-
1
-
-
84927647026
-
Regulation of signal transduction by reactive oxygen species in the cardiovascular system
-
Brown DI and Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015; 116: 531-549.
-
(2015)
Circ Res
, vol.116
, pp. 531-549
-
-
Brown, D.I.1
Griendling, K.K.2
-
2
-
-
43049180323
-
Why have antioxidants failed in clinical trials?
-
Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol 2008; 101: 14D-19D.
-
(2008)
Am J Cardiol
, vol.101
, pp. 14D-19D
-
-
Steinhubl, S.R.1
-
4
-
-
33847378451
-
Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: Systematic review and meta-analysis
-
Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG and Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007; 297: 842-857.
-
(2007)
JAMA
, vol.297
, pp. 842-857
-
-
Bjelakovic, G.1
Nikolova, D.2
Gluud, L.L.3
Simonetti, R.G.4
Gluud, C.5
-
5
-
-
19944427642
-
Metaanalysis: High-dosage vitamin
-
Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ and Guallar E. Metaanalysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005; 142: 37-46.
-
(2005)
E Supplementation May Increase All-Cause Mortality. Ann Intern Med
, vol.142
, pp. 37-46
-
-
Miller, E.R.1
Pastor-Barriuso, R.2
Dalal, D.3
Riemersma, R.A.4
Appel, L.J.5
Guallar, E.6
-
6
-
-
34248217519
-
Coenzyme Q10 in cardiovascular disease
-
Pepe S, Marasco SF, Haas SJ, Sheeran FL, Krum H and Rosenfeldt FL. Coenzyme Q10 in cardiovascular disease. Mitochondrion 2007; 7 Suppl: S154-167.
-
(2007)
Mitochondrion
, vol.7
, pp. S154-S167
-
-
Pepe, S.1
Marasco, S.F.2
Haas, S.J.3
Sheeran, F.L.4
Krum, H.5
Rosenfeldt, F.L.6
-
7
-
-
84903899662
-
The promise and perils of antioxidants for cancer patients
-
Chandel NS and Tuveson DA. The promise and perils of antioxidants for cancer patients. N Engl J Med 2014; 371: 177-178.
-
(2014)
N Engl J Med
, vol.371
, pp. 177-178
-
-
Chandel, N.S.1
Tuveson, D.A.2
-
8
-
-
77955792985
-
A doubleblind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease
-
Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O’Sullivan JD, Fung V, Smith RA, Murphy MP, Taylor KM and Protect Study G. A doubleblind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson’s disease. Mov Disord 2010; 25: 1670-1674.
-
(2010)
Mov Disord
, vol.25
, pp. 1670-1674
-
-
Snow, B.J.1
Rolfe, F.L.2
Lockhart, M.M.3
Frampton, C.M.4
O’Sullivan, J.D.5
Fung, V.6
Smith, R.A.7
Murphy, M.P.8
Taylor, K.M.9
Protect Study, G.10
-
9
-
-
77955283395
-
Animal and human studies with the mitochondria-targeted antioxidant MitoQ
-
Smith RA and Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 2010; 1201: 96-103.
-
(2010)
Ann N Y Acad Sci
, vol.1201
, pp. 96-103
-
-
Smith, R.A.1
Murphy, M.P.2
-
10
-
-
62549102431
-
Reactive oxygen species: Destroyers or messengers?
-
Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol 2009; 77: 1303-1315.
-
(2009)
Biochem Pharmacol
, vol.77
, pp. 1303-1315
-
-
Bartosz, G.1
-
11
-
-
0032775916
-
Reactive oxygen species function as second messenger during ischemic preconditioning of heart
-
Das DK, Maulik N, Sato M and Ray PS. Reactive oxygen species function as second messenger during ischemic preconditioning of heart. Mol Cell Biochem 1999; 196: 59-67.
-
(1999)
Mol Cell Biochem
, vol.196
, pp. 59-67
-
-
Das, D.K.1
Maulik, N.2
Sato, M.3
Ray, P.S.4
-
12
-
-
84943349991
-
[Signaling Mechanism of Cardioprotective Effect of Reactive Oxygen Species]
-
Maslov LN, Naryzhnaya NV, Podoksenov YK, Sementsov AS and Gorbunov AS. [Signaling Mechanism of Cardioprotective Effect of Reactive Oxygen Species]. Ross Fiziol Zh Im I M Sechenova 2015; 101: 377-385.
