메뉴 건너뛰기




Volumn 119, Issue , 2016, Pages 151-164

Automated mapping of soybean and corn using phenology

Author keywords

Automated classification; Brazil; Corn; MODIS; Soybean

Indexed keywords

AUTOMATION; CONFORMAL MAPPING; DECISION TREES; IMAGE PROCESSING; RADIOMETERS; REFLECTION; REMOTE SENSING; SATELLITE IMAGERY; VEGETATION;

EID: 84973884994     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2016.05.014     Document Type: Article
Times cited : (167)

References (77)
  • 1
    • 4444279777 scopus 로고    scopus 로고
    • Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery
    • Anderson M.C., Neale C.M.U., Li F., Norman J.M., Kustas W.P., Jayanthi H., et al. Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens. Environ. 2004, 92:447-464.
    • (2004) Remote Sens. Environ. , vol.92 , pp. 447-464
    • Anderson, M.C.1    Neale, C.M.U.2    Li, F.3    Norman, J.M.4    Kustas, W.P.5    Jayanthi, H.6
  • 3
    • 80052548720 scopus 로고    scopus 로고
    • Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices
    • Arvor D., Meirelles M., Dubreuil V., Bégué A., Shimabukuro Y.E. Analyzing the agricultural transition in Mato Grosso, Brazil, using satellite-derived indices. Appl. Geogr. 2012, 32:702-713.
    • (2012) Appl. Geogr. , vol.32 , pp. 702-713
    • Arvor, D.1    Meirelles, M.2    Dubreuil, V.3    Bégué, A.4    Shimabukuro, Y.E.5
  • 4
    • 82055186457 scopus 로고    scopus 로고
    • Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil
    • Arvor D., Jonathan M., Meirelles M.S.P., Dubreuil V., Durieux L. Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 2011, 32:7847-7871.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 7847-7871
    • Arvor, D.1    Jonathan, M.2    Meirelles, M.S.P.3    Dubreuil, V.4    Durieux, L.5
  • 5
    • 0019895127 scopus 로고
    • Automatic corn soybean classification using landsat MSS data. 1. Near-harvest crop proportion estimation
    • Badhwar G.D. Automatic corn soybean classification using landsat MSS data. 1. Near-harvest crop proportion estimation. Remote Sens. Environ. 1984, 14:15-29.
    • (1984) Remote Sens. Environ. , vol.14 , pp. 15-29
    • Badhwar, G.D.1
  • 6
    • 84870705683 scopus 로고    scopus 로고
    • Satellite image automatic Mapper™ (SIAM™) - a Turnkey software executable for automatic near real-time multi-sensor multi-resolution spectral rule-based preliminary classification of spaceborne multi-spectral images
    • Baraldi A. Satellite image automatic Mapper™ (SIAM™) - a Turnkey software executable for automatic near real-time multi-sensor multi-resolution spectral rule-based preliminary classification of spaceborne multi-spectral images. Recent Pat. Space Technol. 2011, 1:81-106.
    • (2011) Recent Pat. Space Technol. , vol.1 , pp. 81-106
    • Baraldi, A.1
  • 7
    • 84875117682 scopus 로고    scopus 로고
    • Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics
    • Bolton D.K., Friedl M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173:74-84.
    • (2013) Agric. For. Meteorol. , vol.173 , pp. 74-84
    • Bolton, D.K.1    Friedl, M.A.2
  • 8
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
    • Boryan C., Yang Z., Mueller R., Craig M. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 2011, 26:341-358.
    • (2011) Geocarto Int. , vol.26 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 9
    • 84870666272 scopus 로고    scopus 로고
    • Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data
    • Brown J.C., Kastens J.H., Coutinho A.C., Victoria D.d.C., Bishop C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130:39-50.
