 로고
    • Finding Structure In Time
    • Elman JL (1990) Finding structure in time. Cogn Sci 14:179-211
    • (1990) Cogn Sci , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 12
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: An improved methodology to account for non-linear behavior
    • doi:10.1016/S1352-2310(99)00359-3
    • Gardner MW, Dorling SR (2000) Statistical surface ozone models: an improved methodology to account for non-linear behavior. Atmos Environ 34:21-34. doi:10.1016/S1352-2310(99)00359-3
    • (2000) Atmos Environ , vol.34 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 13
    • 33748029144 scopus 로고    scopus 로고
    • Bayesian neural network for rainfallrunoff modeling
    • doi:10.1029/2005WR003971
    • Khan SM, Coulibaly P (2006) Bayesian neural network for rainfallrunoff modeling. Water Resour Res 42:W07409. doi:10.1029/2005WR003971
    • (2006) Water Resour Res , vol.42
    • Khan, S.M.1    Coulibaly, P.2
  • 14
    • 29544432659 scopus 로고    scopus 로고
    • Accounting seasonal nonstationarity in time series models for short-term ozone level forecast
    • doi:10.1007/s00477-004-0228-y
    • Kim ES, Kumar A (2005) Accounting seasonal nonstationarity in time series models for short-term ozone level forecast. Stoch Environ Res Risk Assess 19:241-248. doi:10.1007/s00477-004-0228-y
    • (2005) Stoch Environ Res Risk Assess , vol.19 , pp. 241-248
    • Kim, E.S.1    Kumar, A.2
  • 16
    • 79952694082 scopus 로고    scopus 로고
    • NeuroSolutions, NeuroSolutions getting started manual version 4, Gainesville, FL
    • NeuroSolutions (2004) Neurosolutions: The Neural Network Simulation Environment. NeuroSolutions getting started manual version 4, Gainesville, FL
    • (2004) Neurosolutions: The Neural Network Simulation Environment
  • 17
    • 0013598174 scopus 로고
    • A Review of Ozone Pollution In the United Kingdom and Ireland With An Analysis Using Lamb Weather Types
    • doi:10.2307/3059923
    • O'Hare GP, Wilby R (1995) A review of ozone pollution in the United Kingdom and Ireland with an analysis using lamb weather types.Geogr J 161(1):1-20. doi:10.2307/3059923
    • (1995) Geogr J , vol.161 , Issue.1 , pp. 1-20
    • O'Hare, G.P.1    Wilby, R.2
  • 18
    • 79952702873 scopus 로고    scopus 로고
    • Ontario Ministry of Environment, report
    • Ontario Ministry of Environment (2004) Air quality in Ontario 2004 report. http://www.ene.gov.on.ca/envision/techdocs/5383e.pdf
    • (2004) Air Quality In Ontario 2004
  • 19
    • 9944223325 scopus 로고    scopus 로고
    • 2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juaréz (Chihuahua)
    • doi:10.1016/j.envsoft.2004.03.010
    • 2.5) on the US-Mexico border in El Paso (Texas) and Ciudad Juaréz (Chihuahua). Environ Model Softw 20:547-559. doi:10.1016/j.envsoft.2004.03.010
    • (2005) Environ Model Softw , vol.20 , pp. 547-559
    • Ordieres, J.B.1    Vergara, E.P.2    Capuz, R.S.3    Salazar, R.E.4
  • 22
    • 32144456452 scopus 로고    scopus 로고
    • Statistical models to assess the health effects and to forecast ground-level ozone
    • doi:10.1016/j.envsoft.2004.12.002
    • Schlink U, Herbarth O, Richter M, Dorling S, Nunnari G, Cawley G, Pelikan E (2006) Statistical models to assess the health effects and to forecast ground-level ozone. Environ Model Softw 21:547-558. doi:10.1016/j.envsoft.2004.12.002
    • (2006) Environ Model Softw , vol.21 , pp. 547-558
    • Schlink, U.1    Herbarth, O.2    Richter, M.3    Dorling, S.4    Nunnari, G.5    Cawley, G.6    Pelikan, E.7
  • 23
    • 33749247555 scopus 로고    scopus 로고
    • Multi linear regression and artificial neural network based on principal components to predict ozone concentrations
    • doi:10.1016/j.envsoft.2005.12.002
    • Sousa SIV, Martins FG, Alvim-Ferraz MCM, Pereira MC (2007) Multi linear regression and artificial neural network based on principal components to predict ozone concentrations. Environ Model Softw 22:97-103. doi:10.1016/j.envsoft.2005.12.002
    • (2007) Environ Model Softw , vol.22 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 24
    • 45849118026 scopus 로고    scopus 로고
    • On the impact of temperature on tropospheric ozone concentration levels in urban environments
    • Stathopoulou E, Mihalakakou G, Santamouris M, Bagiorgas HS (2008) On the impact of temperature on tropospheric ozone concentration levels in urban environments. J Earth System Sci 117(3):227-236
    • (2008) J Earth System Sci , vol.117 , Issue.3 , pp. 227-236
    • Stathopoulou, E.1    Mihalakakou, G.2    Santamouris, M.3    Bagiorgas, H.S.4
  • 25
  • 27
    • 0030476772 scopus 로고    scopus 로고
    • A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area
    • doi:10.1016/0269-7491(95)00078-X
    • Yi J, Prybutok R (1996) A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area.Environ Pollut 92(3):349-357. doi:10.1016/0269-7491(95)00078-X
    • (1996) Environ Pollut , vol.92 , Issue.3 , pp. 349-357
    • Yi, J.1    Prybutok, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.