-
1
-
-
84908161708
-
The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect
-
Abrieux A, Duportets L, Debernard S, Gadenne C, Anton S. 2014. The GPCR membrane receptor, DopEcR, mediates the actions of both dopamine and ecdysone to control sex pheromone perception in an insect. Frontiers in Behavioral Neuroscience 8:312. DOI: https://doi.org/10.3389/fnbeh.2014.00312, PMID: 25309365
-
(2014)
Frontiers in Behavioral Neuroscience
, vol.8
, pp. 312
-
-
Abrieux, A.1
Duportets, L.2
Debernard, S.3
Gadenne, C.4
Anton, S.5
-
2
-
-
58249113980
-
Mammalian nicotinic acetylcholine receptors: From structure to function
-
19126755
-
Albuquerque EX, Pereira EF, Alkondon M, Rogers SW. 2009. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiological Reviews 89:73–120. DOI: https://doi.org/10.1152/physrev.00015.2008, PMID: 19126755
-
(2009)
Physiological Reviews
, vol.89
, pp. 73-120
-
-
Albuquerque, E.X.1
Pereira, E.F.2
Alkondon, M.3
Rogers, S.W.4
-
3
-
-
0030975363
-
Genes expressed in neurons of adult male Drosophila
-
9038337
-
Amrein H, Axel R. 1997. Genes expressed in neurons of adult male Drosophila. Cell 88:459–469. DOI: https://doi.org/10.1016/S0092-8674(00)81886-3, PMID: 9038337
-
(1997)
Cell
, vol.88
, pp. 459-469
-
-
Amrein, H.1
Axel, R.2
-
4
-
-
85028062052
-
Behavioral sensitization to the disinhibition effect of ethanol requires the dopamine/ecdysone receptor in Drosophila
-
Aranda GP, Hinojos SJ, Sabandal PR, Evans PD, Han KA. 2017. Behavioral sensitization to the disinhibition effect of ethanol requires the dopamine/ecdysone receptor in Drosophila. Frontiers in Systems Neuroscience 11:56. DOI: https://doi.org/10.3389/fnsys.2017.00056, PMID: 28824387
-
(2017)
Frontiers in Systems Neuroscience
, vol.11
, pp. 56
-
-
Aranda, G.P.1
Hinojos, S.J.2
Sabandal, P.R.3
Evans, P.D.4
Han, K.A.5
-
5
-
-
84929216843
-
The neuronal architecture of the mushroom body provides a logic for associative learning
-
Aso Y, Hattori D, Yu Y, Johnston RM, Iyer NA, Ngo TT, Dionne H, Abbott LF, Axel R, Tanimoto H, Rubin GM. 2014. The neuronal architecture of the mushroom body provides a logic for associative learning. eLife 3: e04577. DOI: https://doi.org/10.7554/eLife.04577, PMID: 25535793
-
(2014)
Elife
, vol.3
-
-
Aso, Y.1
Hattori, D.2
Yu, Y.3
Johnston, R.M.4
Iyer, N.A.5
Ngo, T.T.6
Dionne, H.7
Abbott, L.F.8
Axel, R.9
Tanimoto, H.10
Rubin, G.M.11
-
6
-
-
84864579267
-
Three dopamine pathways induce aversive odor memories with different stability
-
Aso Y, Herb A, Ogueta M, Siwanowicz I, Templier T, Friedrich AB, Ito K, Scholz H, Tanimoto H. 2012. Three dopamine pathways induce aversive odor memories with different stability. PLoS Genetics 8:e1002768. DOI: https://doi.org/10.1371/journal.pgen.1002768, PMID: 22807684
-
(2012)
Plos Genetics
, vol.8
-
-
Aso, Y.1
Herb, A.2
Ogueta, M.3
Siwanowicz, I.4
Templier, T.5
Friedrich, A.B.6
Ito, K.7
Scholz, H.8
Tanimoto, H.9
-
7
-
-
0033695698
-
The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension
-
10798397
-
Awasaki T, Saito M, Sone M, Suzuki E, Sakai R, Ito K, Hama C. 2000. The Drosophila trio plays an essential role in patterning of axons by regulating their directional extension. Neuron 26:119–131. DOI: https://doi.org/10. 1016/S0896-6273(00)81143-5, PMID: 10798397
-
(2000)
Neuron
, vol.26
, pp. 119-131
-
-
Awasaki, T.1
Saito, M.2
Sone, M.3
Suzuki, E.4
Sakai, R.5
Ito, K.6
Hama, C.7
-
8
-
-
84928650043
-
Perivascular adipose tissue contains functional catecholamines
-
Ayala-Lopez N, Martini M, Jackson WF, Darios E, Burnett R, Seitz B, Fink GD, Watts SW. 2014. Perivascular adipose tissue contains functional catecholamines. Pharmacology Research & Perspectives 2:e00041. DOI: https://doi.org/10.1002/prp2.41, PMID: 24904751
-
(2014)
Pharmacology Research & Perspectives
, vol.2
-
-
Ayala-Lopez, N.1
Martini, M.2
Jackson, W.F.3
Darios, E.4
Burnett, R.5
Seitz, B.6
Fink, G.D.7
Watts, S.W.8
-
9
-
-
84960811642
-
Memory-relevant mushroom body output synapses are cholinergic
-
26948892
-
Barnstedt O, Owald D, Felsenberg J, Brain R, Moszynski JP, Talbot CB, Perrat PN, Waddell S. 2016. Memory-relevant mushroom body output synapses are cholinergic. Neuron 89:1237–1247. DOI: https://doi.org/10. 1016/j.neuron.2016.02.015, PMID: 26948892
-
(2016)
Neuron
, vol.89
, pp. 1237-1247
-
-
Barnstedt, O.1
Owald, D.2
Felsenberg, J.3
Brain, R.4
Moszynski, J.P.5
Talbot, C.B.6
Perrat, P.N.7
Waddell, S.8
-
10
-
-
84978386060
-
The wiring diagram of a glomerular olfactory system
-
27177418
-
Berck ME, Khandelwal A, Claus L, Hernandez-Nunez L, Si G, Tabone CJ, Li F, Truman JW, Fetter RD, Louis M, Samuel AD, Cardona A. 2016. The wiring diagram of a glomerular olfactory system. eLife 5:e14859. DOI: https://doi.org/10.7554/eLife.14859, PMID: 27177418
-
(2016)
Elife
, vol.5
-
-
Berck, M.E.1
Khandelwal, A.2
Claus, L.3
Hernandez-Nunez, L.4
Si, G.5
Tabone, C.J.6
Li, F.7
Truman, J.W.8
Fetter, R.D.9
Louis, M.10
Samuel, A.D.11
Cardona, A.12
-
11
-
-
84876424389
-
The drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors
-
23620738
-
Bjorum SM, Simonette RA, Alanis R, Wang JE, Lewis BM, Trejo MH, Hanson KA, Beckingham KM. 2013. The drosophila BTB domain protein Jim Lovell has roles in multiple larval and adult behaviors. PLoS One 8:e61270. DOI: https://doi.org/10.1371/journal.pone.0061270, PMID: 23620738
-
(2013)
Plos One
, vol.8
-
-
Bjorum, S.M.1
Simonette, R.A.2
Alanis, R.3
Wang, J.E.4
Lewis, B.M.5
Trejo, M.H.6
Hanson, K.A.7
Beckingham, K.M.8
-
12
-
-
0037115038
-
Tan and ebony genes regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals
-
Borycz J, Borycz JA, Loubani M, Meinertzhagen IA. 2002. tan and ebony genes regulate a novel pathway for transmitter metabolism at fly photoreceptor terminals. The Journal of Neuroscience 22:10549–10557. DOI: https://doi.org/10.1523/JNEUROSCI.22-24-10549.2002, PMID: 12486147
-
(2002)
The Journal of Neuroscience
, vol.22
, pp. 10549-10557
-
-
Borycz, J.1
Borycz, J.A.2
Loubani, M.3
Meinertzhagen, I.A.4
-
13
-
-
84908353558
-
A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress
-
25340742
-
Bou Dib P, Gnägi B, Daly F, Sabado V, Tas D, Glauser DA, Meister P, Nagoshi E. 2014. A conserved role for p48 homologs in protecting dopaminergic neurons from oxidative stress. PLoS Genetics 10:e1004718. DOI: https://doi.org/10.1371/journal.pgen.1004718, PMID: 25340742
-
(2014)
Plos Genetics
, vol.10
-
-
Bou Dib, P.1
Gnägi, B.2
Daly, F.3
Sabado, V.4
Tas, D.5
Glauser, D.A.6
Meister, P.7
Nagoshi, E.8
-
14
-
-
0035916357
-
An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control
-
11250149
-
Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E. 2001. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Current Biology 11:213–221. DOI: https://doi.org/10.1016/S0960-9822(01)00068-9, PMID: 11250149
-
(2001)
Current Biology
, vol.11
, pp. 213-221
-
-
Brogiolo, W.1
Stocker, H.2
Ikeya, T.3
Rintelen, F.4
Fernandez, R.5
Hafen, E.6
-
15
-
-
84871461174
-
Layered reward signalling through octopamine and dopamine in Drosophila
-
23103875
-
Burke CJ, Huetteroth W, Owald D, Perisse E, Krashes MJ, Das G, Gohl D, Silies M, Certel S, Waddell S. 2012. Layered reward signalling through octopamine and dopamine in Drosophila. Nature 492:433–437. DOI: https://doi.org/10.1038/nature11614, PMID: 23103875