-
(2015)
Ross Fiziol Zh Im I M Sechenova
, vol.101
, pp. 377-385
-
-
Maslov, L.N.1
Naryzhnaya, N.V.2
Podoksenov, Y.K.3
Sementsov, A.S.4
Gorbunov, A.S.5
-
13
-
-
34547130863
-
The role of mitochondria in protection of the heart by preconditioning
-
Halestrap AP, Clarke SJ and Khaliulin I. The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 2007; 1767: 1007-1031.
-
(2007)
Biochim Biophys Acta
, vol.1767
, pp. 1007-1031
-
-
Halestrap, A.P.1
Clarke, S.J.2
Khaliulin, I.3
-
14
-
-
84945337153
-
Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury
-
Zhou T, Chuang CC and Zuo L. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury. Biomed Res Int 2015; 2015: 864946.
-
(2015)
Biomed Res Int 2015
, pp. 864946
-
-
Zhou, T.1
Chuang, C.C.2
Zuo, L.3
-
15
-
-
15744382046
-
Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload
-
Sun HY, Wang NP, Kerendi F, Halkos M, Kin H, Guyton RA, Vinten-Johansen J and Zhao ZQ. Hypoxic postconditioning reduces cardiomyocyte loss by inhibiting ROS generation and intracellular Ca2+ overload. Am J Physiol Heart Circ Physiol 2005; 288: H1900-1908.
-
(2005)
Am J Physiol Heart Circ Physiol
, vol.288
, pp. H1900-H1908
-
-
Sun, H.Y.1
Wang, N.P.2
Kerendi, F.3
Halkos, M.4
Kin, H.5
Guyton, R.A.6
Vinten-Johansen, J.7
Zhao, Z.Q.8
-
16
-
-
1542298950
-
Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion
-
Kin H, Zhao ZQ, Sun HY, Wang NP, Corvera JS, Halkos ME, Kerendi F, Guyton RA and Vinten-Johansen J. Postconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting events in the early minutes of reperfusion. Cardiovasc Res 2004; 62: 74-85.
-
(2004)
Cardiovasc Res
, vol.62
, pp. 74-85
-
-
Kin, H.1
Zhao, Z.Q.2
Sun, H.Y.3
Wang, N.P.4
Corvera, J.S.5
Halkos, M.E.6
Kerendi, F.7
Guyton, R.A.8
Vinten-Johansen, J.9
-
17
-
-
32844460892
-
Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation
-
Penna C, Rastaldo R, Mancardi D, Raimondo S, Cappello S, Gattullo D, Losano G and Pagliaro P. Post-conditioning induced cardioprotection requires signaling through a redox-sensitive mechanism, mitochondrial ATP-sensitive K+ channel and protein kinase C activation. Basic Res Cardiol 2006; 101: 180-189.
-
(2006)
Basic Res Cardiol
, vol.101
, pp. 180-189
-
-
Penna, C.1
Rastaldo, R.2
Mancardi, D.3
Raimondo, S.4
Cappello, S.5
Gattullo, D.6
Losano, G.7
Pagliaro, P.8
-
18
-
-
84982911848
-
Oxygen surrounding the heart during ischemic conservation determines the myocardial injury during reperfusion
-
Feng Y and Bopassa JC. Oxygen surrounding the heart during ischemic conservation determines the myocardial injury during reperfusion. Am J Cardiovasc Dis 2015; 5: 127-139.
-
(2015)
Am J Cardiovasc Dis
, vol.5
, pp. 127-139
-
-
Feng, Y.1
Bopassa, J.C.2
-
19
-
-
79961020461
-
Phosphorylation of GSK-3beta mediates intralipid-induced cardioprotection against ischemia/reperfusion injury
-
Rahman S, Li J, Bopassa JC, Umar S, Iorga A, Partownavid P and Eghbali M. Phosphorylation of GSK-3beta mediates intralipid-induced cardioprotection against ischemia/reperfusion injury. Anesthesiology 2011; 115: 242-253.
-
(2011)
Anesthesiology
, vol.115
, pp. 242-253
-
-
Rahman, S.1
Li, J.2
Bopassa, J.C.3
Umar, S.4
Iorga, A.5
Partownavid, P.6
Eghbali, M.7
-
20
-
-
73549100178
-
A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury
-
Bopassa JC, Eghbali M, Toro L and Stefani E. A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2010; 298: H16-23.