    • (2013) Remote Sens. Environ. , vol.130 , pp. 39-50
    • Brown, J.C.1    Kastens, J.H.2    Coutinho, A.C.3    Victoria, D.4    Bishop, C.R.5
  • 10
    • 0030538988 scopus 로고    scopus 로고
    • Economic behavior under uncertainty: a joint analysis of risk preferences and technology
    • Chavas J.P., Holt M.T. Economic behavior under uncertainty: a joint analysis of risk preferences and technology. Rev. Econ. Stat. 1996, 78:329-335.
    • (1996) Rev. Econ. Stat. , vol.78 , pp. 329-335
    • Chavas, J.P.1    Holt, M.T.2
  • 11
    • 84860390491 scopus 로고    scopus 로고
    • Per-field irrigated crop classification in arid central Asia using SPOT and ASTER data
    • Conrad C., Fritsch S., Zeidler J., Rücker G., Dech S. Per-field irrigated crop classification in arid central Asia using SPOT and ASTER data. Remote Sens. 2010, 2:1035-1056.
    • (2010) Remote Sens. , vol.2 , pp. 1035-1056
    • Conrad, C.1    Fritsch, S.2    Zeidler, J.3    Rücker, G.4    Dech, S.5
  • 12
    • 84957636591 scopus 로고    scopus 로고
    • Land-use choices: balancing human needs and ecosystem function
    • DeFries R.S., Foley J.A., Asner G.P. Land-use choices: balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2:249-257.
    • (2004) Front. Ecol. Environ. , vol.2 , pp. 249-257
    • DeFries, R.S.1    Foley, J.A.2    Asner, G.P.3
  • 13
    • 85027922810 scopus 로고    scopus 로고
    • Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms
    • Dong J., Xiao X., Kou W., Qin Y., Zhang G., Li L., et al. Tracking the dynamics of paddy rice planting area in 1986-2010 through time series Landsat images and phenology-based algorithms. Remote Sens. Environ. 2015, 160:99-113.
    • (2015) Remote Sens. Environ. , vol.160 , pp. 99-113
    • Dong, J.1    Xiao, X.2    Kou, W.3    Qin, Y.4    Zhang, G.5    Li, L.6
  • 14
    • 84893507898 scopus 로고    scopus 로고
    • Identification of the spatial and temporal dynamics for estimating soybean crop area from MODIS images in the Rio Grande do Sul, Brazil
    • dos Santos J.S., Fontana D.C., Silva T.S.F., Rudorff B.F.T. Identification of the spatial and temporal dynamics for estimating soybean crop area from MODIS images in the Rio Grande do Sul, Brazil. Rev. Bras. Engenharia Agric. E Ambiental 2014, 18:54-63.
    • (2014) Rev. Bras. Engenharia Agric. E Ambiental , vol.18 , pp. 54-63
    • dos Santos, J.S.1    Fontana, D.C.2    Silva, T.S.F.3    Rudorff, B.F.T.4
  • 15
    • 0032548085 scopus 로고    scopus 로고
    • Legume-based cropping systems have reduced carbon and nitrogen losses
    • Drinkwater L.E., Wagoner P., Sarrantonio M. Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 1998, 396:262-265.
    • (1998) Nature , vol.396 , pp. 262-265
    • Drinkwater, L.E.1    Wagoner, P.2    Sarrantonio, M.3
  • 16
    • 77953700764 scopus 로고    scopus 로고
    • Estimating soybean crop areas using spectral-temporal surfaces derived from MODIS images in Mato Grosso, Brazil
    • Epiphanio R.D.V., Formaggio A.R., Rudorff B.F.T., Maeda E.E., Luiz A.J.B. Estimating soybean crop areas using spectral-temporal surfaces derived from MODIS images in Mato Grosso, Brazil. Pesqui. Agropecu. Bras. 2010, 45:72-80.
    • (2010) Pesqui. Agropecu. Bras. , vol.45 , pp. 72-80
    • Epiphanio, R.D.V.1    Formaggio, A.R.2    Rudorff, B.F.T.3    Maeda, E.E.4    Luiz, A.J.B.5
  • 17
    • 33750061021 scopus 로고    scopus 로고
    • Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure
    • Evans J.P., Geerken R. Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure. Remote Sens. Environ. 2006, 105:1-8.