-
(2012)
Nature
, vol.492
, pp. 433-437
-
-
Burke, C.J.1
Huetteroth, W.2
Owald, D.3
Perisse, E.4
Krashes, M.J.5
Das, G.6
Gohl, D.7
Silies, M.8
Certel, S.9
Waddell, S.10
-
16
-
-
84964905888
-
An indel polymorphism in the MtnA 3’ untranslated region is associated with gene expression variation and local adaptation in Drosophila melanogaster
-
27120580
-
Catalán A, Glaser-Schmitt A, Argyridou E, Duchen P, Parsch J. 2016. An indel polymorphism in the MtnA 3’ untranslated region is associated with gene expression variation and local adaptation in Drosophila melanogaster. PLOS Genetics 12:e1005987. DOI: https://doi.org/10.1371/journal.pgen.1005987, PMID: 27120580
-
(2016)
PLOS Genetics
, vol.12
-
-
Catalán, A.1
Glaser-Schmitt, A.2
Argyridou, E.3
Duchen, P.4
Parsch, J.5
-
17
-
-
0034082502
-
Regulation of central neuron synaptic targeting by the Drosophila POU protein, Acj6
-
10804181
-
Certel SJ, Clyne PJ, Carlson JR, Johnson WA. 2000. Regulation of central neuron synaptic targeting by the Drosophila POU protein, Acj6. Development 127:2395–2405. PMID: 10804181
-
(2000)
Development
, vol.127
, pp. 2395-2405
-
-
Certel, S.J.1
Clyne, P.J.2
Carlson, J.R.3
Johnson, W.A.4
-
18
-
-
0036275679
-
Nicotinic acetylcholine receptors of Drosophila: Three subunits encoded by genomically linked genes can co-assemble into the same receptor complex
-
11796753
-
Chamaon K, Smalla KH, Thomas U, Gundelfinger ED. 2002. Nicotinic acetylcholine receptors of Drosophila: three subunits encoded by genomically linked genes can co-assemble into the same receptor complex. Journal of Neurochemistry 80:149–157. DOI: https://doi.org/10.1046/j.0022-3042.2001.00685.x, PMID: 11796753
-
(2002)
Journal of Neurochemistry
, vol.80
, pp. 149-157
-
-
Chamaon, K.1
Smalla, K.H.2
Thomas, U.3
Gundelfinger, E.D.4
-
19
-
-
85006070796
-
Genome-wide identification of neuronal activity-regulated genes in Drosophila
-
Chen X, Rahman R, Guo F, Rosbash M. 2016. Genome-wide identification of neuronal activity-regulated genes in Drosophila. eLife 5:e19942. DOI: https://doi.org/10.7554/eLife.19942, PMID: 27936378
-
(2016)
Elife
, vol.5
-
-
Chen, X.1
Rahman, R.2
Guo, F.3
Rosbash, M.4
-
20
-
-
0035875072
-
Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol
-
11440718
-
Cheng Y, Endo K, Wu K, Rodan AR, Heberlein U, Davis RL. 2001. Drosophila fasciclinII is required for the formation of odor memories and for normal sensitivity to alcohol. Cell 105:757–768. DOI: https://doi.org/10. 1016/S0092-8674(01)00386-5, PMID: 11440718
-
(2001)
Cell
, vol.105
, pp. 757-768
-
-
Cheng, Y.1
Endo, K.2
Wu, K.3
Rodan, A.R.4
Heberlein, U.5
Davis, R.L.6
-
21
-
-
70349804300
-
Writing memories with light-addressable reinforcement circuitry
-
19837039
-
Claridge-Chang A, Roorda RD, Vrontou E, Sjulson L, Li H, Hirsh J, Miesenböck G. 2009. Writing memories with light-addressable reinforcement circuitry. Cell 139:405–415. DOI: https://doi.org/10.1016/j.cell.2009.08.034, PMID: 19837039
-
(2009)
Cell
, vol.139
, pp. 405-415
-
-
Claridge-Chang, A.1
Roorda, R.D.2
Vrontou, E.3
Sjulson, L.4
Li, H.5
Hirsh, J.6
Miesenböck, G.7
-
22
-
-
79952278194
-
Neuropeptide biology in Drosophila
-
21189680
-
Clynen E, Reumer A, Baggerman G, Mertens I, Schoofs L. 2010. Neuropeptide biology in Drosophila. Advances in Experimental Medicine and Biology 692:192–210. PMID: 21189680
-
(2010)
Advances in Experimental Medicine and Biology
, vol.692
, pp. 192-210
-
-
Clynen, E.1
Reumer, A.2
Baggerman, G.3
Mertens, I.4
Schoofs, L.5
-
23
-
-
85038239081
-
Do the right thing: Neural network mechanisms of memory formation, expression and update in Drosophila
-
Cognigni P, Felsenberg J, Waddell S. 2018. Do the right thing: neural network mechanisms of memory formation, expression and update in Drosophila. Current Opinion in Neurobiology 49:51–58. DOI: https://doi. org/10.1016/j.conb.2017.12.002, PMID: 29258011
-
(2018)
Current Opinion in Neurobiology
, vol.49
, pp. 51-58
-
-
Cognigni, P.1
Felsenberg, J.2
Waddell, S.3
-
24
-
-
0032450319
-
Tripartite mushroom body architecture revealed by antigenic markers
-
10454371
-
Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL. 1998. Tripartite mushroom body architecture revealed by antigenic markers. Learning & Memory 5:38–51. PMID: 10454371
-
(1998)
Learning & Memory
, vol.5
, pp. 38-51
-
-
Crittenden, J.R.1
Skoulakis, E.M.2
Han, K.A.3
Kalderon, D.4
Davis, R.L.5
-
25
-
-
84905659969
-
Drosophila learn opposing components of a compound food stimulus
-
25042590
-
Das G, Klappenbach M, Vrontou E, Perisse E, Clark CM, Burke CJ, Waddell S. 2014. Drosophila learn opposing components of a compound food stimulus. Current Biology 24:1723–1730. DOI: https://doi.org/10.1016/j.cub. 2014.05.078, PMID: 25042590
-
(2014)
Current Biology
, vol.24
, pp. 1723-1730
-
-
Das, G.1
Klappenbach, M.2
Vrontou, E.3
Perisse, E.4
Clark, C.M.5
Burke, C.J.6
Waddell, S.7
-
26
-
-
0028297332
-
Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies
-
8303280
-
de Belle JS, Heisenberg M. 1994. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263:692–695. DOI: https://doi.org/10.1126/science.8303280, PMID: 8303280
-
(1994)
Science
, vol.263
, pp. 692-695
-
-
de Belle, J.S.1
Heisenberg, M.2
-
27
-
-
84909587002
-
The Drosophila surface glia transcriptome: Evolutionary conserved blood-brain barrier processes
-
25426014
-
DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M, Halliwill K, Bainton RJ. 2014. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes. Frontiers in Neuroscience 8:346. DOI: https://doi.org/10.3389/fnins.2014.00346, PMID: 25426014
-
(2014)
Frontiers in Neuroscience
, vol.8
, pp. 346
-
-
Desalvo, M.K.1
Hindle, S.J.2
Rusan, Z.M.3
Orng, S.4
Eddison, M.5
Halliwill, K.6
Bainton, R.J.7
-
28
-
-
0027443746
-
Identification and characterization of Drosophila genes for synaptic vesicle proteins
-
8229205
-
DiAntonio A, Burgess RW, Chin AC, Deitcher DL, Scheller RH, Schwarz TL. 1993. Identification and characterization of Drosophila genes for synaptic vesicle proteins. The Journal of Neuroscience 13:4924–4935. DOI: https://doi.org/10.1523/JNEUROSCI.13-11-04924.1993, PMID: 8229205
-
(1993)
The Journal of Neuroscience
, vol.13
, pp. 4924-4935
-
-
Diantonio, A.1
Burgess, R.W.2
Chin, A.C.3
Deitcher, D.L.4
Scheller, R.H.5
Schwarz, T.L.6
-
29
-
-
65549154978
-
Ensheathing glia function as phagocytes in the adult Drosophila brain
-
19369546
-
Doherty J, Logan MA, Taşdemir OE, Freeman MR. 2009. Ensheathing glia function as phagocytes in the adult Drosophila brain. Journal of Neuroscience 29:4768–4781. DOI: https://doi.org/10.1523/JNEUROSCI.5951-08. 2009, PMID: 19369546
-
(2009)
Journal of Neuroscience
, vol.29
, pp. 4768-4781
-
-
Doherty, J.1
Logan, M.A.2
Taşdemir, O.E.3
Freeman, M.R.4
-
30
-
-
85027300485
-
The complete connectome of a learning and memory centre in an insect brain
-
28796202
-
Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I, Schneider-Mizell CM, Saumweber T, Huser A, Eschbach C, Gerber B, Fetter RD, Truman JW, Priebe CE, Abbott LF, Thum AS, Zlatic M, Cardona A. 2017. The complete connectome of a learning and memory centre in an insect brain. Nature 548:175–182. DOI: https://doi.org/10. 1038/nature23455, PMID: 28796202