-
(2010)
Am J Physiol Heart Circ Physiol
, vol.298
, pp. H16-H23
-
-
Bopassa, J.C.1
Eghbali, M.2
Toro, L.3
Stefani, E.4
-
21
-
-
84897112203
-
Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide
-
Bienert GP and Chaumont F. Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 2014; 1840: 1596-1604.
-
(2014)
Biochim Biophys Acta
, vol.1840
, pp. 1596-1604
-
-
Bienert, G.P.1
Chaumont, F.2
-
22
-
-
0016148483
-
Superoxide radicals as precursors of mitochondrial hydrogen peroxide
-
Loschen G, Azzi A, Richter C and Flohe L. Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett 1974; 42: 68-72.
-
(1974)
FEBS Lett
, vol.42
, pp. 68-72
-
-
Loschen, G.1
Azzi, A.2
Richter, C.3
Flohe, L.4
-
23
-
-
29144474535
-
PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning
-
Bopassa JC, Ferrera R, Gateau-Roesch O, Couture-Lepetit E and Ovize M. PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning. Cardiovasc Res 2006; 69: 178-185.
-
(2006)
Cardiovasc Res
, vol.69
, pp. 178-185
-
-
Bopassa, J.C.1
Ferrera, R.2
Gateau-Roesch, O.3
Couture-Lepetit, E.4
Ovize, M.5
-
24
-
-
34249340085
-
Post-conditioning protects from cardioplegia and cold ischemia via inhibition of mito chondrial permeability transition pore
-
Ferrera R, Bopassa JC, Angoulvant D and Ovize M. Post-conditioning protects from cardioplegia and cold ischemia via inhibition of mito chondrial permeability transition pore. J Heart Lung Transplant 2007; 26: 604-609.
-
(2007)
J Heart Lung Transplant
, vol.26
, pp. 604-609
-
-
Ferrera, R.1
Bopassa, J.C.2
Angoulvant, D.3
Ovize, M.4
-
25
-
-
78751582294
-
Effects of a highfat diet on energy metabolism and ROS production in rat liver
-
Vial G, Dubouchaud H, Couturier K, Cottet-Rousselle C, Taleux N, Athias A, Galinier A, Casteilla L and Leverve XM. Effects of a highfat diet on energy metabolism and ROS production in rat liver. J Hepatol 2011; 54: 348-356.
-
(2011)
J Hepatol
, vol.54
, pp. 348-356
-
-
Vial, G.1
Dubouchaud, H.2
Couturier, K.3
Cottet-Rousselle, C.4
Taleux, N.5
Athias, A.6
Galinier, A.7
Casteilla, L.8
Leverve, X.M.9
-
26
-
-
34548413597
-
Denervationinduced skeletal muscle atrophy is associated with increased mitochondrial ROS production
-
Muller FL, Song W, Jang YC, Liu Y, Sabia M, Richardson A and Van Remmen H. Denervationinduced skeletal muscle atrophy is associated with increased mitochondrial ROS production. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1159-1168.
-
(2007)
Am J Physiol Regul Integr Comp Physiol
, vol.293
, pp. R1159-R1168
-
-
Muller, F.L.1
Song, W.2
Jang, Y.C.3
Liu, Y.4
Sabia, M.5
Richardson, A.6
Van Remmen, H.7
-
27
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport chain
-
Liu Y, Fiskum G and Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem 2002; 80: 780-787.
-
(2002)
J Neurochem
, vol.80
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
28
-
-
63349087445
-
Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation
-
Tahara EB, Navarete FD and Kowaltowski AJ. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic Biol Med 2009; 46: 1283-1297.
-
(2009)
Free Radic Biol Med
, vol.46
, pp. 1283-1297
-
-
Tahara, E.B.1
Navarete, F.D.2
Kowaltowski, A.J.3
-
29
-
-
0028267301
-
Mitochondrial respiratory chain inhibitors induce apoptosis
-
Wolvetang EJ, Johnson KL, Krauer K, Ralph SJ and Linnane AW. Mitochondrial respiratory chain inhibitors induce apoptosis. FEBS Lett 1994; 339: 40-44.
-
(1994)
FEBS Lett
, vol.339
, pp. 40-44
-
-
Wolvetang, E.J.1
Johnson, K.L.2
Krauer, K.3
Ralph, S.J.4
Linnane, A.W.5
-
30
-
-
13444282326
-
Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury
-
Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D and Ovize M. Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 2005; 38: 367-374.