    • (2006) Remote Sens. Environ. , vol.105 , pp. 1-8
    • Evans, J.P.1    Geerken, R.2
  • 18
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing land cover classification accuracies produced by decision trees at continental to global scales
    • Friedl M.A., Brodley C.E., Strahler A.H. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Trans. Geosci. Remote Sens. 1999, 37:969-977.
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 21
    • 67649641784 scopus 로고    scopus 로고
    • An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change
    • Geerken R.A. An algorithm to classify and monitor seasonal variations in vegetation phenologies and their inter-annual change. ISPRS J. Photogramm. Remote Sens. 2009, 64:422-431.
    • (2009) ISPRS J. Photogramm. Remote Sens. , vol.64 , pp. 422-431
    • Geerken, R.A.1
  • 22
    • 84872359932 scopus 로고    scopus 로고
    • Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data
    • Gong P., Wang J., Yu L., Zhao Y., Zhao Y., Liang L., et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34:2607-2654.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 2607-2654
    • Gong, P.1    Wang, J.2    Yu, L.3    Zhao, Y.4    Zhao, Y.5    Liang, L.6
  • 24
    • 33746655320 scopus 로고    scopus 로고
    • Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels
    • Hill J., Nelson E., Tilman D., Polasky S., Tiffany D. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc. Natl. Acad. Sci. USA 2006, 103:11206-11210.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 11206-11210
    • Hill, J.1    Nelson, E.2    Tilman, D.3    Polasky, S.4    Tiffany, D.5
  • 25
    • 84923552740 scopus 로고    scopus 로고
    • Annual crop type classification of the US Great Plains for 2000 to 2011
    • Howard D.M., Wylie B.K. Annual crop type classification of the US Great Plains for 2000 to 2011. Photogramm. Eng. Remote Sens. 2014, 80:537-549.
    • (2014) Photogramm. Eng. Remote Sens. , vol.80 , pp. 537-549
    • Howard, D.M.1    Wylie, B.K.2
  • 26
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete A., Didan K., Miura T., Rodriguez E., Gao X., Ferreira L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83:195-213.
    • (2002) Remote Sens. Environ. , vol.83 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.4    Gao, X.5    Ferreira, L.6
  • 27
    • 0030613490 scopus 로고    scopus 로고
    • A comparison of vegetation indices over a global set of TM images for EOS-MODIS
    • Huete A.R., Liu H.Q., Batchily K., van Leeuwen W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59:440-451.
    • (1997) Remote Sens. Environ. , vol.59 , pp. 440-451
    • Huete, A.R.1    Liu, H.Q.2    Batchily, K.3    van Leeuwen, W.4
  • 29
    • 84888050432 scopus 로고    scopus 로고
    • An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States
    • Johnson D.M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141:116-128.
    • (2014) Remote Sens. Environ. , vol.141 , pp. 116-128
    • Johnson, D.M.1
  • 30
    • 33646827204 scopus 로고    scopus 로고
    • Regional scale land cover characterization using MODIS-NDVI 250 m multi-temporal imagery: a phenology-based approach
    • Knight J.F., Lunetta R.S., Ediriwickrema J., Khorram S. Regional scale land cover characterization using MODIS-NDVI 250 m multi-temporal imagery: a phenology-based approach. GISci. Remote Sens. 2006, 43:1-23.
    • (2006) GISci. Remote Sens. , vol.43 , pp. 1-23
    • Knight, J.F.1    Lunetta, R.S.2    Ediriwickrema, J.3    Khorram, S.4
  • 31
    • 79952772074 scopus 로고    scopus 로고
    • Global land use change, economic globalization, and the looming land scarcity
    • Lambin E.F., Meyfroidt P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108:3465-3472.
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 3465-3472
    • Lambin, E.F.1    Meyfroidt, P.2
  • 32
    • 0025573354 scopus 로고
    • A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery
    • Lloyd D. A phenological classification of terrestrial vegetation cover using shortwave vegetation index imagery. Int. J. Remote Sens. 1990, 11:2269-2279.
