메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Accuracy of deep learning, a machine-learning technology, using ultra-wide-field fundus ophthalmoscopy for detecting rhegmatogenous retinal detachment

Author keywords

[No Author keywords available]

Indexed keywords

AGED; EYE FUNDUS; FEMALE; HUMAN; MACHINE LEARNING; MALE; MIDDLE AGED; OPHTHALMOSCOPY; PROCEDURES; RECEIVER OPERATING CHARACTERISTIC; RETINA DETACHMENT; SENSITIVITY AND SPECIFICITY;

EID: 85028359586     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-017-09891-x     Document Type: Article
Times cited : (114)

References (21)
  • 1
    • 0035055521 scopus 로고    scopus 로고
    • Comparison of scleral buckling and vitrectomy for retinal detachment resulting from flap tears in superior quadrants
    • Miki, D., Hida, T., Hotta, K., Shinoda, K., Hirakata, A. Comparison of scleral buckling and vitrectomy for retinal detachment resulting from flap tears in superior quadrants. Jpn. J. Ophthalmol. 45, 187-191 (2001).
    • (2001) Jpn. J. Ophthalmol. , vol.45 , pp. 187-191
    • Miki, D.1    Hida, T.2    Hotta, K.3    Shinoda, K.4    Hirakata, A.5
  • 2
    • 80052771788 scopus 로고    scopus 로고
    • Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment study (SPR Study): Predictive factors for functional outcome. Study report no. 6. Graefes Arch
    • Heussen, N., et al. Scleral buckling versus primary vitrectomy in rhegmatogenous retinal detachment study (SPR Study): Predictive factors for functional outcome. Study report no. 6. Graefes Arch. Clin. Exp. Ophthalmol. 249, 1129-1136 (2011).
    • (2011) Clin. Exp. Ophthalmol. , vol.249 , pp. 1129-1136
    • Heussen, N.1
  • 3
    • 0026717102 scopus 로고
    • Vitrectomy with silicone oil or sulfur hexafluoride gas in eyes with severe proliferative vitreoretinopathy: Results of a randomized clinical trial
    • Silicone Study Group Silicone Study Report 1
    • Lean, J. S., et al. Silicone Study Group. Vitrectomy with silicone oil or sulfur hexafluoride gas in eyes with severe proliferative vitreoretinopathy: Results of a randomized clinical trial. Silicone Study Report 1. Arch. Ophthalmol. 110, 770-779 (1992).
    • (1992) Arch. Ophthalmol , vol.110 , pp. 770-779
    • Lean, J.S.1
  • 4
    • 0026717102 scopus 로고
    • Vitrectomy with silicone oil or sulfur hexafluoride gas in eyes with severe proliferative vitreoretinopathy: Results of a randomized clinical trial
    • Silicone Study Group Silicone Study Report 2
    • AZEN, S., et al. Silicone Study Group. Vitrectomy with silicone oil or sulfur hexafluoride gas in eyes with severe proliferative vitreoretinopathy: Results of a randomized clinical trial. Silicone Study Report 2. Arch. Ophthalmol. 110, 780-792 (1992).
    • (1992) Arch. Ophthalmol. , vol.110 , pp. 780-792
    • Azen, S.1
  • 5
    • 0042327849 scopus 로고    scopus 로고
    • Outcomes of surgery for retinal detachment associated with proliferative vitreoretinopathy using perfluoro-n-octane: A multicenter study
    • Perfluoron study group
    • Scott, I. U., Flynn, H. W. Jr., Murray, T. G., Feuer, W. J. Perfluoron study group. Outcomes of surgery for retinal detachment associated with proliferative vitreoretinopathy using perfluoro-n-octane: A multicenter study. Am. J. Ophthalmol. 136, 454-463 (2003).
    • (2003) Am. J. Ophthalmol. , vol.136 , pp. 454-463
    • Scott, I.U.1    Flynn, H.W.2    Murray, T.G.3    Feuer, W.J.4
  • 6
    • 84966956518 scopus 로고    scopus 로고
    • Standard, poor's rating services Network
    • Mrsnik, M. Global aging 2013: Rising to the challenge. Standard, poor's rating services Network https://www.nact.org/resources/2013-NACT-Global-Aging.pdf (2013).
    • (2013) Global Aging 2013: Rising to the Challenge
    • Mrsnik, M.1
  • 7
    • 84962764159 scopus 로고    scopus 로고
    • Ultra-widefield fundus imaging: A review of clinical applications and future trends
    • Nagiel, A., Lalane, R. A., Sadda, S. R., Schwartz, S. D. Ultra-widefield fundus imaging: A review of clinical applications and future trends. Retina 36, 660-678 (2016).
    • (2016) Retina , vol.36 , pp. 660-678
    • Nagiel, A.1    Lalane, R.A.2    Sadda, S.R.3    Schwartz, S.D.4
  • 9
    • 84925851214 scopus 로고    scopus 로고
    • Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease
    • Liu, S., et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer's disease. IEEE Trans. Biomed. Eng. 62, 1132-1140 (2015).
    • (2015) IEEE Trans. Biomed. Eng. , vol.62 , pp. 1132-1140
    • Liu, S.1
  • 10
    • 84970028091 scopus 로고    scopus 로고
    • Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
    • Litjens, G., et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 26286
    • Litjens, G.1
  • 11
    • 85007529863 scopus 로고    scopus 로고
    • Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
    • Gulshan, V., et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 2402-2410 (2016).
    • (2016) JAMA , vol.316 , pp. 2402-2410
    • Gulshan, V.1
  • 12
    • 85006042818 scopus 로고    scopus 로고
    • Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
    • Pinaya, W. H., et al. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci. Rep. 6, 38897 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 38897
    • Pinaya, W.H.1
  • 13
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • Deng, J., et al. Imagenet: A large-scale hierarchical image database. Computer Vision and Pattern Recognition 248-255 (2009).
    • (2009) Computer Vision and Pattern Recognition , pp. 248-255
    • Deng, J.1
  • 14
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • Russakovsky, O., et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211-252 (2015).
    • (2015) Int. J. Comput. Vision , vol.115 , pp. 211-252
    • Russakovsky, O.1
  • 18
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Duchi, J., Hazan, E., Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12, 2121-2159 (2011).
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 19
    • 76749142536 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Brereton, R. G., Lloyd, G. R. Support vector machines for classification and regression. Analyst 135, 230-267 (2010).
    • (2010) Analyst , vol.135 , pp. 230-267
    • Brereton, R.G.1    Lloyd, G.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.