메뉴 건너뛰기




Volumn 10, Issue 1, 2018, Pages

Issues with large area thematic accuracy assessment for mapping cropland extent: A tale of three continents

Author keywords

Agro ecological zones (AEZ's); Crop buffer zones; Global cropland products; Large area accuracy assessment; Sample size; Sampling analysis

Indexed keywords

ECOLOGY; FOOD SUPPLY;

EID: 85040685397     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10010053     Document Type: Article
Times cited : (14)

References (57)
  • 2
    • 84888211006 scopus 로고    scopus 로고
    • Next generation of global land cover characterization, mapping, and monitoring
    • Giri, C.; Pengra, B.; Long, J.; Loveland, T.R. Next generation of global land cover characterization, mapping, and monitoring. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 30-37
    • (2013) Int. J. Appl. Earth Obs. Geoinf , vol.25 , pp. 30-37
    • Giri, C.1    Pengra, B.2    Long, J.3    Loveland, T.R.4
  • 5
    • 42949083191 scopus 로고    scopus 로고
    • Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications
    • Fritz, S.; See, L. Identifying and quantifying uncertainty and spatial disagreement in the comparison of Global Land Cover for different applications. Glob. Chang. Biol. 2008, 14, 1057-1075
    • (2008) Glob. Chang. Biol , vol.14 , pp. 1057-1075
    • Fritz, S.1    See, L.2
  • 6
    • 71949114896 scopus 로고    scopus 로고
    • Crop area estimation using high and medium resolution satellite imagery in areas with complex topography
    • Husak, G.J.; Marshall, M.T.; Michaelsen, J.; Pedreros, D.; Funk, C.; Galu, G. Crop area estimation using high and medium resolution satellite imagery in areas with complex topography. J. Geophys. Res. Atmos. 2008, 113
    • (2008) J. Geophys. Res. Atmos , pp. 113
    • Husak, G.J.1    Marshall, M.T.2    Michaelsen, J.3    Pedreros, D.4    Funk, C.5    Galu, G.6
  • 7
    • 84869238704 scopus 로고    scopus 로고
    • An automated cropland classification algorithm (ACCA) for Tajikistan by combining landsat, MODIS, and secondary data
    • Thenkabail, P.S.;Wu, Z. An automated cropland classification algorithm (ACCA) for Tajikistan by combining landsat, MODIS, and secondary data. Remote Sens. 2012, 4, 2890-2918
    • (2012) Remote Sens , vol.4 , pp. 2890-2918
    • Thenkabail, P.S.1    Wu, Z.2
  • 8
    • 84947491839 scopus 로고    scopus 로고
    • An overview of 21 global and 43 regional land-cover mapping products
    • Grekousis, G.; Mountrakis, G.; Kavouras, M. An overview of 21 global and 43 regional land-cover mapping products. Int. J. Remote Sens. 2015, 36, 5309-5335
    • (2015) Int. J. Remote Sens , vol.36 , pp. 5309-5335
    • Grekousis, G.1    Mountrakis, G.2    Kavouras, M.3
  • 9
    • 84921522459 scopus 로고    scopus 로고
    • Valuing map validation: The need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services
    • Foody, G.M. Valuing map validation: The need for rigorous land cover map accuracy assessment in economic valuations of ecosystem services. Ecol. Econ. 2015, 111, 23-28
    • (2015) Ecol. Econ , vol.111 , pp. 23-28
    • Foody, G.M.1
  • 12
    • 57649219609 scopus 로고    scopus 로고
    • Remotely sensed estimation of cropland in China: A comparison of the maps derived from four global land cover datasets
    • Wu, W.; Shibasaki, R.; Yang, P.; Zhou, Q.; Tang, H. Remotely sensed estimation of cropland in China: A comparison of the maps derived from four global land cover datasets. Can. J. Remote Sens. 2008, 34, 467-479
    • (2008) Can. J. Remote Sens , vol.34 , pp. 467-479
    • Wu, W.1    Shibasaki, R.2    Yang, P.3    Zhou, Q.4    Tang, H.5
  • 15
    • 77954168912 scopus 로고    scopus 로고
    • MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling
    • Portmann, F.T.; Siebert, S.; Döll, P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycles 2010, 24, 1-24
    • (2010) Glob. Biogeochem. Cycles , vol.24 , pp. 1-24
    • Portmann, F.T.1    Siebert, S.2    Döll, P.3
  • 16
    • 84925880595 scopus 로고    scopus 로고
    • Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data
    • Salmon, J.M.; Friedl, M.A.; Frolking, S.; Wisser, D.; Douglas, E.M. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 321-334
    • (2015) Int. J. Appl. Earth Obs. Geoinf , vol.38 , pp. 321-334
    • Salmon, J.M.1    Friedl, M.A.2    Frolking, S.3    Wisser, D.4    Douglas, E.M.5
  • 20
    • 85008422868 scopus 로고    scopus 로고
    • Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data
    • Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.; Poehnelt, J.; Yadav, K.; Rao, M.; Massey, R. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000-2015) data. Int. J. Digit. Earth 2017, 10, 944-977
    • (2017) Int. J. Digit. Earth , vol.10 , pp. 944-977
    • Teluguntla, P.1    Thenkabail, P.S.2    Xiong, J.3    Gumma, M.K.4    Congalton, R.G.5    Oliphant, A.6    Poehnelt, J.7    Yadav, K.8    Rao, M.9    Massey, R.10
  • 21
    • 85040683083 scopus 로고    scopus 로고
    • (accessedon 5 March 2017)
    • Global Croplands. Available online: https://www.croplands.org/app/map?lat=0&lng=0&zoom=2 (accessed on 5 March 2017)
  • 22
    • 84927804881 scopus 로고    scopus 로고
    • Assessing global land cover reference datasets for different user communities
    • Tsendbazar, N.E.; de Bruin, S.; Herold, M. Assessing global land cover reference datasets for different user communities. ISPRS J. Photogramm. Remote Sens. 2015, 103, 93-114
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.103 , pp. 93-114
    • Tsendbazar, N.E.1    de Bruin, S.2    Herold, M.3
  • 23
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185-201
    • (2002) Remote Sens. Environ , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 29
    • 17144416175 scopus 로고    scopus 로고
    • Local characterization of thematic classification accuracy through spatially constrained confusion matrices
    • Foody, G.M. Local characterization of thematic classification accuracy through spatially constrained confusion matrices. Int. J. Remote Sens. 2005, 37-41
    • (2005) Int. J. Remote Sens , pp. 37-41
    • Foody, G.M.1
  • 31
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35-46
    • (1991) Remote Sens. Environ , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 32
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S
    • Wardlow, B.D.; Egbert, S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 2008, 112, 1096-1116
    • (2008) Central Great Plains. Remote Sens. Environ , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 33
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • Stehman, S.V. Selecting and interpreting measures of thematic classification accuracy. Remote Sens. Environ. 1997, 62, 77-89
    • (1997) Remote Sens. Environ , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 34
    • 45449111176 scopus 로고    scopus 로고
    • Farming the planet: Geographic distribution of global agricultural lands in the year 2000
    • Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22, 1-19
    • (2008) Glob. Biogeochem. Cycles , vol.22 , pp. 1-19
    • Ramankutty, N.1    Evan, A.T.2    Monfreda, C.3    Foley, J.A.4
  • 36
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, Cropland data layer program
    • Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, Cropland data layer program. Geocarto Int. 2011, 26, 341-358
    • (2011) Geocarto Int , vol.26 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 38
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points
    • Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78-87
    • (2012) ISPRS J. Photogramm. Remote Sens , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 39
    • 84897556679 scopus 로고    scopus 로고
    • A bootstrap method for assessing classification accuracy and confidence for agricultural land use mapping in Canada
    • Champagne, C.; McNairn, H.; Daneshfar, B.; Shang, J. A bootstrap method for assessing classification accuracy and confidence for agricultural land use mapping in Canada. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 44-52
    • (2014) Int. J. Appl. Earth Obs. Geoinf , vol.29 , pp. 44-52
    • Champagne, C.1    McNairn, H.2    Daneshfar, B.3    Shang, J.4
  • 40
    • 84873166271 scopus 로고    scopus 로고
    • Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale
    • Vancutsem, C.; Marinho, E.; Kayitakire, F.; See, L.; Fritz, S. Harmonizing and combining existing land cover/land use datasets for cropland area monitoring at the African continental scale. Remote Sens. 2013, 5, 19-41
    • (2013) Remote Sens , vol.5 , pp. 19-41
    • Vancutsem, C.1    Marinho, E.2    Kayitakire, F.3    See, L.4    Fritz, S.5
  • 41
    • 84944743397 scopus 로고    scopus 로고
    • Automated annual cropland mapping using knowledge-based temporal features