    • (1990) Int. J. Remote Sens. , vol.11 , pp. 2269-2279
    • Lloyd, D.1
  • 34
    • 34447324136 scopus 로고    scopus 로고
    • Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping
    • Lucas R., Rowlands A., Brown A., Keyworth S., Bunting P. Rule-based classification of multi-temporal satellite imagery for habitat and agricultural land cover mapping. ISPRS J. Photogramm. Remote Sens. 2007, 62:165-185.
    • (2007) ISPRS J. Photogramm. Remote Sens. , vol.62 , pp. 165-185
    • Lucas, R.1    Rowlands, A.2    Brown, A.3    Keyworth, S.4    Bunting, P.5
  • 35
    • 0033894072 scopus 로고    scopus 로고
    • An algorithm for the retrieval of albedo from space using semiempirical BRDF models
    • Lucht W., Schaaf C.B., Strahler A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38:977-998.
    • (2000) IEEE Trans. Geosci. Remote Sens. , vol.38 , pp. 977-998
    • Lucht, W.1    Schaaf, C.B.2    Strahler, A.H.3
  • 39
    • 45449110437 scopus 로고    scopus 로고
    • Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000
    • Monfreda C., Ramankutty N., Foley J.A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem. Cycles 2008, 22:GB1022.
    • (2008) Global Biogeochem. Cycles , vol.22
    • Monfreda, C.1    Ramankutty, N.2    Foley, J.A.3
  • 40
    • 33746423073 scopus 로고    scopus 로고
    • Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado
    • Mosier A.R., Halvorson A.D., Reule C.A., Liu X.J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. J. Environ. Qual. 2006, 35:1584-1598.
    • (2006) J. Environ. Qual. , vol.35 , pp. 1584-1598
    • Mosier, A.R.1    Halvorson, A.D.2    Reule, C.A.3    Liu, X.J.4
  • 41
    • 48349112954 scopus 로고    scopus 로고
    • A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US
    • Ozdogan M., Gutman G. A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: an application example in the continental US. Remote Sens. Environ. 2008, 112:3520-3537.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 3520-3537
    • Ozdogan, M.1    Gutman, G.2
  • 42
    • 79953182966 scopus 로고    scopus 로고
    • Object-based crop identification using multiple vegetation indices, textural features and crop phenology
    • Pena-Barragan J.M., Ngugi M.K., Plant R.E., Six J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115:1301-1316.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1301-1316
    • Pena-Barragan, J.M.1    Ngugi, M.K.2    Plant, R.E.3    Six, J.4
  • 44
    • 77954168912 scopus 로고    scopus 로고
    • MIRCA2000? Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling
    • Portmann F.T., Siebert S., Döll P. MIRCA2000? Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochem. Cycles 2010, 24:GB1011.
    • (2010) Global Biogeochem. Cycles , vol.24
    • Portmann, F.T.1    Siebert, S.2    Döll, P.3
  • 45
    • 25144520485 scopus 로고    scopus 로고
    • Roundup ready soybeans in Argentina: farm level and aggregate welfare effects
    • Qaim M., Traxler G. Roundup ready soybeans in Argentina: farm level and aggregate welfare effects. Agric. Econ. 2005, 32:73-86.
    • (2005) Agric. Econ. , vol.32 , pp. 73-86
    • Qaim, M.1    Traxler, G.2
  • 46
    • 84928661715 scopus 로고    scopus 로고
    • Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery
    • Qin Y., Xiao X., Dong J., Zhou Y., Zhu Z., Zhang G., et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery. ISPRS J. Photogramm. Remote Sens. 2015, 105:220-233.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.105 , pp. 220-233
    • Qin, Y.1    Xiao, X.2    Dong, J.3    Zhou, Y.4    Zhu, Z.5    Zhang, G.6
  • 47
    • 45449111176 scopus 로고    scopus 로고
    • Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000
    • Ramankutty N., Evan A.T., Monfreda C., Foley J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 2008, 22:GB1003.