-
(2017)
Nature
, vol.548
, pp. 175-182
-
-
Eichler, K.1
Li, F.2
Litwin-Kumar, A.3
Park, Y.4
Andrade, I.5
Schneider-Mizell, C.M.6
Saumweber, T.7
Huser, A.8
Eschbach, C.9
Gerber, B.10
Fetter, R.D.11
Truman, J.W.12
Priebe, C.E.13
Abbott, L.F.14
Thum, A.S.15
Zlatic, M.16
Cardona, A.17
-
31
-
-
0038012647
-
Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function
-
Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ. 2003. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38:567–580. PMID: 12765609
-
(2003)
Neuron
, vol.38
, pp. 567-580
-
-
Freeman, M.R.1
Delrow, J.2
Kim, J.3
Johnson, E.4
Doe, C.Q.5
-
32
-
-
32044462033
-
Glial cell biology in Drosophila and vertebrates
-
16377000
-
Freeman MR, Doherty J. 2006. Glial cell biology in Drosophila and vertebrates. Trends in Neurosciences 29:82– 90. DOI: https://doi.org/10.1016/j.tins.2005.12.002, PMID: 16377000
-
(2006)
Trends in Neurosciences
, vol.29
, pp. 82-90
-
-
Freeman, M.R.1
Doherty, J.2
-
33
-
-
84936960327
-
Drosophila central nervous system glia
-
Freeman MR. 2015. Drosophila central nervous system glia. Cold Spring Harbor Perspectives in Biology 7: a020552. DOI: https://doi.org/10.1101/cshperspect.a020552, PMID: 25722465
-
(2015)
Cold Spring Harbor Perspectives in Biology
, vol.7
-
-
Freeman, M.R.1
-
34
-
-
84905647444
-
Converging circuits mediate temperature and shock aversive olfactory conditioning in Drosophila
-
25042591
-
Galili DS, Dylla KV, Lüdke A, Friedrich AB, Yamagata N, Wong JY, Ho CH, Szyszka P, Tanimoto H. 2014. Converging circuits mediate temperature and shock aversive olfactory conditioning in Drosophila. Current Biology 24:1712–1722. DOI: https://doi.org/10.1016/j.cub.2014.06.062, PMID: 25042591
-
(2014)
Current Biology
, vol.24
, pp. 1712-1722
-
-
Galili, D.S.1
Dylla, K.V.2
Lüdke, A.3
Friedrich, A.B.4
Yamagata, N.5
Wong, J.Y.6
Ho, C.H.7
Szyszka, P.8
Tanimoto, H.9
-
35
-
-
33845400138
-
Imp associates with squid and Hrp48 and contributes to localized expression of gurken in the oocyte
-
17030623
-
Geng C, Macdonald PM. 2006. Imp associates with squid and Hrp48 and contributes to localized expression of gurken in the oocyte. Molecular and Cellular Biology 26:9508–9516. DOI: https://doi.org/10.1128/MCB.01136-06, PMID: 17030623
-
(2006)
Molecular and Cellular Biology
, vol.26
, pp. 9508-9516
-
-
Geng, C.1
Macdonald, P.M.2
-
36
-
-
0033582934
-
The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis
-
10102272
-
Ghiglione C, Carraway KL, Amundadottir LT, Boswell RE, Perrimon N, Duffy JB. 1999. The transmembrane molecule kekkon 1 acts in a feedback loop to negatively regulate the activity of the Drosophila EGF receptor during oogenesis. Cell 96:847–856. DOI: https://doi.org/10.1016/S0092-8674(00)80594-2, PMID: 10102272
-
(1999)
Cell
, vol.96
, pp. 847-856
-
-
Ghiglione, C.1
Carraway, K.L.2
Amundadottir, L.T.3
Boswell, R.E.4
Perrimon, N.5
Duffy, J.B.6
-
37
-
-
79952188287
-
A versatile in vivo system for directed dissection of gene expression patterns
-
21473015
-
Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin CC, Potter CJ, Clandinin TR. 2011. A versatile in vivo system for directed dissection of gene expression patterns. Nature Methods 8:231–237. DOI: https://doi.org/10.1038/nmeth.1561, PMID: 21473015
-
(2011)
Nature Methods
, vol.8
, pp. 231-237
-
-
Gohl, D.M.1
Silies, M.A.2
Gao, X.J.3
Bhalerao, S.4
Luongo, F.J.5
Lin, C.C.6
Potter, C.J.7
Clandinin, T.R.8
-
38
-
-
84955590474
-
Studying small brains to understand the building blocks of cognition
-
26826948
-
Haberkern H, Jayaraman V. 2016. Studying small brains to understand the building blocks of cognition. Current Opinion in Neurobiology 37:59–65. DOI: https://doi.org/10.1016/j.conb.2016.01.007, PMID: 26826948
-
(2016)
Current Opinion in Neurobiology
, vol.37
, pp. 59-65
-
-
Haberkern, H.1
Jayaraman, V.2
-
39
-
-
0030175756
-
DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies
-
8663989
-
Han KA, Millar NS, Grotewiel MS, Davis RL. 1996. DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16:1127–1135. DOI: https://doi.org/10.1016/S0896-6273(00)80139-7, PMID: 8663989
-
(1996)
Neuron
, vol.16
, pp. 1127-1135
-
-
Han, K.A.1
Millar, N.S.2
Grotewiel, M.S.3
Davis, R.L.4
-
40
-
-
3042817424
-
Drosophila uses two distinct neuropeptide amidating enzymes, dPAL1 and dPAL2
-
15198673
-
Han M, Park D, Vanderzalm PJ, Mains RE, Eipper BA, Taghert PH. 2004. Drosophila uses two distinct neuropeptide amidating enzymes, dPAL1 and dPAL2. Journal of Neurochemistry 90:129–141. DOI: https://doi. org/10.1111/j.1471-4159.2004.02464.x, PMID: 15198673
-
(2004)
Journal of Neurochemistry
, vol.90
, pp. 129-141
-
-
Han, M.1
Park, D.2
Vanderzalm, P.J.3
Mains, R.E.4
Eipper, B.A.5
Taghert, P.H.6
-
41
-
-
84879395049
-
FACS purification of Drosophila larval neuroblasts for next-generation sequencing
-
23660757
-
Harzer H, Berger C, Conder R, Schmauss G, Knoblich JA. 2013. FACS purification of Drosophila larval neuroblasts for next-generation sequencing. Nature Protocols 8:1088–1099. DOI: https://doi.org/10.1038/nprot.2013.062, PMID: 23660757
-
(2013)
Nature Protocols
, vol.8
, pp. 1088-1099
-
-
Harzer, H.1
Berger, C.2
Conder, R.3
Schmauss, G.4
Knoblich, J.A.5
-
42
-
-
85019077864
-
Representations of Novelty and Familiarity in a Mushroom Body Compartment
-
Hattori D, Aso Y, Swartz KJ, Rubin GM, Abbott LF, Axel R. 2017. Representations of Novelty and Familiarity in a Mushroom Body Compartment. Cell 169:956–969. DOI: https://doi.org/10.1016/j.cell.2017.04.028, PMID: 2 8502772
-
(2017)
Cell
, vol.169
, pp. 956-969
-
-
Hattori, D.1
Aso, Y.2
Swartz, K.J.3
Rubin, G.M.4
Abbott, L.F.5
Axel, R.6
-
43
-
-
0038439322
-
Mushroom body memoir: From maps to models
-
12671643
-
Heisenberg M. 2003. Mushroom body memoir: from maps to models. Nature Reviews Neuroscience 4:266–275. DOI: https://doi.org/10.1038/nrn1074, PMID: 12671643
-
(2003)
Nature Reviews Neuroscience
, vol.4
, pp. 266-275
-
-
Heisenberg, M.1
-
44
-
-
0034824368
-
Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome
-
Hewes RS, Taghert PH. 2001. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Research 11:1126–1142. DOI: https://doi.org/10.1101/gr.169901, PMID: 11381038
-
(2001)
Genome Research
, vol.11
, pp. 1126-1142
-
-
Hewes, R.S.1
Taghert, P.H.2
-
45
-
-
0032500899
-
The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression
-
9852943
-
Hovemann BT, Ryseck RP, Walldorf U, Störtkuhl KF, Dietzel ID, Dessen E. 1998. The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression. Gene 221:1–9. DOI: https://doi.org/10.1016/S0378-1119(98)00440-5, PMID: 9852943
-
(1998)
Gene
, vol.221
, pp. 1-9
-
-
Hovemann, B.T.1
Ryseck, R.P.2
Walldorf, U.3
Störtkuhl, K.F.4
Dietzel, I.D.5
Dessen, E.6
-
46
-
-
84928990501
-
Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles
-
Huang Y, Ng FS, Jackson FR. 2015. Comparison of larval and adult Drosophila astrocytes reveals stage-specific gene expression profiles. G3:Genes|Genomes|Genetics 5:551–558. DOI: https://doi.org/10.1534/g3.114. 016162, PMID: 25653313
-
(2015)
G3:Genes|Genomes|Genetics
, vol.5
, pp. 551-558