-
(2005)
J Mol Cell Cardiol
, vol.38
, pp. 367-374
-
-
Argaud, L.1
Gateau-Roesch, O.2
Muntean, D.3
Chalabreysse, L.4
Loufouat, J.5
Robert, D.6
Ovize, M.7
-
31
-
-
84944721260
-
G Protein-Coupled Estrogen Receptor 1 Mediates Acute EstrogenInduced Cardioprotection via MEK/ERK/GSK-3beta Pathway after Ischemia/Reperfusion
-
Kabir ME, Singh H, Lu R, Olde B, Leeb-Lundberg LM and Bopassa JC. G Protein-Coupled Estrogen Receptor 1 Mediates Acute EstrogenInduced Cardioprotection via MEK/ERK/GSK-3beta Pathway after Ischemia/Reperfusion. PLoS One 2015; 10: e0135988.
-
(2015)
Plos One
, vol.10
-
-
Kabir, M.E.1
Singh, H.2
Lu, R.3
Olde, B.4
Leeb-Lundberg, L.M.5
Bopassa, J.C.6
-
32
-
-
0033429387
-
The mitochondrial permeability transition and the calcium, oxygen and pH paradoxes: One paradox after another
-
Lemasters JJ. The mitochondrial permeability transition and the calcium, oxygen and pH paradoxes: one paradox after another. Cardiovasc Res 1999; 44: 470-473.
-
(1999)
Cardiovasc Res
, vol.44
, pp. 470-473
-
-
Lemasters, J.J.1
-
33
-
-
59449104627
-
Mitochondrial oxidative stress and dysfunction in myocardial remodelling
-
Tsutsui H, Kinugawa S and Matsushima S. Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 2009; 81: 449-456.
-
(2009)
Cardiovasc Res
, vol.81
, pp. 449-456
-
-
Tsutsui, H.1
Kinugawa, S.2
Matsushima, S.3
-
34
-
-
33645765312
-
Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress
-
Rolo AP and Palmeira CM. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006; 212: 167-178.
-
(2006)
Toxicol Appl Pharmacol
, vol.212
, pp. 167-178
-
-
Rolo, A.P.1
Palmeira, C.M.2
-
35
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR and Chandel NS. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci U S A 2010; 107: 8788-8793.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
Lopez, M.6
Kalyanaraman, B.7
Mutlu, G.M.8
Budinger, G.R.9
Chandel, N.S.10
-
36
-
-
84894165975
-
Cardiac mitochondria and reactive oxygen species generation
-
Chen YR and Zweier JL. Cardiac mitochondria and reactive oxygen species generation. Circ Res 2014; 114: 524-537.
-
(2014)
Circ Res
, vol.114
, pp. 524-537
-
-
Chen, Y.R.1
Zweier, J.L.2
-
37
-
-
84879477269
-
Protection of the ischemic myocardium during the reperfusion: Between hope and reality
-
Bopassa JC. Protection of the ischemic myocardium during the reperfusion: between hope and reality. Am J Cardiovasc Dis 2012; 2: 223-236.
-
(2012)
Am J Cardiovasc Dis
, vol.2
, pp. 223-236
-
-
Bopassa, J.C.1
-
38
-
-
39549102405
-
Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria
-
Chen Q, Moghaddas S, Hoppel CL and Lesnefsky EJ. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol 2008; 294: C460-466.
-
(2008)
Am J Physiol Cell Physiol
, vol.294
, pp. C460-C466
-
-
Chen, Q.1
Moghaddas, S.2
Hoppel, C.L.3
Lesnefsky, E.J.4
-
39
-
-
4043090717
-
Superoxide production by NADH:Ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
-
Lambert AJ and Brand MD. Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 2004; 382: 511-517.
-
(2004)
Biochem J
, vol.382
, pp. 511-517
-
-
Lambert, A.J.1
Brand, M.D.2
-
40
-
-
0001717675
-
Inhibition of electron and energy transfer in mitochondria. I. Effects of Amytal, thiopental, rotenone, progesterone, and methylene glycol
-
Chance B, Williams GR and Hollunger G. Inhibition of electron and energy transfer in mitochondria. I. Effects of Amytal, thiopental, rotenone, progesterone, and methylene glycol. J Biol Chem 1963; 238: 418-431.
-
(1963)
J Biol Chem
, vol.238
, pp. 418-431
-
-
Chance, B.1
Williams, G.R.2
Hollunger, G.3
-
41
-
-
4544354262
-
Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH: Ubiquinone oxidoreductase (complex I)
-
Lambert AJ and Brand MD. Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH: ubiquinone oxidoreductase (complex I). J Biol Chem 2004; 279: 39414-39420.