    • (2008) Global Biogeochem. Cycles , vol.22
    • Ramankutty, N.1    Evan, A.T.2    Monfreda, C.3    Foley, J.A.4
  • 48
    • 80052792336 scopus 로고    scopus 로고
    • Identification of hazelnut fields using spectral and Gabor textural features
    • Reis S., Taşdemir K. Identification of hazelnut fields using spectral and Gabor textural features. ISPRS J. Photogramm. Remote Sens. 2011, 66:652-661.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , pp. 652-661
    • Reis, S.1    Taşdemir, K.2
  • 50
    • 84897374226 scopus 로고    scopus 로고
    • Near real-time prediction of U.S. corn yields based on time-series MODIS data
    • Sakamoto T., Gitelson A.A., Arkebauer T.J. Near real-time prediction of U.S. corn yields based on time-series MODIS data. Remote Sens. Environ. 2014, 147:219-231.
    • (2014) Remote Sens. Environ. , vol.147 , pp. 219-231
    • Sakamoto, T.1    Gitelson, A.A.2    Arkebauer, T.J.3
  • 51
    • 67049144635 scopus 로고    scopus 로고
    • Agro-ecological interpretation of rice cropping systems in flood-prone areas using MODIS imagery
    • Sakamoto T., Van Cao Phung, Van Nguyen Nhan, Kotera A., Yokozawa M. Agro-ecological interpretation of rice cropping systems in flood-prone areas using MODIS imagery. Photogramm. Eng. Remote Sens. 2009, 75:413-424.
    • (2009) Photogramm. Eng. Remote Sens. , vol.75 , pp. 413-424
    • Sakamoto, T.1    Van Cao, P.2    Van Nguyen, N.3    Kotera, A.4    Yokozawa, M.5
  • 53
    • 84937897682 scopus 로고    scopus 로고
    • A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data
    • Siachalou S., Mallinis G., Tsakiri-Strati M. A hidden Markov models approach for crop classification: linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7.
    • (2015) Remote Sens. , vol.7
    • Siachalou, S.1    Mallinis, G.2    Tsakiri-Strati, M.3
  • 55
    • 37249015863 scopus 로고    scopus 로고
    • The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco
    • Simonneaux V., Duchemin B., Helson D., Er-Raki S., Olioso A., Chehbouni A.G. The use of high-resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. Int. J. Remote Sens. 2008, 29:95-116.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 95-116
    • Simonneaux, V.1    Duchemin, B.2    Helson, D.3    Er-Raki, S.4    Olioso, A.5    Chehbouni, A.G.6
  • 57
    • 84893379199 scopus 로고    scopus 로고
    • A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam
    • Son N., Chen C., Chen C., Duc H., Chang L. A phenology-based classification of time-series MODIS data for rice crop monitoring in Mekong Delta, Vietnam. Remote Sens. 2014, 6.
    • (2014) Remote Sens. , vol.6
    • Son, N.1    Chen, C.2    Chen, C.3    Duc, H.4    Chang, L.5
  • 58
    • 41449115901 scopus 로고    scopus 로고
    • Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data
    • Soudani K., le Maire G., Dufrene E., Francois C., Delpierre N., Ulrich E., et al. Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data. Remote Sens. Environ. 2008, 112:2643-2655.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2643-2655
    • Soudani, K.1    le Maire, G.2    Dufrene, E.3    Francois, C.4    Delpierre, N.5    Ulrich, E.6
  • 59
    • 65249128571 scopus 로고    scopus 로고
    • Feasibility of the use of Landsat imagery to map soybean crop areas in Parana, Brazil
    • Sugawara L.M., Theodor Rudorff B.F., Adami M. Feasibility of the use of Landsat imagery to map soybean crop areas in Parana, Brazil. Pesq. Agropecu. Bras. 2008, 43:1777-1783.