-
-
Huang, Y.1
Ng, F.S.2
Jackson, F.R.3
-
47
-
-
84926421888
-
Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila
-
25728694
-
Huetteroth W, Perisse E, Lin S, Klappenbach M, Burke C, Waddell S. 2015. Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Current Biology 25:751–758. DOI: https://doi.org/10.1016/j.cub.2015.01.036, PMID: 25728694
-
(2015)
Current Biology
, vol.25
, pp. 751-758
-
-
Huetteroth, W.1
Perisse, E.2
Lin, S.3
Klappenbach, M.4
Burke, C.5
Waddell, S.6
-
48
-
-
84949937157
-
Reward signal in a recurrent circuit drives appetitive long-term memory formation
-
26573957
-
Ichinose T, Aso Y, Yamagata N, Abe A, Rubin GM, Tanimoto H. 2015. Reward signal in a recurrent circuit drives appetitive long-term memory formation. eLife 4:e10719. DOI: https://doi.org/10.7554/eLife.10719, PMID: 26573957
-
(2015)
Elife
, vol.4
-
-
Ichinose, T.1
Aso, Y.2
Yamagata, N.3
Abe, A.4
Rubin, G.M.5
Tanimoto, H.6
-
49
-
-
69149111016
-
Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila
-
Ignell R, Root CM, Birse RT, Wang JW, Nässel DR, Winther AM. 2009. Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. PNAS 106:13070–13075. DOI: https://doi.org/10.1073/pnas. 0813004106, PMID: 19625621
-
(2009)
PNAS
, vol.106
, pp. 13070-13075
-
-
Ignell, R.1
Root, C.M.2
Birse, R.T.3
Wang, J.W.4
Nässel, D.R.5
Winther, A.M.6
-
50
-
-
0031030360
-
The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells
-
Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D. 1997. The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124:761–771. PMID: 9043058
-
(1997)
Development
, vol.124
, pp. 761-771
-
-
Ito, K.1
Awano, W.2
Suzuki, K.3
Hiromi, Y.4
Yamamoto, D.5
-
51
-
-
84868114222
-
A GAL4-driver line resource for Drosophila neurobiology
-
23063364
-
Jenett A, Rubin GM, Ngo TT, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J, Iyer N, Fetter D, Hausenfluck JH, Peng H, Trautman ET, Svirskas RR, Myers EW, Iwinski ZR, Aso Y, DePasquale GM, et al. 2012. A GAL4-driver line resource for Drosophila neurobiology. Cell Reports 2:991–1001. DOI: https://doi.org/10.1016/j.celrep.2012.09.011, PMID: 23063364
-
(2012)
Cell Reports
, vol.2
, pp. 991-1001
-
-
Jenett, A.1
Rubin, G.M.2
Ngo, T.T.3
Shepherd, D.4
Murphy, C.5
Dionne, H.6
Pfeiffer, B.D.7
Cavallaro, A.8
Hall, D.9
Jeter, J.10
Iyer, N.11
Fetter, D.12
Hausenfluck, J.H.13
Peng, H.14
Trautman, E.T.15
Svirskas, R.R.16
Myers, E.W.17
Iwinski, Z.R.18
Aso, Y.19
Depasquale, G.M.20
more..
-
52
-
-
0034307010
-
PHM is required for normal developmental transitions and for biosynthesis of secretory peptides in Drosophila
-
10993678
-
Jiang N, Kolhekar AS, Jacobs PS, Mains RE, Eipper BA, Taghert PH. 2000. PHM is required for normal developmental transitions and for biosynthesis of secretory peptides in Drosophila. Developmental Biology 226:118–136. DOI: https://doi.org/10.1006/dbio.2000.9832, PMID: 10993678
-
(2000)
Developmental Biology
, vol.226
, pp. 118-136
-
-
Jiang, N.1
Kolhekar, A.S.2
Jacobs, P.S.3
Mains, R.E.4
Eipper, B.A.5
Taghert, P.H.6
-
53
-
-
37049025567
-
Knot/Collier and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape
-
18093520
-
Jinushi-Nakao S, Arvind R, Amikura R, Kinameri E, Liu AW, Moore AW. 2007. Knot/Collier and cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron 56:963–978. DOI: https://doi.org/10.1016/j.neuron.2007.10.031, PMID: 18093520
-
(2007)
Neuron
, vol.56
, pp. 963-978
-
-
Jinushi-Nakao, S.1
Arvind, R.2
Amikura, R.3
Kinameri, E.4
Liu, A.W.5
Moore, A.W.6
-
54
-
-
40749157578
-
Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: Relations to extrinsic neurons expressing different neurotransmitters
-
18205208
-
Johard HA, Enell LE, Gustafsson E, Trifilieff P, Veenstra JA, Nässel DR. 2008. Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters. The Journal of Comparative Neurology 507:1479–1496. DOI: https://doi.org/10.1002/cne. 21636, PMID: 18205208
-
(2008)
The Journal of Comparative Neurology
, vol.507
, pp. 1479-1496
-
-
Johard, H.A.1
Enell, L.E.2
Gustafsson, E.3
Trifilieff, P.4
Veenstra, J.A.5
Nässel, D.R.6
-
55
-
-
84858622597
-
Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila
-
22361394
-
Kahsai L, Carlsson MA, Winther AM, Nässel DR. 2012. Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience 208:11–26. DOI: https://doi.org/10.1016/j.neuroscience.2012.02.007, PMID: 22361394
-
(2012)
Neuroscience
, vol.208
, pp. 11-26
-
-
Kahsai, L.1
Carlsson, M.A.2
Winther, A.M.3
Nässel, D.R.4
-
56
-
-
84906058160
-
A draft genome assembly of the army worm, Spodoptera frugiperda
-
24 984256
-
Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK. 2014. A draft genome assembly of the army worm, Spodoptera frugiperda. Genomics 104:134–143. DOI: https://doi.org/10.1016/j.ygeno.2014.06.005, PMID: 24 984256
-
(2014)
Genomics
, vol.104
, pp. 134-143
-
-
Kakumani, P.K.1
Malhotra, P.2
Mukherjee, S.K.3
Bhatnagar, R.K.4
-
57
-
-
0038801443
-
The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex
-
Kelley RL, Kuroda MI. 2003. The Drosophila roX1 RNA gene can overcome silent chromatin by recruiting the male-specific lethal dosage compensation complex. Genetics 164:565–574. PMID: 12807777
-
(2003)
Genetics
, vol.164
, pp. 565-574
-
-
Kelley, R.L.1
Kuroda, M.I.2
-
58
-
-
0037195166
-
Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy
-
12391301
-
Knauf F, Rogina B, Jiang Z, Aronson PS, Helfand SL. 2002. Functional characterization and immunolocalization of the transporter encoded by the life-extending gene Indy. PNAS 99:14315–14319. DOI: https://doi.org/10. 1073/pnas.222531899, PMID: 12391301
-
(2002)
PNAS
, vol.99
, pp. 14315-14319
-
-
Knauf, F.1
Rogina, B.2
Jiang, Z.3
Aronson, P.S.4
Helfand, S.L.5
-
59
-
-
0031015941
-
Neuropeptide amidation in Drosophila: Separate genes encode the two enzymes catalyzing amidation
-
9006979
-
Kolhekar AS, Roberts MS, Jiang N, Johnson RC, Mains RE, Eipper BA, Taghert PH. 1997. Neuropeptide amidation in Drosophila: separate genes encode the two enzymes catalyzing amidation. The Journal of Neuroscience 17:1363–1376. DOI: https://doi.org/10.1523/JNEUROSCI.17-04-01363.1997, PMID: 9006979
-
(1997)
The Journal of Neuroscience
, vol.17
, pp. 1363-1376
-
-
Kolhekar, A.S.1
Roberts, M.S.2
Jiang, N.3
Johnson, R.C.4
Mains, R.E.5
Eipper, B.A.6
Taghert, P.H.7
-
60
-
-
0037462452
-
From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons
-
Komiyama T, Johnson WA, Luo L, Jefferis GS. 2003. From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Cell 112:157–167. PMID: 12553 905
-
(2003)
Cell
, vol.112
, pp. 157-167
-
-
Komiyama, T.1
Johnson, W.A.2
Luo, L.3
Jefferis, G.S.4
-
61
-
-
33846586685
-
Intrinsic control of precise dendritic targeting by an ensemble of transcription factors
-
17276922
-
Komiyama T, Luo L. 2007. Intrinsic control of precise dendritic targeting by an ensemble of transcription factors. Current Biology 17:278–285. DOI: https://doi.org/10.1016/j.cub.2006.11.067, PMID: 17276922
-
(2007)
Current Biology
, vol.17
, pp. 278-285
-
-
Komiyama, T.1
Luo, L.2
-
62
-
-
70349992332
-
A neural circuit mechanism integrating motivational state with memory expression in Drosophila
-
19837040
-