-
(2004)
J Biol Chem
, vol.279
, pp. 39414-39420
-
-
Lambert, A.J.1
Brand, M.D.2
-
42
-
-
84864540083
-
Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
-
Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA and Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 2012; 287: 27255-27264.
-
(2012)
J Biol Chem
, vol.287
, pp. 27255-27264
-
-
Quinlan, C.L.1
Orr, A.L.2
Perevoshchikova, I.V.3
Treberg, J.R.4
Ackrell, B.A.5
Brand, M.D.6
-
43
-
-
10344221083
-
Complex III releases superoxide to both sides of the inner mitochondrial membrane
-
Muller FL, Liu Y and Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004; 279: 49064-49073.
-
(2004)
J Biol Chem
, vol.279
, pp. 49064-49073
-
-
Muller, F.L.1
Liu, Y.2
Van Remmen, H.3
-
44
-
-
79551610255
-
Mitochondrial proton and electron leaks
-
Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR and Brand MD. Mitochondrial proton and electron leaks. Essays Biochem 2010; 47: 53-67.
-
(2010)
Essays Biochem
, vol.47
, pp. 53-67
-
-
Jastroch, M.1
Divakaruni, A.S.2
Mookerjee, S.3
Treberg, J.R.4
Brand, M.D.5
-
45
-
-
34250825264
-
Mitochondrial reactive oxygen species-mediated signaling in endothelial cells
-
Zhang DX and Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2007; 292: H2023-2031.
-
(2007)
Am J Physiol Heart Circ Physiol
, vol.292
, pp. H2023-H2031
-
-
Zhang, D.X.1
Gutterman, D.D.2
-
46
-
-
0037458619
-
Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol
-
Han D, Antunes F, Canali R, Rettori D and Cadenas E. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 2003; 278: 5557-5563.
-
(2003)
J Biol Chem
, vol.278
, pp. 5557-5563
-
-
Han, D.1
Antunes, F.2
Canali, R.3
Rettori, D.4
Cadenas, E.5
-
47
-
-
0037160091
-
Topology of superoxide production from different sites in the mitochondrial electron transport chain
-
St-Pierre J, Buckingham JA, Roebuck SJ and Brand MD. Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 2002; 277: 44784-44790.
-
(2002)
J Biol Chem
, vol.277
, pp. 44784-44790
-
-
St-Pierre, J.1
Buckingham, J.A.2
Roebuck, S.J.3
Brand, M.D.4
-
48
-
-
84859475136
-
Biphasic modulation of the mitochondrial electron transport chain in myocardial isch emia and reperfusion
-
Lee HL, Chen CL, Yeh ST, Zweier JL and Chen YR. Biphasic modulation of the mitochondrial electron transport chain in myocardial isch emia and reperfusion. Am J Physiol Heart Circ Physiol 2012; 302: H1410-1422.
-
(2012)
Am J Physiol Heart Circ Physiol
, vol.302
, pp. H1410-H1422
-
-
Lee, H.L.1
Chen, C.L.2
Yeh, S.T.3
Zweier, J.L.4
Chen, Y.R.5
-
49
-
-
67749111889
-
Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles
-
Rottenberg H, Covian R and Trumpower BL. Membrane potential greatly enhances superoxide generation by the cytochrome bc1 complex reconstituted into phospholipid vesicles. J Biol Chem 2009; 284: 19203-19210.
-
(2009)
J Biol Chem
, vol.284
, pp. 19203-19210
-
-
Rottenberg, H.1
Covian, R.2
Trumpower, B.L.3
-
50
-
-
0031853099
-
Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria
-
Kwong LK and Sohal RS. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria. Arch Biochem Biophys 1998; 350: 118-126.
-
(1998)
Arch Biochem Biophys
, vol.350
, pp. 118-126
-
-
Kwong, L.K.1
Sohal, R.S.2
-
51
-
-
57449106484
-
High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria
-
Mracek T, Pecinova A, Vrbacky M, Drahota Z and Houstek J. High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch Biochem Biophys 2009; 481: 30-36.
-
(2009)
Arch Biochem Biophys
, vol.481
, pp. 30-36
-
-
Mracek, T.1
Pecinova, A.2
Vrbacky, M.3
Drahota, Z.4
Houstek, J.5
-
52
-
-
84902322007
-
Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning
-
Kalogeris T, Bao Y and Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2014; 2: 702-714.
