-
3
-
-
84982300413
-
-
Division of Biostatistics, University of California at Berkeley, Working Paper Series, Working Paper 304
-
Erin LD, Maya LP, Mark VDRJ. Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates. Division of Biostatistics, University of California at Berkeley, Working Paper Series, Working Paper 304; 2012.
-
(2012)
Computationally Efficient Confidence Intervals for Cross-validated Area under the ROC Curve Estimates
-
-
Erin, L.D.1
Maya, L.P.2
Mark, V.D.R.J.3
-
5
-
-
84924051598
-
Human-level control through deep reinforcement learning
-
Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529-533.
-
(2015)
Nature
, vol.518
, pp. 529-533
-
-
Mnih, V.1
Kavukcuoglu, K.2
Silver, D.3
-
6
-
-
84963949906
-
Mastering the game of Go with deep neural networks and tree search
-
Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529: 484-489.
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
-
7
-
-
85015190048
-
Cardiac imaging: Working towards fully-automated machine analysis & interpretation
-
Slomka PJ, Dey D, Sitek A, et al. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14:197-212.
-
(2017)
Expert Rev Med Devices
, vol.14
, pp. 197-212
-
-
Slomka, P.J.1
Dey, D.2
Sitek, A.3
-
8
-
-
85020235177
-
A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis
-
Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One. 2017;12:e0178992.
-
(2017)
PLoS One
, vol.12
, pp. e0178992
-
-
Xue, Y.1
Zhang, R.2
Deng, Y.3
-
9
-
-
85028914171
-
Point-of-care mobile digital microscopy and deep learning for the detection of soiltransmitted helminths and Schistosoma haematobium
-
Holmstr?m O, Linder N, Ngasala B, et al. Point-of-care mobile digital microscopy and deep learning for the detection of soiltransmitted helminths and Schistosoma haematobium. Glob Health Action. 2017;10:1337325.
-
(2017)
Glob Health Action
, vol.10
, pp. 1337325
-
-
Holmstrm, O.1
Linder, N.2
Ngasala, B.3
-
10
-
-
85016248526
-
Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network
-
Kooi T, van Ginneken B, Karssemeijer N, et al. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys. 2017;44:1017-1027.
-
(2017)
Med Phys
, vol.44
, pp. 1017-1027
-
-
Kooi, T.1
Van Ginneken, B.2
Karssemeijer, N.3
-
11
-
-
85000788384
-
Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
-
Samala RK, Chan HP, Hadjiiski L, et al. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016;43: 6654.
-
(2016)
Med Phys
, vol.43
, pp. 6654
-
-
Samala, R.K.1
Chan, H.P.2
Hadjiiski, L.3
-
12
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316: 2402-2410.
-
(2016)
JAMA
, vol.316
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
13
-
-
85016221341
-
Automated identification of diabetic retinopathy using deep learning
-
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124:962-969.
-
(2017)
Ophthalmology
, vol.124
, pp. 962-969
-
-
Gargeya, R.1
Leng, T.2
-
14
-
-
85028359586
-
Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
-
Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Sci Rep. 2017;7:9425.
-
(2017)
Sci Rep
, vol.7
, pp. 9425
-
-
Ohsugi, H.1
Tabuchi, H.2
Enno, H.3
-
15
-
-
79954621581
-
Glaucoma
-
Quigley HA. Glaucoma. Lancet. 2011;377:1367-1377.
-
(2011)
Lancet
, vol.377
, pp. 1367-1377
-
-
Quigley, H.A.1
-
16
-
-
0026717105
-
Glaucoma hemifield test, automated visual field evaluation
-
Asman P, Heijl A. Glaucoma Hemifield Test. Automated visual field evaluation. Arch Ophthalmol. 1992;110:812-819.
-
(1992)
Arch Ophthalmol
, vol.110
, pp. 812-819
-
-
Asman, P.1
Heijl, A.2
-
17
-
-
29544441195
-
Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease
-
Mills RP, Budenz DL, Lee PP, et al. Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease. Am J Ophthalmol. 2006;141:24-30.
-
(2006)
Am J Ophthalmol
, vol.141
, pp. 24-30
-
-
Mills, R.P.1
Budenz, D.L.2
Lee, P.P.3
-
19
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. Int J Comput Vision. 2015;115:211-252.
-
(2015)
Int J Comput Vision
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
-
22
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929-1958.
-
(2014)
J Mach Learn Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
-
24
-
-
34247529472
-
Understanding diagnostic tests 3: Receiver operating characteristic curves
-
Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96:644-647.
-
(2007)
Acta Paediatr
, vol.96
, pp. 644-647
-
-
Akobeng, A.K.1
-
25
-
-
84953278476
-
Glaucoma detection based on deep convolutional neural network
-
Chen X, Xu Y, Wong DWK, et al. Glaucoma detection based on deep convolutional neural network. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:715-718.
-
(2015)
Conf Proc IEEE Eng Med Biol Soc
, vol.2015
, pp. 715-718
-
-
Chen, X.1
Xu, Y.2
Wong, D.W.K.3
-
26
-
-
85009083345
-
Integrating holistic and local deep features for glaucoma classification
-
Li A, Cheng J, Wong DWK, et al. Integrating holistic and local deep features for glaucoma classification. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1328-1331.
-
(2016)
Conf Proc IEEE Eng Med Biol Soc
, vol.2016
, pp. 1328-1331
-
-
Li, A.1
Cheng, J.2
Wong, D.W.K.3
-
27
-
-
85042596911
-
Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
-
Epub ahead of print
-
Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018: pii: S0161-6420(17)33565-0. Doi: 10.1016/j.ophtha.2018.01.023. [Epub ahead of print].
-
(2018)
Ophthalmology
-
-
Li, Z.1
He, Y.2
Keel, S.3
-
28
-
-
4644343744
-
Risk assessment in the management of patients withocular hypertension
-
Weinreb RN, Friedman DS, Fechtner RD, et al. Risk assessment in the management of patients withocular hypertension. Am J Ophthalmol. 2004;138:458-467.
-
(2004)
Am J Ophthalmol
, vol.138
, pp. 458-467
-
-
Weinreb, R.N.1
Friedman, D.S.2
Fechtner, R.D.3
-
29
-
-
84982243237
-
Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
-
Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123:1974-1980.
-
(2016)
Ophthalmology
, vol.123
, pp. 1974-1980
-
-
Asaoka, R.1
Murata, H.2
Iwase, A.3
|