Krashes MJ, DasGupta S, Vreede A, White B, Armstrong JD, Waddell S. 2009. A neural circuit mechanism integrating motivational state with memory expression in Drosophila. Cell 139:416–427. DOI: https://doi.org/10.1016/j.cell.2009.08.035, PMID: 19837040
-
(2009)
Cell
, vol.139
, pp. 416-427
-
-
Krashes, M.J.1
Dasgupta, S.2
Vreede, A.3
White, B.4
Armstrong, J.D.5
Waddell, S.6
-
63
-
-
33845880917
-
Sequential use of mushroom body neuron subsets during drosophila odor memory processing
-
17196534
-
Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S. 2007. Sequential use of mushroom body neuron subsets during drosophila odor memory processing. Neuron 53:103–115. DOI: https://doi.org/10.1016/j. neuron.2006.11.021, PMID: 17196534
-
(2007)
Neuron
, vol.53
, pp. 103-115
-
-
Krashes, M.J.1
Keene, A.C.2
Leung, B.3
Armstrong, J.D.4
Waddell, S.5
-
64
-
-
85051864514
-
-
Davie K, Janssens J, Koldere D, Pech U, Aibar S, Waegeneer MD, Makhzami S, Christiaens V, Gonzalez-Blas CB, Hulselmans G, Spanier K, Moerman T, Vanspauwen B, Lammertyn J, Thienpont B, Liu S, Verstreken P, Aerts S. 2017. A single-cell catalogue of regulatory states in the ageing Drosophila brain. bioRxiv. DOI: https://doi.org/10.1101/237420
-
(2017)
A Single-Cell Catalogue of Regulatory States in the Ageing Drosophila Brain
-
-
Davie, K.1
Janssens, J.2
Koldere, D.3
Pech, U.4
Aibar, S.5
Waegeneer, M.D.6
Makhzami, S.7
Christiaens, V.8
Gonzalez-Blas, C.B.9
Hulselmans, G.10
Spanier, K.11
Moerman, T.12
Vanspauwen, B.13
Lammertyn, J.14
Thienpont, B.15
Liu, S.16
Verstreken, P.17
Aerts, S.18
-
65
-
-
0023653157
-
Characterization of interaction between DNA and 4’,6-diamidino-2-phenylindole by optical spectroscopy
-
Kubista M, Aakerman B, Norden B. 1987. Characterization of interaction between DNA and 4’,6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry 26:4545–4553. DOI: https://doi.org/10.1021/bi00388a057
-
(1987)
Biochemistry
, vol.26
, pp. 4545-4553
-
-
Kubista, M.1
Aakerman, B.2
Norden, B.3
-
66
-
-
0034007075
-
Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes
-
10681433
-
Kurusu M, Nagao T, Walldorf U, Flister S, Gehring WJ, Furukubo-Tokunaga K. 2000. Genetic control of development of the mushroom bodies, the associative learning centers in the Drosophila brain, by the eyeless, twin of eyeless, and Dachshund genes. PNAS 97:2140–2144. DOI: https://doi.org/10.1073/pnas.040564497, PMID: 10681433
-
(2000)
PNAS
, vol.97
, pp. 2140-2144
-
-
Kurusu, M.1
Nagao, T.2
Walldorf, U.3
Flister, S.4
Gehring, W.J.5
Furukubo-Tokunaga, K.6
-
67
-
-
53349089565
-
Clonal analysis of Drosophila antennal lobe neurons: Diverse neuronal architectures in the lateral neuroblast lineage
-
18653555
-
Lai SL, Awasaki T, Ito K, Lee T. 2008. Clonal analysis of Drosophila antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development 135:2883–2893. DOI: https://doi.org/10.1242/dev. 024380, PMID: 18653555
-
(2008)
Development
, vol.135
, pp. 2883-2893
-
-
Lai, S.L.1
Awasaki, T.2
Ito, K.3
Lee, T.4
-
68
-
-
70449753456
-
Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits
-
Lebestky T, Chang JS, Dankert H, Zelnik L, Kim YC, Han KA, Wolf FW, Perona P, Anderson DJ. 2009. Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64:522–536. DOI: https://doi.org/10.1016/j.neuron.2009.09.031, PMID: 1 9945394
-
(2009)
Neuron
, vol.64
, pp. 522-536
-
-
Lebestky, T.1
Chang, J.S.2
Dankert, H.3
Zelnik, L.4
Kim, Y.C.5
Han, K.A.6
Wolf, F.W.7
Perona, P.8
Anderson, D.J.9
-
69
-
-
0032821487
-
Development of the Drosophila mushroom bodies: Sequential generation of three distinct types of neurons from a neuroblast
-
Lee T, Lee A, Luo L. 1999. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–4076. PMID: 10457015
-
(1999)
Development
, vol.126
, pp. 4065-4076
-
-
Lee, T.1
Lee, A.2
Luo, L.3
-
70
-
-
85034065086
-
Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing
-
Li H, Horns F, Wu B, Xie Q, Li J, Li T, Luginbuhl DJ, Quake SR, Luo L. 2017. Classifying Drosophila olfactory projection neuron subtypes by single-cell RNA sequencing. Cell 171:1206–1220. DOI: https://doi.org/10.1016/j.cell.2017.10.019, PMID: 29149607
-
(2017)
Cell
, vol.171
, pp. 1206-1220
-
-
Li, H.1
Horns, F.2
Wu, B.3
Xie, Q.4
Li, J.5
Li, T.6
Luginbuhl, D.J.7
Quake, S.R.8
Luo, L.9
-
71
-
-
33947218021
-
A map of olfactory representation in the Drosophila mushroom body
-
17382887
-
Lin HH, Lai JS, Chin AL, Chen YC, Chiang AS. 2007. A map of olfactory representation in the Drosophila mushroom body. Cell 128:1205–1217. DOI: https://doi.org/10.1016/j.cell.2007.03.006, PMID: 17382887
-
(2007)
Cell
, vol.128
, pp. 1205-1217
-
-
Lin, H.H.1
Lai, J.S.2
Chin, A.L.3
Chen, Y.C.4
Chiang, A.S.5
-
72
-
-
84908518764
-
Neural correlates of water reward in thirsty Drosophila
-
25262493
-
Lin S, Owald D, Chandra V, Talbot C, Huetteroth W, Waddell S. 2014. Neural correlates of water reward in thirsty Drosophila. Nature Neuroscience 17:1536–1542. DOI: https://doi.org/10.1038/nn.3827, PMID: 25262493
-
(2014)
Nature Neuroscience
, vol.17
, pp. 1536-1542
-
-
Lin, S.1
Owald, D.2
Chandra, V.3
Talbot, C.4
Huetteroth, W.5
Waddell, S.6
-
73
-
-
79952646811
-
Robust RT-qPCR data normalization: Validation and selection of internal reference genes during post-experimental data analysis
-
Ling D, Salvaterra PM. 2011. Robust RT-qPCR data normalization: validation and selection of internal reference genes during post-experimental data analysis. PLoS One 6:e17762. DOI: https://doi.org/10.1371/journal.pone. 0017762, PMID: 21423626
-
(2011)
Plos One
, vol.6
-
-
Ling, D.1
Salvaterra, P.M.2
-
74
-
-
84865231699
-
A subset of dopamine neurons signals reward for odour memory in Drosophila
-
22810589
-
Liu C, Plaçais PY, Yamagata N, Pfeiffer BD, Aso Y, Friedrich AB, Siwanowicz I, Rubin GM, Preat T, Tanimoto H. 2012. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488:512–516. DOI: https://doi.org/10.1038/nature11304, PMID: 22810589
-
(2012)
Nature
, vol.488
, pp. 512-516
-
-
Liu, C.1
Plaçais, P.Y.2
Yamagata, N.3
Pfeiffer, B.D.4
Aso, Y.5
Friedrich, A.B.6
Siwanowicz, I.7
Rubin, G.M.8
Preat, T.9
Tanimoto, H.10
-
75
-
-
0035710746
-
Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
-
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. DOI: https://doi.org/10.1006/meth.2001.1262, PMID: 11846609
-
(2001)
Methods
, vol.25
, pp. 402-408
-
-
Livak, K.J.1
Schmittgen, T.D.2
-
76
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
26000488
-
Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. DOI: https://doi.org/10. 1016/j.cell.2015.05.002, PMID: 26000488
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
Basu, A.2
Satija, R.3
Nemesh, J.4
Shekhar, K.5
Goldman, M.6
Tirosh, I.7
Bialas, A.R.8
Kamitaki, N.9
Martersteck, E.M.10
Trombetta, J.J.11
Weitz, D.A.12
Sanes, J.R.13
Shalek, A.K.14
Regev, A.15
McCarroll, S.A.16
-
77
-
-
84902532548
-
Drosophila melanogaster as a genetic model system to study neurotransmitter transporters
-
24704795
-
Martin CA, Krantz DE. 2014. Drosophila melanogaster as a genetic model system to study neurotransmitter transporters. Neurochemistry International 73:71–88. DOI: https://doi.org/10.1016/j.neuint.2014.03.015, PMID: 24704795
-
(2014)
Neurochemistry International
, vol.73
, pp. 71-88
-
-