-
(2014)
Redox Biol
, vol.2
, pp. 702-714
-
-
Kalogeris, T.1
Bao, Y.2
Korthuis, R.J.3
-
53
-
-
34247168121
-
Targeting antioxidants to mitochondria: A potential new therapeutic strategy for cardiovascular diseases
-
Victor VM and Rocha M. Targeting antioxidants to mitochondria: a potential new therapeutic strategy for cardiovascular diseases. Curr Pharm Des 2007; 13: 845-863.
-
(2007)
Curr Pharm Des
, vol.13
, pp. 845-863
-
-
Victor, V.M.1
Rocha, M.2
-
54
-
-
0348109425
-
Reactive oxygen species in the vasculature: Molecular and cellular mechanisms
-
Taniyama Y and Griendling KK. Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 2003; 42: 1075-1081.
-
(2003)
Hypertension
, vol.42
, pp. 1075-1081
-
-
Taniyama, Y.1
Griendling, K.K.2
-
55
-
-
33751177799
-
Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion
-
Chen Q, Moghaddas S, Hoppel CL and Lesnefsky EJ. Reversible blockade of electron transport during ischemia protects mitochondria and decreases myocardial injury following reperfusion. J Pharmacol Exp Ther 2006; 319: 1405-1412.
-
(2006)
J Pharmacol Exp Ther
, vol.319
, pp. 1405-1412
-
-
Chen, Q.1
Moghaddas, S.2
Hoppel, C.L.3
Lesnefsky, E.J.4
-
56
-
-
51749104191
-
Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart
-
Chen CH, Budas GR, Churchill EN, Disatnik MH, Hurley TD and Mochly-Rosen D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 2008; 321: 1493-1495.
-
(2008)
Science
, vol.321
, pp. 1493-1495
-
-
Chen, C.H.1
Budas, G.R.2
Churchill, E.N.3
Disatnik, M.H.4
Hurley, T.D.5
Mochly-Rosen, D.6
-
57
-
-
0029998621
-
The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal
-
Bernardi P and Petronilli V. The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 1996; 28: 131-138.
-
(1996)
J Bioenerg Biomembr
, vol.28
, pp. 131-138
-
-
Bernardi, P.1
Petronilli, V.2
-
58
-
-
77957315403
-
Redox compartmentalization and cellular stress
-
Jones DP and Go YM. Redox compartmentalization and cellular stress. Diabetes Obes Metab 2010; 12 Suppl 2: 116-125.
-
(2010)
Diabetes Obes Metab
, vol.12
, pp. 116-125
-
-
Jones, D.P.1
Go, Y.M.2
-
59
-
-
84861566666
-
Mitochondrial compartmentalization of redox processes
-
Cardoso AR, Chausse B, da Cunha FM, Luevano-Martinez LA, Marazzi TB, Pessoa PS, Queliconi BB and Kowaltowski AJ. Mitochondrial compartmentalization of redox processes. Free Radic Biol Med 2012; 52: 2201-2208.
-
(2012)
Free Radic Biol Med
, vol.52
, pp. 2201-2208
-
-
Cardoso, A.R.1
Chausse, B.2
Da Cunha, F.M.3
Luevano-Martinez, L.A.4
Marazzi, T.B.5
Pessoa, P.S.6
Queliconi, B.B.7
Kowaltowski, A.J.8
-
60
-
-
33144490305
-
Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling
-
Hansen JM, Go YM and Jones DP. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Annu Rev Pharmacol Toxicol 2006; 46: 215-234.
-
(2006)
Annu Rev Pharmacol Toxicol
, vol.46
, pp. 215-234
-
-
Hansen, J.M.1
Go, Y.M.2
Jones, D.P.3
-
61
-
-
0035914342
-
Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria
-
Okado-Matsumoto A and Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn-SOD in mitochondria. J Biol Chem 2001; 276: 38388-38393.
-
(2001)
J Biol Chem
, vol.276
, pp. 38388-38393
-
-
Okado-Matsumoto, A.1
Fridovich, I.2
-
62
-
-
84875710000
-
Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning
-
Drose S. Differential effects of complex II on mitochondrial ROS production and their relation to cardioprotective pre- and postconditioning. Biochim Biophys Acta 2013; 1827: 578-587.