    • (2008) Pesq. Agropecu. Bras. , vol.43 , pp. 1777-1783
    • Sugawara, L.M.1    Theodor Rudorff, B.F.2    Adami, M.3
  • 60
    • 70449436485 scopus 로고    scopus 로고
    • Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium
    • Thenkabail P.S., Biradar C.M., Noojipady P., Dheeravath V., Li Y., Velpuri M., et al. Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium. Int. J. Remote Sens. 2009, 30:3679-3733.
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 3679-3733
    • Thenkabail, P.S.1    Biradar, C.M.2    Noojipady, P.3    Dheeravath, V.4    Li, Y.5    Velpuri, M.6
  • 61
    • 38049134453 scopus 로고    scopus 로고
    • The emergence of land change science for global environmental change and sustainability
    • Turner B.L., Lambin E.F., Reenberg A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104:20666-20671.
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 20666-20671
    • Turner, B.L.1    Lambin, E.F.2    Reenberg, A.3
  • 62
    • 84973859749 scopus 로고    scopus 로고
    • The Spectral-Temporal Response Surface and its use in the multi-sensor, multi-temporal classification of agricultural crops
    • Vieira C., Mather P., McCullagh M. The Spectral-Temporal Response Surface and its use in the multi-sensor, multi-temporal classification of agricultural crops. Int. Arch. Photogramm. Remote Sens. 2000, 33:582-589.
    • (2000) Int. Arch. Photogramm. Remote Sens. , vol.33 , pp. 582-589
    • Vieira, C.1    Mather, P.2    McCullagh, M.3
  • 63
    • 84886678114 scopus 로고    scopus 로고
    • Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes
    • Wachholz de Souza C.H., Mercante E., Prudente V.H.R., Justina D.D.D. Methods of performance evaluation for the supervised classification of satellite imagery in determining land cover classes. Cien. Inv. Agr. 2013, 40:419-428.
    • (2013) Cien. Inv. Agr. , vol.40 , pp. 419-428
    • Wachholz de Souza, C.H.1    Mercante, E.2    Prudente, V.H.R.3    Justina, D.D.D.4
  • 64
    • 84944743397 scopus 로고    scopus 로고
    • Automated annual cropland mapping using knowledge-based temporal features
    • Waldner F., Canto G.S., Defourny P. Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 2015, 110:1-13.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 65
    • 85007485113 scopus 로고    scopus 로고
    • Assessing bioenergy-driven agricultural land use change and biomass quantities in the US Midwest with MODIS time series
    • Wang C., Zhong C., Yang Z. Assessing bioenergy-driven agricultural land use change and biomass quantities in the US Midwest with MODIS time series. J. Appl. Remote Sens. 2014, 8:085198.
    • (2014) J. Appl. Remote Sens. , vol.8
    • Wang, C.1    Zhong, C.2    Yang, Z.3
  • 66
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains
    • Wardlow B.D., Egbert S.L. Large-area crop mapping using time-series MODIS 250 m NDVI data: an assessment for the US Central Great Plains. Remote Sens. Environ. 2008, 112:1096-1116.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 67
    • 34247523027 scopus 로고    scopus 로고
    • Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains
    • Wardlow B.D., Egbert S.L., Kastens J.H. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sens. Environ. 2007, 108:290-310.
    • (2007) Remote Sens. Environ. , vol.108 , pp. 290-310
    • Wardlow, B.D.1    Egbert, S.L.2    Kastens, J.H.3
  • 68
    • 0019707668 scopus 로고
    • On the validation of models
    • Willmott C.J. On the validation of models. Phys. Geogr. 1981, 2:184-194.
    • (1981) Phys. Geogr. , vol.2 , pp. 184-194
    • Willmott, C.J.1
  • 69
    • 84895903483 scopus 로고    scopus 로고
    • Remote sensing-based global crop monitoring: experiences with China's CropWatch system
    • Wu B., Meng J., Li Q., Yan N., Du X., Zhang M. Remote sensing-based global crop monitoring: experiences with China's CropWatch system. Int. J. Digit. Earth 2014, 7:113-137.