Martin, C.A.1
Krantz, D.E.2
-
78
-
-
0033136270
-
Lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS
-
Miwa JM, Ibanez-Tallon I, Crabtree GW, Sánchez R, Sali A, Role LW, Heintz N. 1999. lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23:105–114. DOI: https://doi. org/10.1016/S0896-6273(00)80757-6, PMID: 10402197
-
(1999)
Neuron
, vol.23
, pp. 105-114
-
-
Miwa, J.M.1
Ibanez-Tallon, I.2
Crabtree, G.W.3
Sánchez, R.4
Sali, A.5
Role, L.W.6
Heintz, N.7
-
79
-
-
32644452084
-
A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP
-
16476777
-
Munro TP, Kwon S, Schnapp BJ, St Johnston D. 2006. A repeated IMP-binding motif controls oskar mRNA translation and anchoring independently of Drosophila melanogaster IMP. The Journal of Cell Biology 172: 577–588. DOI: https://doi.org/10.1083/jcb.200510044, PMID: 16476777
-
(2006)
The Journal of Cell Biology
, vol.172
, pp. 577-588
-
-
Munro, T.P.1
Kwon, S.2
Schnapp, B.J.3
St Johnston, D.4
-
80
-
-
73949101875
-
Dissecting differential gene expression within the circadian neuronal circuit of Drosophila
-
Nagoshi E, Sugino K, Kula E, Okazaki E, Tachibana T, Nelson S, Rosbash M. 2010. Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nature Neuroscience 13:60–68. DOI: https://doi. org/10.1038/nn.2451, PMID: 19966839
-
(2010)
Nature Neuroscience
, vol.13
, pp. 60-68
-
-
Nagoshi, E.1
Sugino, K.2
Kula, E.3
Okazaki, E.4
Tachibana, T.5
Nelson, S.6
Rosbash, M.7
-
81
-
-
84908006620
-
The matrix protein Hikaru genki localizes to cholinergic synaptic clefts and regulates postsynaptic organization in the Drosophila brain
-
25319684
-
Nakayama M, Matsushita F, Hama C. 2014. The matrix protein Hikaru genki localizes to cholinergic synaptic clefts and regulates postsynaptic organization in the Drosophila brain. Journal of Neuroscience 34:13872– 13877. DOI: https://doi.org/10.1523/JNEUROSCI.1585-14.2014, PMID: 25319684
-
(2014)
Journal of Neuroscience
, vol.34
, pp. 13872-13877
-
-
Nakayama, M.1
Matsushita, F.2
Hama, C.3
-
82
-
-
84954349154
-
The matrix proteins hasp and hig exhibit segregated distribution within synaptic clefts and play distinct roles in synaptogenesis
-
26758847
-
Nakayama M, Suzuki E, Tsunoda S, Hama C. 2016. The matrix proteins hasp and hig exhibit segregated distribution within synaptic clefts and play distinct roles in synaptogenesis. Journal of Neuroscience 36:590– 606. DOI: https://doi.org/10.1523/JNEUROSCI.2300-15.2016, PMID: 26758847
-
(2016)
Journal of Neuroscience
, vol.36
, pp. 590-606
-
-
Nakayama, M.1
Suzuki, E.2
Tsunoda, S.3
Hama, C.4
-
83
-
-
84958068695
-
Caffeine promotes wakefulness via dopamine signaling in Drosophila
-
Nall AH, Shakhmantsir I, Cichewicz K, Birman S, Hirsh J, Sehgal A. 2016. Caffeine promotes wakefulness via dopamine signaling in Drosophila. Scientific Reports 6:20938. DOI: https://doi.org/10.1038/srep20938, PMID: 26868675
-
(2016)
Scientific Reports
, vol.6
-
-
Nall, A.H.1
Shakhmantsir, I.2
Cichewicz, K.3
Birman, S.4
Hirsh, J.5
Sehgal, A.6
-
84
-
-
85051053124
-
Phenotypic convergence in the brain: Distinct transcription factors regulate common terminal neuronal characters
-
Konstantinides N, Kapuralin K, Fadil C, Barboza L, Satija R, Desplan C. 2018. Phenotypic convergence in the brain: distinct transcription factors regulate common terminal neuronal characters. bioRxiv. DOI: https://doi. org/10.1101/243113
-
(2018)
Biorxiv
-
-
Konstantinides, N.1
Kapuralin, K.2
Fadil, C.3
Barboza, L.4
Satija, R.5
Desplan, C.6
-
85
-
-
54149103644
-
A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions
-
Nässel DR, Enell LE, Santos JG, Wegener C, Johard HA. 2008. A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions. BMC Neuroscience 9:90. DOI: https://doi.org/10.1186/1471-2202-9-90, PMID: 18803813
-
(2008)
BMC Neuroscience
, vol.9
, pp. 90
-
-
Nässel, D.R.1
Enell, L.E.2
Santos, J.G.3
Wegener, C.4
Johard, H.A.5
-
86
-
-
77953931115
-
Drosophila neuropeptides in regulation of physiology and behavior
-
20447440
-
Nässel DR, Winther AM. 2010. Drosophila neuropeptides in regulation of physiology and behavior. Progress in Neurobiology 92:42–104. DOI: https://doi.org/10.1016/j.pneurobio.2010.04.010, PMID: 20447440
-
(2010)
Progress in Neurobiology
, vol.92
, pp. 42-104
-
-
Nässel, D.R.1
Winther, A.M.2
-
87
-
-
84928798062
-
A multilevel multimodal circuit enhances action selection in Drosophila
-
25896325
-
Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R, Rivera-Alba M, Mensh BD, Branson KM, Simpson JH, Truman JW, Cardona A, Zlatic M. 2015. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520:633–639. DOI: https://doi.org/10.1038/nature14297, PMID: 25896325
-
(2015)
Nature
, vol.520
, pp. 633-639
-
-
Ohyama, T.1
Schneider-Mizell, C.M.2
Fetter, R.D.3
Aleman, J.V.4
Franconville, R.5
Rivera-Alba, M.6
Mensh, B.D.7
Branson, K.M.8
Simpson, J.H.9
Truman, J.W.10
Cardona, A.11
Zlatic, M.12
-
88
-
-
71649090271
-
A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila
-
Okamoto N, Yamanaka N, Yagi Y, Nishida Y, Kataoka H, O’Connor MB, Mizoguchi A. 2009. A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila. Developmental Cell 17:885–891. DOI: https://doi.org/10.1016/j.devcel.2009.10.008, PMID: 20059957
-
(2009)
Developmental Cell
, vol.17
, pp. 885-891
-
-
Okamoto, N.1
Yamanaka, N.2
Yagi, Y.3
Nishida, Y.4
Kataoka, H.5
O’Connor, M.B.6
Mizoguchi, A.7
-
89
-
-
84884181475
-
Different kenyon cell populations drive learned approach and avoidance in Drosophila
-
24012007
-
Perisse E, Yin Y, Lin AC, Lin S, Huetteroth W, Waddell S. 2013. Different kenyon cell populations drive learned approach and avoidance in Drosophila. Neuron 79:945–956. DOI: https://doi.org/10.1016/j.neuron.2013.07. 045, PMID: 24012007
-
(2013)
Neuron
, vol.79
, pp. 945-956
-
-
Perisse, E.1
Yin, Y.2
Lin, A.C.3
Lin, S.4
Huetteroth, W.5
Waddell, S.6
-
90
-
-
47749087494
-
Tools for neuroanatomy and neurogenetics in Drosophila
-
18621688
-
Pfeiffer BD, Jenett A, Hammonds AS, Ngo TT, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall C, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM. 2008. Tools for neuroanatomy and neurogenetics in Drosophila. PNAS 105:9715–9720. DOI: https://doi.org/10.1073/pnas.0803697105, PMID: 18621688
-
(2008)
PNAS
, vol.105
, pp. 9715-9720
-
-
Pfeiffer, B.D.1
Jenett, A.2
Hammonds, A.S.3
Ngo, T.T.4
Misra, S.5
Murphy, C.6
Scully, A.7
Carlson, J.W.8
Wan, K.H.9
Laverty, T.R.10
Mungall, C.11
Svirskas, R.12
Kadonaga, J.T.13
Doe, C.Q.14
Eisen, M.B.15
Celniker, S.E.16
Rubin, G.M.17
-
91
-
-
85040459896
-
The Human Cell Atlas
-
29206104
-
Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E, Bodenmiller B, Campbell P, Carninci P, Clatworthy M, Clevers H, Deplancke B, Dunham I, Eberwine J, Eils R, Enard W, Farmer A, Fugger L, Göttgens B, Hacohen N, et al. 2017. The Human Cell Atlas. eLife 6:e27041. DOI: https://doi.org/10.7554/eLife.27041, PMID: 29206104
-
(2017)
Elife
, vol.6
-
-
Regev, A.1
Teichmann, S.A.2
Lander, E.S.3
Amit, I.4
Benoist, C.5
Birney, E.6
Bodenmiller, B.7
Campbell, P.8
Carninci, P.9
Clatworthy, M.10
Clevers, H.11
Deplancke, B.12
Dunham, I.13
Eberwine, J.14
Eils, R.15
Enard, W.16
Farmer, A.17
Fugger, L.18
Göttgens, B.19
Hacohen, N.20
more..