-
(2013)
Biochim Biophys Acta
, vol.1827
, pp. 578-587
-
-
Drose, S.1
-
63
-
-
67349133591
-
Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III
-
Drose S, Hanley PJ and Brandt U. Ambivalent effects of diazoxide on mitochondrial ROS production at respiratory chain complexes I and III. Biochim Biophys Acta 2009; 1790: 558-565.
-
(2009)
Biochim Biophys Acta
, vol.1790
, pp. 558-565
-
-
Drose, S.1
Hanley, P.J.2
Brandt, U.3
-
64
-
-
52049104467
-
The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex
-
Drose S and Brandt U. The mechanism of mitochondrial superoxide production by the cytochrome bc1 complex. J Biol Chem 2008; 283: 21649-21654.
-
(2008)
J Biol Chem
, vol.283
, pp. 21649-21654
-
-
Drose, S.1
Brandt, U.2
-
65
-
-
0028053663
-
Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane
-
Bernardi P, Broekemeier KM and Pfeiffer DR. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 1994; 26: 509-517.
-
(1994)
J Bioenerg Biomembr
, vol.26
, pp. 509-517
-
-
Bernardi, P.1
Broekemeier, K.M.2
Pfeiffer, D.R.3
-
66
-
-
0036434563
-
Human Na+ -coupled citrate transporter: Primary structure, genomic organization, and transport function
-
Inoue K, Zhuang L and Ganapathy V. Human Na+ -coupled citrate transporter: primary structure, genomic organization, and transport function. Biochem Biophys Res Commun 2002; 299: 465-471.
-
(2002)
Biochem Biophys Res Commun
, vol.299
, pp. 465-471
-
-
Inoue, K.1
Zhuang, L.2
Ganapathy, V.3
-
67
-
-
0030027044
-
Expression of three glutamate transporter subtype mRNAs in human brain regions and peripheral tissues
-
Nakayama T, Kawakami H, Tanaka K and Nakamura S. Expression of three glutamate transporter subtype mRNAs in human brain regions and peripheral tissues. Brain Res Mol Brain Res 1996; 36: 189-192.
-
(1996)
Brain Res Mol Brain Res
, vol.36
, pp. 189-192
-
-
Nakayama, T.1
Kawakami, H.2
Tanaka, K.3
Nakamura, S.4
-
68
-
-
33745292751
-
Physiological roles of glycerol-transporting aquaporins: The aquaglyceroporins
-
Hara-Chikuma M and Verkman AS. Physiological roles of glycerol-transporting aquaporins: the aquaglyceroporins. Cell Mol Life Sci 2006; 63: 1386-1392.
-
(2006)
Cell Mol Life Sci
, vol.63
, pp. 1386-1392
-
-
Hara-Chikuma, M.1
Verkman, A.S.2
-
69
-
-
0034544894
-
Cloning and characterization of a putative human glycerol 3-phosphate permease gene (SLC37A1 or G3PP) on 21q22.3: Mutation analysis in two candidate phenotypes, DFNB10 and a glycerol kinase deficiency
-
Bartoloni L, Wattenhofer M, Kudoh J, Berry A, Shibuya K, Kawasaki K, Wang J, Asakawa S, Talior I, Bonne-Tamir B, Rossier C, Michaud J, McCabe ER, Minoshima S, Shimizu N, Scott HS and Antonarakis SE. Cloning and characterization of a putative human glycerol 3-phosphate permease gene (SLC37A1 or G3PP) on 21q22.3: mutation analysis in two candidate phenotypes, DFNB10 and a glycerol kinase deficiency. Genomics 2000; 70: 190-200.
-
(2000)
Genomics
, vol.70
, pp. 190-200
-
-
Bartoloni, L.1
Wattenhofer, M.2
Kudoh, J.3
Berry, A.4
Shibuya, K.5
Kawasaki, K.6
Wang, J.7
Asakawa, S.8
Talior, I.9
Bonne-Tamir, B.10
Rossier, C.11
Michaud, J.12
McCabe, E.R.13
Minoshima, S.14
Shimizu, N.15
Scott, H.S.16
Antonarakis, S.E.17
-
70
-
-
84882870551
-
Exercise standards for testing and training: A scientific statement from the American Heart Association
-
Fletcher GF, Ades PA, Kligfield P, Arena R, Balady GJ, Bittner VA, Coke LA, Fleg JL, Forman DE, Gerber TC, Gulati M, Madan K, Rhodes J, Thompson PD, Williams MA, American Heart Association Exercise CR, Prevention Committee of the Council on Clinical Cardiology CoNPA, Metabolism CoC, Stroke N, Council on E and Prevention. Exercise standards for testing and training: a scientific statement from the American Heart Association. Circulation 2013; 128: 873-934.