    • (2014) Int. J. Digit. Earth , vol.7 , pp. 113-137
    • Wu, B.1    Meng, J.2    Li, Q.3    Yan, N.4    Du, X.5    Zhang, M.6
  • 70
    • 84892175132 scopus 로고    scopus 로고
    • Automated cropland classification algorithm (ACCA) for California using multi-sensor remote sensing
    • Wu Z., Thenkabail P.S., Verdin J.P. Automated cropland classification algorithm (ACCA) for California using multi-sensor remote sensing. Photogramm. Eng. Remote Sens. 2014, 80:81-90.
    • (2014) Photogramm. Eng. Remote Sens. , vol.80 , pp. 81-90
    • Wu, Z.1    Thenkabail, P.S.2    Verdin, J.P.3
  • 71
    • 84896926443 scopus 로고    scopus 로고
    • A production efficiency model-based method for satellite estimates of corn and soybean yields in the midwestern US
    • Xin Q., Gong P., Yu C., Yu L., Broich M., Suyker A.E., et al. A production efficiency model-based method for satellite estimates of corn and soybean yields in the midwestern US. Remote Sens. 2013, 5:5926-5943.
    • (2013) Remote Sens. , vol.5 , pp. 5926-5943
    • Xin, Q.1    Gong, P.2    Yu, C.3    Yu, L.4    Broich, M.5    Suyker, A.E.6
  • 72
    • 41249103476 scopus 로고    scopus 로고
    • Remote sensing of vegetation water content from equivalent water thickness using satellite imagery
    • Yilmaz M.T., Hunt E.R., Jackson T.J. Remote sensing of vegetation water content from equivalent water thickness using satellite imagery. Remote Sens. Environ. 2008, 112:2514-2522.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 2514-2522
    • Yilmaz, M.T.1    Hunt, E.R.2    Jackson, T.J.3
  • 73
    • 84888134923 scopus 로고    scopus 로고
    • FROM-GC: 30 m global cropland extent derived through multisource data integration
    • Yu L., Wang J., Clinton N., Xin Q., Zhong L., Chen Y., et al. FROM-GC: 30 m global cropland extent derived through multisource data integration. Int. J. Digit. Earth 2013, 6:521-533.
    • (2013) Int. J. Digit. Earth , vol.6 , pp. 521-533
    • Yu, L.1    Wang, J.2    Clinton, N.3    Xin, Q.4    Zhong, L.5    Chen, Y.6
  • 74
    • 84930936529 scopus 로고    scopus 로고
    • Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data
    • Zhang G., Xiao X., Dong J., Kou W., Jin C., Qin Y., et al. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS J. Photogramm. Remote Sens. 2015, 106:157-171.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.106 , pp. 157-171
    • Zhang, G.1    Xiao, X.2    Dong, J.3    Kou, W.4    Jin, C.5    Qin, Y.6
  • 75
    • 84884264508 scopus 로고    scopus 로고
    • Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery
    • Zhong L., Gong P., Biging G.S. Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140:1-13.
    • (2014) Remote Sens. Environ. , vol.140 , pp. 1-13
    • Zhong, L.1    Gong, P.2    Biging, G.S.3
  • 76
    • 84868019256 scopus 로고    scopus 로고
    • Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's Central Valley
    • Zhong L., Gong P., Biging G.S. Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California's Central Valley. Photogramm. Eng. Remote Sens. 2012, 78:799-813.
    • (2012) Photogramm. Eng. Remote Sens. , vol.78 , pp. 799-813
    • Zhong, L.1    Gong, P.2    Biging, G.S.3
  • 77
    • 82055192022 scopus 로고    scopus 로고
    • A phenology-based approach to map crop types in the San Joaquin Valley, California
    • Zhong L., Hawkins T., Biging G., Gong P. A phenology-based approach to map crop types in the San Joaquin Valley, California. Int. J. Remote Sens. 2011, 32:7777-7804.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 7777-7804
    • Zhong, L.1    Hawkins, T.2    Biging, G.3    Gong, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.