    • Waldner, F.; Canto, G.S.; Defourny, P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110, 1-13
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 43
    • 84984986374 scopus 로고    scopus 로고
    • What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?
    • Di Vittorio, A.V.; Kyle, P.; Collins, W.D. What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model? Environ. Model. Softw. 2016, 85, 246-265
    • (2016) Environ. Model. Softw , vol.85 , pp. 246-265
    • Di Vittorio, A.V.1    Kyle, P.2    Collins, W.D.3
  • 44
    • 84888366294 scopus 로고    scopus 로고
    • Evaluation of the Agro-Ecological Zone methods for the study of climate change with micro farming decisions in sub-Saharan Africa
    • Seo, S.N. Evaluation of the Agro-Ecological Zone methods for the study of climate change with micro farming decisions in sub-Saharan Africa. Eur. J. Agron. 2014, 52, 157-165
    • (2014) Eur. J. Agron , vol.52 , pp. 157-165
    • Seo, S.N.1
  • 45
    • 0032084126 scopus 로고    scopus 로고
    • Design and analysis for thematic map accuracy assessment-An application of satellite imagery
    • Stehman, S.V.; Czaplewski, R.L. Design and analysis for thematic map accuracy assessment-An application of satellite imagery. Remote Sens. Environ. 1998, 64, 331-344
    • (1998) Remote Sens. Environ , vol.64 , pp. 331-344
    • Stehman, S.V.1    Czaplewski, R.L.2
  • 46
    • 85040674958 scopus 로고    scopus 로고
    • Assessing positional and thematic accuracies of map generated from remotely sensed data
    • CRC Press-Taylor and Francis Group: Boca Raton, FL, USA
    • Thenkabail, P.S. Assessing positional and thematic accuracies of map generated from remotely sensed data. In Remotely Sensed Data Characterization, Classification, and Accuracies; CRC Press-Taylor and Francis Group: Boca Raton, FL, USA, 2005; pp. 583-605
    • (2005) Remotely Sensed Data Characterization, Classification, and Accuracies , pp. 583-605
    • Thenkabail, P.S.1
  • 47
    • 84920075991 scopus 로고    scopus 로고
    • Global land cover mapping: A review and uncertainty analysis
    • Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global land cover mapping: A review and uncertainty analysis. Remote Sens. 2014, 6, 12070-12093
    • (2014) Remote Sens , vol.6 , pp. 12070-12093
    • Congalton, R.G.1    Gu, J.2    Yadav, K.3    Thenkabail, P.4    Ozdogan, M.5
  • 48
    • 0018655622 scopus 로고
    • Testing land-use map accuracy: Another look
    • Ginevan, M.E. Testing land-use map accuracy: Another look. Photogramm. Eng. Remote Sens. 1979, 45, 1371-1377
    • (1979) Photogramm. Eng. Remote Sens , vol.45 , pp. 1371-1377
    • Ginevan, M.E.1
  • 50
    • 0027007199 scopus 로고
    • Comparison of systematic and random sampling for estimating the accuracy of maps generated from remotely sensed data
    • Stehman, S.V. Comparison of systematic and random sampling for estimating the accuracy of maps generated from remotely sensed data. Photogramm. Eng. Remote Sens. 1992, 58, 1343-1350
    • (1992) Photogramm. Eng. Remote Sens , vol.58 , pp. 1343-1350
    • Stehman, S.V.1
  • 51
    • 70249106481 scopus 로고    scopus 로고
    • Sampling designs for accuracy assessment of land cover
    • Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243-5272
    • (2009) Int. J. Remote Sens , vol.30 , pp. 5243-5272
    • Stehman, S.V.1
  • 53
    • 0024165214 scopus 로고
    • A comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from remotely sensed data
    • Congalton, R.G. A comparison of sampling schemes used in generating error matrices for assessing the accuracy of maps generated from remotely sensed data. Photogramm. Eng. Remote Sens. 1988, 54, 593-600
    • (1988) Photogramm. Eng. Remote Sens , vol.54 , pp. 593-600
    • Congalton, R.G.1
  • 54
    • 0000876214 scopus 로고
    • Sampling designs to test land use map accuracy
    • Hay, A.M. Sampling designs to test land use map accuracy. Photogramm. Eng. Remote Sens. 1979, 45, 529-533
    • (1979) Photogramm. Eng. Remote Sens , vol.45 , pp. 529-533
    • Hay, A.M.1
  • 57
    • 85040684322 scopus 로고    scopus 로고
    • (accessedon 7 March 2017)
    • CropScape-Cropland Data Layer, United States Department of Agriculture, National Agricultural Statistics Service. Available online: https://nassgeodata.gmu.edu/CropScape (accessed on 7 March 2017)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.