메뉴 건너뛰기




Volumn 27, Issue 7, 2018, Pages 647-652

Deep-learning Classifier with an Ultrawide-field Scanning Laser Ophthalmoscope Detects Glaucoma Visual Field Severity

Author keywords

artificial intelligence; deep learning; glaucoma; machine learning; optos; ultrawide field scanning laser ophthalmoscope; visual field defect

Indexed keywords

ADULT; AGE DISTRIBUTION; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BEST CORRECTED VISUAL ACUITY; CONTROLLED STUDY; CROSS-SECTIONAL STUDY; DEEP LEARNING CLASSIFIER; DIAGNOSTIC ACCURACY; DISEASE SEVERITY; FEMALE; HUMAN; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; OPEN ANGLE GLAUCOMA; OPHTHALMOSCOPY; PERIMETRY; PRIORITY JOURNAL; RELIABILITY; RETROSPECTIVE STUDY; SCANNING LASER OPHTHALMOSCOPY; SENSITIVITY AND SPECIFICITY; SEX DIFFERENCE; ULTRAWIDE FIELD SCANNING LASER OPHTHALMOSCOPY; VISUAL SYSTEM PARAMETERS; AGED; CLASSIFICATION; COMPUTER ASSISTED DIAGNOSIS; CONFOCAL MICROSCOPY; DEVICES; GLAUCOMA; INTRAOCULAR PRESSURE; MIDDLE AGED; OPHTHALMOSCOPE; PATHOLOGY; PROCEDURES; REPRODUCIBILITY; SEVERITY OF ILLNESS INDEX; VISUAL DISORDER; VISUAL FIELD;

EID: 85049926365     PISSN: 10570829     EISSN: 1536481X     Source Type: Journal    
DOI: 10.1097/IJG.0000000000000988     Document Type: Article
Times cited : (50)