-
(2013)
Circulation
, vol.128
, pp. 873-934
-
-
Fletcher, G.F.1
Ades, P.A.2
Kligfield, P.3
Arena, R.4
Balady, G.J.5
Bittner, V.A.6
Coke, L.A.7
Fleg, J.L.8
Forman, D.E.9
Gerber, T.C.10
Gulati, M.11
Madan, K.12
Rhodes, J.13
Thompson, P.D.14
Williams, M.A.15
-
71
-
-
84872845392
-
Hexokinase II and reperfusion injury: TAT-HK2 peptide impairs vascular function in Langendorff-perfused rat hearts
-
Pasdois P, Parker JE, Griffiths EJ and Halestrap AP. Hexokinase II and reperfusion injury: TAT-HK2 peptide impairs vascular function in Langendorff-perfused rat hearts. Circ Res 2013; 112: e3-7.
-
(2013)
Circ Res
, vol.112
, pp. e3-e7
-
-
Pasdois, P.1
Parker, J.E.2
Griffiths, E.J.3
Halestrap, A.P.4
-
72
-
-
84886946715
-
Matrix metalloproteinase-2 is activated during ischemia/reperfusion in a model of myocardial infarction
-
Cadete VJ, Arcand SA, Chaharyn BM, Doroszko A, Sawicka J, Mousseau DD and Sawicki G. Matrix metalloproteinase-2 is activated during ischemia/reperfusion in a model of myocardial infarction. Can J Cardiol 2013; 29: 1495-1503.
-
(2013)
Can J Cardiol
, vol.29
, pp. 1495-1503
-
-
Cadete, V.J.1
Arcand, S.A.2
Chaharyn, B.M.3
Doroszko, A.4
Sawicka, J.5
Mousseau, D.D.6
Sawicki, G.7
-
73
-
-
84911466192
-
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
-
Chouchani ET, Pell VR, Gaude E, Aksentijevic D, Sundier SY, Robb EL, Logan A, Nadtochiy SM, Ord EN, Smith AC, Eyassu F, Shirley R, Hu CH, Dare AJ, James AM, Rogatti S, Hartley RC, Eaton S, Costa AS, Brookes PS, Davidson SM, Duchen MR, Saeb-Parsy K, Shattock MJ, Robinson AJ, Work LM, Frezza C, Krieg T and Murphy MP. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 2014; 515: 431-435.
-
(2014)
Nature
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
Pell, V.R.2
Gaude, E.3
Aksentijevic, D.4
Sundier, S.Y.5
Robb, E.L.6
Logan, A.7
Nadtochiy, S.M.8
Ord, E.N.9
Smith, A.C.10
Eyassu, F.11
Shirley, R.12
Hu, C.H.13
Dare, A.J.14
James, A.M.15
Rogatti, S.16
Hartley, R.C.17
Eaton, S.18
Costa, A.S.19
Brookes, P.S.20
Davidson, S.M.21
Duchen, M.R.22
Saeb-Parsy, K.23
Shattock, M.J.24
Robinson, A.J.25
Work, L.M.26
Frezza, C.27
Krieg, T.28
Murphy, M.P.29
more..
-
74
-
-
79955598457
-
Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation
-
Lee S, Tak E, Lee J, Rashid MA, Murphy MP, Ha J and Kim SS. Mitochondrial H2O2 generated from electron transport chain complex I stimulates muscle differentiation. Cell Res 2011; 21: 817-834.
-
(2011)
Cell Res
, vol.21
, pp. 817-834
-
-
Lee, S.1
Tak, E.2
Lee, J.3
Rashid, M.A.4
Murphy, M.P.5
Ha, J.6
Kim, S.S.7
-
75
-
-
0035906982
-
Glutamate neurotoxicity, oxidative stress and mitochondria
-
Atlante A, Calissano P, Bobba A, Giannattasio S, Marra E and Passarella S. Glutamate neurotoxicity, oxidative stress and mitochondria. FEBS Lett 2001; 497: 1-5.
-
(2001)
FEBS Lett
, vol.497
, pp. 1-5
-
-
Atlante, A.1
Calissano, P.2
Bobba, A.3
Giannattasio, S.4
Marra, E.5
Passarella, S.6
|