-
92
-
-
0023880221
-
The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages
-
3127258
-
Robinow S, White K. 1988. The locus elav of Drosophila melanogaster is expressed in neurons at all developmental stages. Developmental Biology 126:294–303. DOI: https://doi.org/10.1016/0012-1606(88) 90139-X, PMID: 3127258
-
(1988)
Developmental Biology
, vol.126
, pp. 294-303
-
-
Robinow, S.1
White, K.2
-
93
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
25867923
-
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. 2015. Spatial reconstruction of single-cell gene expression data. Nature Biotechnology 33:495–502. DOI: https://doi.org/10.1038/nbt.3192, PMID: 25867923
-
(2015)
Nature Biotechnology
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
94
-
-
17844367558
-
Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster
-
15770687
-
Sattelle DB, Jones AK, Sattelle BM, Matsuda K, Reenan R, Biggin PC. 2005. Edit, cut and paste in the nicotinic acetylcholine receptor gene family of Drosophila melanogaster. BioEssays 27:366–376. DOI: https://doi.org/10. 1002/bies.20207, PMID: 15770687
-
(2005)
Bioessays
, vol.27
, pp. 366-376
-
-
Sattelle, D.B.1
Jones, A.K.2
Sattelle, B.M.3
Matsuda, K.4
Reenan, R.5
Biggin, P.C.6
-
95
-
-
0034110016
-
Neuronal Nicotinic Acetylcholine Receptors from Drosophila
-
Schulz R, Bertrand S, Chamaon K, Smalla K-H, Gundelfinger ED, Bertrand D. 2000. Neuronal Nicotinic Acetylcholine Receptors from Drosophila. Journal of Neurochemistry 74:2537–2546. DOI: https://doi.org/10. 1046/j.1471-4159.2000.0742537.x
-
(2000)
Journal of Neurochemistry
, vol.74
, pp. 2537-2546
-
-
Schulz, R.1
Bertrand, S.2
Chamaon, K.3
Smalla, K.-H.4
Gundelfinger, E.D.5
Bertrand, D.6
-
96
-
-
84929379914
-
Neural dynamics for landmark orientation and angular path integration
-
25971509
-
Seelig JD, Jayaraman V. 2015. Neural dynamics for landmark orientation and angular path integration. Nature 521:186–191. DOI: https://doi.org/10.1038/nature14446, PMID: 25971509
-
(2015)
Nature
, vol.521
, pp. 186-191
-
-
Seelig, J.D.1
Jayaraman, V.2
-
97
-
-
84925445070
-
Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in Drosophila melanogaster. Developmental dynamics: An official publication of the
-
25529377
-
Shahab J, Baratta C, Scuric B, Godt D, Venken KJ, Ringuette MJ. 2015. Loss of SPARC dysregulates basal lamina assembly to disrupt larval fat body homeostasis in Drosophila melanogaster. Developmental dynamics: an official publication of the American Association of Anatomists 244:540–552. DOI: https://doi.org/10.1002/dvdy. 24243, PMID: 25529377
-
(2015)
American Association of Anatomists
, vol.244
, pp. 540-552
-
-
Shahab, J.1
Baratta, C.2
Scuric, B.3
Godt, D.4
Venken, K.J.5
Ringuette, M.J.6
-
98
-
-
84901377786
-
Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems
-
24451596
-
Shearin HK, Macdonald IS, Spector LP, Stowers RS. 2014. Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 196:951–960. DOI: https://doi.org/10.1534/genetics.113.161141, PMID: 24451596
-
(2014)
Genetics
, vol.196
, pp. 951-960
-
-
Shearin, H.K.1
Macdonald, I.S.2
Spector, L.P.3
Stowers, R.S.4
-
99
-
-
34547145296
-
Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity
-
17678856
-
Suh J, Jackson FR. 2007. Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. Neuron 55:435–447. DOI: https://doi.org/10.1016/j.neuron.2007.06.038, PMID: 17678856
-
(2007)
Neuron
, vol.55
, pp. 435-447
-
-
Suh, J.1
Jackson, F.R.2
-
100
-
-
0029050530
-
Two Drosophila nervous system antigens, Nervana 1 and 2, are homologous to the beta subunit of Na+,K(+)-ATPase
-
7777518
-
Sun B, Salvaterra PM. 1995. Two Drosophila nervous system antigens, Nervana 1 and 2, are homologous to the beta subunit of Na+,K(+)-ATPase. PNAS 92:5396–5400. DOI: https://doi.org/10.1073/pnas.92.12.5396, PMID: 7777518
-
(1995)
PNAS
, vol.92
, pp. 5396-5400
-
-
Sun, B.1
Salvaterra, P.M.2
-
101
-
-
85027191488
-
A connectome of a learning and memory center in the adult Drosophila brain
-
28718765
-
Takemura SY, Aso Y, Hige T, Wong A, Lu Z, Xu CS, Rivlin PK, Hess H, Zhao T, Parag T, Berg S, Huang G, Katz W, Olbris DJ, Plaza S, Umayam L, Aniceto R, Chang LA, Lauchie S, Ogundeyi O, et al. 2017a. A connectome of a learning and memory center in the adult Drosophila brain. eLife 6:e26975. DOI: https://doi.org/10.7554/eLife. 26975, PMID: 28718765
-
(2017)
Elife
, vol.6
-
-
Takemura, S.Y.1
Aso, Y.2
Hige, T.3
Wong, A.4
Lu, Z.5
Xu, C.S.6
Rivlin, P.K.7
Hess, H.8
Zhao, T.9
Parag, T.10
Berg, S.11
Huang, G.12
Katz, W.13
Olbris, D.J.14
Plaza, S.15
Umayam, L.16
Aniceto, R.17
Chang, L.A.18
Lauchie, S.19
Ogundeyi, O.20
more..
-
102
-
-
84881412920
-
A visual motion detection circuit suggested by Drosophila connectomics
-
23925240
-
Takemura SY, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P, Zhao T, Horne JA, Fetter RD, Takemura S, Blazek K, Chang LA, Ogundeyi O, Saunders MA, Shapiro V, Sigmund C, et al. 2013. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181. DOI: https://doi.org/10.1038/nature12450, PMID: 23925240
-
(2013)
Nature
, vol.500
, pp. 175-181
-
-
Takemura, S.Y.1
Bharioke, A.2
Lu, Z.3
Nern, A.4
Vitaladevuni, S.5
Rivlin, P.K.6
Katz, W.T.7
Olbris, D.J.8
Plaza, S.M.9
Winston, P.10
Zhao, T.11
Horne, J.A.12
Fetter, R.D.13
Takemura, S.14
Blazek, K.15
Chang, L.A.16
Ogundeyi, O.17
Saunders, M.A.18
Shapiro, V.19
Sigmund, C.20
more..