References (29)
  • 4
    • 0346586663 scopus 로고    scopus 로고
    • Smote: Synthetic minorityover-sampling technique
    • Chawla NV, Bowyer KW, Hall LO, et al. Smote: synthetic minorityover-sampling technique. J Artif Intell Res. 2000;16: 321-357.
    • (2000) J Artif Intell Res , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 5
    • 84924051598 scopus 로고    scopus 로고
    • Human-level control through deep reinforcement learning
    • Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518:529-533.
    • (2015) Nature , vol.518 , pp. 529-533
    • Mnih, V.1    Kavukcuoglu, K.2    Silver, D.3
  • 6
    • 84963949906 scopus 로고    scopus 로고
    • Mastering the game of Go with deep neural networks and tree search
    • Silver D, Huang A, Maddison CJ, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529: 484-489.
    • (2016) Nature , vol.529 , pp. 484-489
    • Silver, D.1    Huang, A.2    Maddison, C.J.3
  • 7
    • 85015190048 scopus 로고    scopus 로고
    • Cardiac imaging: Working towards fully-automated machine analysis & interpretation
    • Slomka PJ, Dey D, Sitek A, et al. Cardiac imaging: working towards fully-automated machine analysis & interpretation. Expert Rev Med Devices. 2017;14:197-212.
    • (2017) Expert Rev Med Devices , vol.14 , pp. 197-212
    • Slomka, P.J.1    Dey, D.2    Sitek, A.3
  • 8
    • 85020235177 scopus 로고    scopus 로고
    • A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis
    • Xue Y, Zhang R, Deng Y, et al. A preliminary examination of the diagnostic value of deep learning in hip osteoarthritis. PLoS One. 2017;12:e0178992.
    • (2017) PLoS One , vol.12 , pp. e0178992
    • Xue, Y.1    Zhang, R.2    Deng, Y.3
  • 9
    • 85028914171 scopus 로고    scopus 로고
    • Point-of-care mobile digital microscopy and deep learning for the detection of soiltransmitted helminths and Schistosoma haematobium
    • Holmstr?m O, Linder N, Ngasala B, et al. Point-of-care mobile digital microscopy and deep learning for the detection of soiltransmitted helminths and Schistosoma haematobium. Glob Health Action. 2017;10:1337325.
    • (2017) Glob Health Action , vol.10 , pp. 1337325
    • Holmstrm, O.1    Linder, N.2    Ngasala, B.3
  • 10
    • 85016248526 scopus 로고    scopus 로고
    • Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network
    • Kooi T, van Ginneken B, Karssemeijer N, et al. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network. Med Phys. 2017;44:1017-1027.
    • (2017) Med Phys , vol.44 , pp. 1017-1027
    • Kooi, T.1    Van Ginneken, B.2    Karssemeijer, N.3
  • 11
    • 85000788384 scopus 로고    scopus 로고
    • Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography
    • Samala RK, Chan HP, Hadjiiski L, et al. Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med Phys. 2016;43: 6654.
    • (2016) Med Phys , vol.43 , pp. 6654
    • Samala, R.K.1    Chan, H.P.2    Hadjiiski, L.3
  • 12
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016;316: 2402-2410.
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1    Peng, L.2    Coram, M.3
  • 13
    • 85016221341 scopus 로고    scopus 로고
    • Automated identification of diabetic retinopathy using deep learning
    • Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017;124:962-969.
    • (2017) Ophthalmology , vol.124 , pp. 962-969
    • Gargeya, R.1    Leng, T.2
  • 14
    • 85028359586 scopus 로고    scopus 로고
    • Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment
    • Ohsugi H, Tabuchi H, Enno H, et al. Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment. Sci Rep. 2017;7:9425.
    • (2017) Sci Rep , vol.7 , pp. 9425
    • Ohsugi, H.1    Tabuchi, H.2    Enno, H.3
  • 15
    • 79954621581 scopus 로고    scopus 로고
    • Glaucoma
    • Quigley HA. Glaucoma. Lancet. 2011;377:1367-1377.
    • (2011) Lancet , vol.377 , pp. 1367-1377
    • Quigley, H.A.1
  • 16
    • 0026717105 scopus 로고
    • Glaucoma hemifield test, automated visual field evaluation
    • Asman P, Heijl A. Glaucoma Hemifield Test. Automated visual field evaluation. Arch Ophthalmol. 1992;110:812-819.
    • (1992) Arch Ophthalmol , vol.110 , pp. 812-819
    • Asman, P.1    Heijl, A.2
  • 17
    • 29544441195 scopus 로고    scopus 로고
    • Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease
    • Mills RP, Budenz DL, Lee PP, et al. Categorizing the stage of glaucoma from pre-diagnosis to end-stage disease. Am J Ophthalmol. 2006;141:24-30.
    • (2006) Am J Ophthalmol , vol.141 , pp. 24-30
    • Mills, R.P.1    Budenz, D.L.2    Lee, P.P.3
  • 19
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky O, Deng J, Su H, et al. Imagenet large scale visual recognition challenge. Int J Comput Vision. 2015;115:211-252.
    • (2015) Int J Comput Vision , vol.115 , pp. 211-252
    • Russakovsky, O.1    Deng, J.2    Su, H.3
  • 21
  • 22
    • 84904163933 scopus 로고    scopus 로고
    • Dropout: A simple way to prevent neural networks from overfitting
    • Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929-1958.
    • (2014) J Mach Learn Res , vol.15 , pp. 1929-1958
    • Srivastava, N.1    Hinton, G.2    Krizhevsky, A.3
  • 24
    • 34247529472 scopus 로고    scopus 로고
    • Understanding diagnostic tests 3: Receiver operating characteristic curves
    • Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96:644-647.
    • (2007) Acta Paediatr , vol.96 , pp. 644-647
    • Akobeng, A.K.1
  • 25
    • 84953278476 scopus 로고    scopus 로고
    • Glaucoma detection based on deep convolutional neural network
    • Chen X, Xu Y, Wong DWK, et al. Glaucoma detection based on deep convolutional neural network. Conf Proc IEEE Eng Med Biol Soc. 2015;2015:715-718.
    • (2015) Conf Proc IEEE Eng Med Biol Soc , vol.2015 , pp. 715-718
    • Chen, X.1    Xu, Y.2    Wong, D.W.K.3
  • 26
    • 85009083345 scopus 로고    scopus 로고
    • Integrating holistic and local deep features for glaucoma classification
    • Li A, Cheng J, Wong DWK, et al. Integrating holistic and local deep features for glaucoma classification. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1328-1331.
    • (2016) Conf Proc IEEE Eng Med Biol Soc , vol.2016 , pp. 1328-1331
    • Li, A.1    Cheng, J.2    Wong, D.W.K.3
  • 27
    • 85042596911 scopus 로고    scopus 로고
    • Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
    • Epub ahead of print
    • Li Z, He Y, Keel S, et al. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology. 2018: pii: S0161-6420(17)33565-0. Doi: 10.1016/j.ophtha.2018.01.023. [Epub ahead of print].
    • (2018) Ophthalmology
    • Li, Z.1    He, Y.2    Keel, S.3
  • 28
    • 4644343744 scopus 로고    scopus 로고
    • Risk assessment in the management of patients withocular hypertension
    • Weinreb RN, Friedman DS, Fechtner RD, et al. Risk assessment in the management of patients withocular hypertension. Am J Ophthalmol. 2004;138:458-467.
    • (2004) Am J Ophthalmol , vol.138 , pp. 458-467
    • Weinreb, R.N.1    Friedman, D.S.2    Fechtner, R.D.3
  • 29
    • 84982243237 scopus 로고    scopus 로고
    • Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier
    • Asaoka R, Murata H, Iwase A, et al. Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology. 2016;123:1974-1980.
    • (2016) Ophthalmology , vol.123 , pp. 1974-1980
    • Asaoka, R.1    Murata, H.2    Iwase, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.