-
103
-
-
85019867389
-
The comprehensive connectome of a neural substrate for ’ON’ motion detection in Drosophila
-
Takemura SY, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA. 2017b. The comprehensive connectome of a neural substrate for ’ON’ motion detection in Drosophila. eLife 6:e24394. DOI: https://doi. org/10.7554/eLife.24394, PMID: 28432786
-
(2017)
Elife
, vol.6
-
-
Takemura, S.Y.1
Nern, A.2
Chklovskii, D.B.3
Scheffer, L.K.4
Rubin, G.M.5
Meinertzhagen, I.A.6
-
104
-
-
84867824144
-
Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain
-
22592945
-
Tanaka NK, Endo K, Ito K. 2012. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. The Journal of Comparative Neurology 520:4067–4130. DOI: https://doi.org/10.1002/cne. 23142, PMID: 22592945
-
(2012)
The Journal of Comparative Neurology
, vol.520
, pp. 4067-4130
-
-
Tanaka, N.K.1
Endo, K.2
Ito, K.3
-
105
-
-
43749097858
-
Neuronal assemblies of the Drosophila mushroom body
-
18395827
-
Tanaka NK, Tanimoto H, Ito K. 2008. Neuronal assemblies of the Drosophila mushroom body. The Journal of Comparative Neurology 508:711–755. DOI: https://doi.org/10.1002/cne.21692, PMID: 18395827
-
(2008)
The Journal of Comparative Neurology
, vol.508
, pp. 711-755
-
-
Tanaka, N.K.1
Tanimoto, H.2
Ito, K.3
-
106
-
-
85012044298
-
Insect-Like Organization of the Stomatopod Central Complex: Functional and Phylogenetic Implications
-
28223924
-
Thoen HH, Marshall J, Wolff GH, Strausfeld NJ. 2017. Insect-Like Organization of the Stomatopod Central Complex: Functional and Phylogenetic Implications. Frontiers in Behavioral Neuroscience 11:12. DOI: https://doi.org/10.3389/fnbeh.2017.00012, PMID: 28223924
-
(2017)
Frontiers in Behavioral Neuroscience
, vol.11
, pp. 12
-
-
Thoen, H.H.1
Marshall, J.2
Wolff, G.H.3
Strausfeld, N.J.4
-
107
-
-
85051870817
-
The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system
-
Tirian L, Dickson B. 2017. The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the Drosophila nervous system. BioRxiv. DOI: https://doi.org/10.1101/198648
-
(2017)
Biorxiv
-
-
Tirian, L.1
Dickson, B.2
-
108
-
-
85019668742
-
Wiring variations that enable and constrain neural computation in a sensory microcircuit
-
Tobin WF, Wilson RI, Lee WA. 2017. Wiring variations that enable and constrain neural computation in a sensory microcircuit. eLife 6:e24838. DOI: https://doi.org/10.7554/eLife.24838, PMID: 28530904
-
(2017)
Elife
, vol.6
-
-
Tobin, W.F.1
Wilson, R.I.2
Lee, W.A.3
-
109
-
-
80053988224
-
Parallel processing of appetitive short-and long-term memories in Drosophila
-
21962716
-
Trannoy S, Redt-Clouet C, Dura JM, Preat T. 2011. Parallel processing of appetitive short-and long-term memories in Drosophila. Current Biology 21:1647–1653. DOI: https://doi.org/10.1016/j.cub.2011.08.032, PMID: 21962716
-
(2011)
Current Biology
, vol.21
, pp. 1647-1653
-
-
Trannoy, S.1
Redt-Clouet, C.2
Dura, J.M.3
Preat, T.4
-
110
-
-
84859885816
-
Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks
-
22383036
-
Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L. 2012. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols 7:562–578. DOI: https://doi.org/10.1038/nprot.2012.016, PMID: 22383036
-
(2012)
Nature Protocols
, vol.7
, pp. 562-578
-
-
Trapnell, C.1
Roberts, A.2
Goff, L.3
Pertea, G.4
Kim, D.5
Kelley, D.R.6
Pimentel, H.7
Salzberg, S.L.8
Rinn, J.L.9
Pachter, L.10
-
111
-
-
85029222627
-
Resolving the prevalence of somatic transposition in Drosophila
-
28742021
-
Treiber CD, Waddell S. 2017. Resolving the prevalence of somatic transposition in Drosophila. eLife 6:e28297. DOI: https://doi.org/10.7554/eLife.28297, PMID: 28742021
-
(2017)
Elife
, vol.6
-
-
Treiber, C.D.1
Waddell, S.2
-
112
-
-
33646350686
-
Drosophila tan encodes a novel hydrolase required in pigmentation and vision
-
True JR, Yeh SD, Hovemann BT, Kemme T, Meinertzhagen IA, Edwards TN, Liou SR, Han Q, Li J. 2005. Drosophila tan encodes a novel hydrolase required in pigmentation and vision. PLoS Genetics 1:e63. DOI: https://doi.org/10.1371/journal.pgen.0010063, PMID: 16299587
-
(2005)
Plos Genetics
, vol.1
-
-
True, J.R.1
Yeh, S.D.2
Hovemann, B.T.3
Kemme, T.4
Meinertzhagen, I.A.5
Edwards, T.N.6
Liou, S.R.7
Han, Q.8
Li, J.9
-
113
-
-
39149099082
-
Olfactory representations by Drosophila mushroom body neurons
-
Turner GC, Bazhenov M, Laurent G. 2008. Olfactory representations by Drosophila mushroom body neurons. Journal of Neurophysiology 99:734–780. DOI: https://doi.org/10.1152/jn.01283.2007, PMID: 18094099
-
(2008)
Journal of Neurophysiology
, vol.99
, pp. 734-780
-
-
Turner, G.C.1
Bazhenov, M.2
Laurent, G.3
-
115
-
-
84888352905
-
A smart local moving algorithm for large-scale modularity-based community detection
-
Waltman L, van Eck NJ. 2013. A smart local moving algorithm for large-scale modularity-based community detection. The European Physical Journal B 86:471. DOI: https://doi.org/10.1140/epjb/e2013-40829-0
-
(2013)
The European Physical Journal B
, vol.86
, pp. 471
-
-
Waltman, L.1
van Eck, N.J.2
-
116
-
-
33846537533
-
Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila
-
Whited JL, Robichaux MB, Yang JC, Garrity PA. 2007. Ptpmeg is required for the proper establishment and maintenance of axon projections in the central brain of Drosophila. Development 134:43–53. DOI: https://doi. org/10.1242/dev.02718, PMID: 17138662
-
(2007)
Development
, vol.134
, pp. 43-53
-
-
Whited, J.L.1
Robichaux, M.B.2
Yang, J.C.3
Garrity, P.A.4
-
117
-
-
84920550224
-
Genealogical correspondence of mushroom bodies across invertebrate phyla
-
25532890
-
Wolff GH, Strausfeld NJ. 2015. Genealogical correspondence of mushroom bodies across invertebrate phyla. Current Biology 25:38–44. DOI: https://doi.org/10.1016/j.cub.2014.10.049, PMID: 25532890
-
(2015)
Current Biology
, vol.25
, pp. 38-44
-
-
Wolff, G.H.1
Strausfeld, N.J.2
-
118
-
-
84924662580
-
Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits
-
25380328
-
Wolff T, Iyer NA, Rubin GM. 2015. Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. Journal of Comparative Neurology 523: 997–1037. DOI: https://doi.org/10.1002/cne.23705, PMID: 25380328
-
(2015)
Journal of Comparative Neurology
, vol.523
, pp. 997-1037
-
-
Wolff, T.1
Iyer, N.A.2
Rubin, G.M.3
-
119
-
-
0028281992
-
Repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system
-
7926782
-
Xiong WC, Okano H, Patel NH, Blendy JA, Montell C. 1994. repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Genes & Development 8:981–994. DOI: https://doi.org/10.1101/gad.8.8.981, PMID: 7926782
-
(1994)
Genes & Development
, vol.8
, pp. 981-994
-
-
Xiong, W.C.1
Okano, H.2
Patel, N.H.3
Blendy, J.A.4
Montell, C.5
-
120
-
-
84857473501
-
Insulin signaling regulates fatty acid catabolism at the level of CoA activation
-
22275878
-
Xu X, Gopalacharyulu P, Seppänen-Laakso T, Ruskeepää AL, Aye CC, Carson BP, Mora S, Orešič M, Teleman AA. 2012. Insulin signaling regulates fatty acid catabolism at the level of CoA activation. PLoS Genetics 8:e1002478. DOI: https://doi.org/10.1371/journal.pgen.1002478, PMID: 22275878
-
(2012)
Plos Genetics
, vol.8
-
-
Xu, X.1
Gopalacharyulu, P.2
Seppänen-Laakso, T.3
Ruskeepää, A.L.4
Aye, C.C.5
Carson, B.P.6
Mora, S.7
Orešič, M.8
Teleman, A.A.9
-
121
-
-
84920973061
-
Distinct dopamine neurons mediate reward signals for short-and long-term memories
-
25548178
-
Yamagata N, Ichinose T, Aso Y, Plaçais PY, Friedrich AB, Sima RJ, Preat T, Rubin GM, Tanimoto H. 2015. Distinct dopamine neurons mediate reward signals for short-and long-term memories. PNAS 112:578–583. DOI: https://doi.org/10.1073/pnas.1421930112, PMID: 25548178
-
(2015)
PNAS
, vol.112
, pp. 578-583
-
-
Yamagata, N.1
Ichinose, T.2
Aso, Y.3
Plaçais, P.Y.4
Friedrich, A.B.5
Sima, R.J.6
Preat, T.7
Rubin, G.M.8
Tanimoto, H.9
-
122
-
-
84899456595
-
Dopamine dynamics and signaling in Drosophila: An overview of genes, drugs and behavioral paradigms
-
24770636
-
Yamamoto S, Seto ES. 2014. Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms. Experimental Animals 63:107–119. DOI: https://doi.org/10.1538/expanim.63.107, PMID: 24770636
-
(2014)
Experimental Animals
, vol.63
, pp. 107-119
-
-
Yamamoto, S.1
Seto, E.S.2
-
123
-
-
85031023316
-
A complete electron microscopy volume of the brain of adult Drosophila melanogaster
-
Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M, Milkie D, Torrens O, Price J, Fisher CB, Sharifi N. 2017. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. BioRxiv. DOI: https://doi.org/10.1101/140905
-
(2017)
Biorxiv
-
-
Zheng, Z.1
Lauritzen, J.S.2
Perlman, E.3
Robinson, C.G.4
Nichols, M.5
Milkie, D.6
Torrens, O.7
Price, J.8
Fisher, C.B.9
Sharifi, N.10
-
124
-
-
85013200683
-
Comparative analysis of single-cell RNA sequencing methods
-
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I, Enard W. 2017. Comparative analysis of single-cell RNA sequencing methods. Molecular Cell 65:631–643. DOI: https://doi.org/10.1016/j.molcel.2017.01.023, PMID: 28212749
-
(2017)
Molecular Cell
, vol.65
, pp. 631-643
-
-
Ziegenhain, C.1
Vieth, B.2
Parekh, S.3
Reinius, B.4
Guillaumet-Adkins, A.5
Smets, M.6
Leonhardt, H.7
Heyn, H.8
Hellmann, I.9
Enard, W.10
|