메뉴 건너뛰기




Volumn 38, Issue , 2016, Pages 118-133

A multi-objective genetic optimization of interpretability-oriented fuzzy rule-based classifiers

Author keywords

Accuracy and interpretability of fuzzy rule based systems; Evolutionary computations; Fuzzy systems; Multi objective genetic optimization

Indexed keywords

CHROMOSOMES; CLASSIFICATION (OF INFORMATION); COMPUTATIONAL COMPLEXITY; EVOLUTIONARY ALGORITHMS; FUZZY RULES; FUZZY SETS; FUZZY SYSTEMS; MEAN SQUARE ERROR; MEMBERSHIP FUNCTIONS; MULTIOBJECTIVE OPTIMIZATION;

EID: 84944790408     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2015.09.038     Document Type: Article
Times cited : (66)

References (94)
  • 1
    • 76849113747 scopus 로고    scopus 로고
    • A dynamically constrained multiobjective genetic fuzzy system for regression problems
    • P. Pulkkinen, and H. Koivisto A dynamically constrained multiobjective genetic fuzzy system for regression problems IEEE Trans. Fuzzy Syst. 18 1 2010 161 177
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.1 , pp. 161-177
    • Pulkkinen, P.1    Koivisto, H.2
  • 2
    • 77953111519 scopus 로고    scopus 로고
    • Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems
    • M.J. Gacto, R. Alcalá, and F. Herrera Integration of an index to preserve the semantic interpretability in the multiobjective evolutionary rule selection and tuning of linguistic fuzzy systems IEEE Trans. Fuzzy Syst. 18 3 2010 515 531
    • (2010) IEEE Trans. Fuzzy Syst. , vol.18 , Issue.3 , pp. 515-531
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 3
    • 79960555001 scopus 로고    scopus 로고
    • Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures
    • M.J. Gacto, R. Alcalá, and F. Herrera Interpretability of linguistic fuzzy rule-based systems: an overview of interpretability measures Inf. Sci. 181 20 2011 4340 4360
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4340-4360
    • Gacto, M.J.1    Alcalá, R.2    Herrera, F.3
  • 4
    • 54049102777 scopus 로고    scopus 로고
    • Interpretability constraints for fuzzy information granulation
    • C. Mencar, and A.M. Fanelli Interpretability constraints for fuzzy information granulation Inf. Sci. 178 24 2008 4585 4618
    • (2008) Inf. Sci. , vol.178 , Issue.24 , pp. 4585-4618
    • Mencar, C.1    Fanelli, A.M.2
  • 5
    • 0032713743 scopus 로고    scopus 로고
    • Semantic constraints for membership function optimization
    • J.V. de Oliveira Semantic constraints for membership function optimization IEEE Trans. Syst. Man Cybern. (A) 29 1 1999 128 138
    • (1999) IEEE Trans. Syst. Man Cybern. (A) , vol.29 , Issue.1 , pp. 128-138
    • De Oliveira, J.V.1
  • 6
    • 11244318202 scopus 로고    scopus 로고
    • Interpretability issues in data-based learning of fuzzy systems
    • R. Mikut, J. Jkel, and L. Grll Interpretability issues in data-based learning of fuzzy systems Fuzzy Sets Syst. 150 2 2005 179 197
    • (2005) Fuzzy Sets Syst. , vol.150 , Issue.2 , pp. 179-197
    • Mikut, R.1    Jkel, J.2    Grll, L.3
  • 7
    • 52949088628 scopus 로고    scopus 로고
    • Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling
    • S.-M. Zhou, and J.Q. Gan Low-level interpretability and high-level interpretability: a unified view of data-driven interpretable fuzzy system modelling Fuzzy Sets Syst. 159 23 2008 3091 3131
    • (2008) Fuzzy Sets Syst. , vol.159 , Issue.23 , pp. 3091-3131
    • Zhou, S.-M.1    Gan, J.Q.2
  • 8
    • 84871893540 scopus 로고    scopus 로고
    • Discussions on interpretability of fuzzy systems using simple examples
    • H. Ishibuchi, and Y. Nojima Discussions on interpretability of fuzzy systems using simple examples Proceedings of IFSA-EUSFLAT World Congress 2009 1649 1654
    • (2009) Proceedings of IFSA-EUSFLAT World Congress , pp. 1649-1654
    • Ishibuchi, H.1    Nojima, Y.2
  • 10
    • 77955398692 scopus 로고    scopus 로고
    • A modified Pittsburg approach to design a genetic fuzzy rule-based classifier from data
    • L. Rutkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Springer-Verlag Berlin, Heidelberg
    • M.B. Gorzałczany, and F. Rudziński A modified Pittsburg approach to design a genetic fuzzy rule-based classifier from data L. Rutkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Artificial Intelligence and Soft Computing (ICAISC), Vol. 6113 of Lecture Notes in Computer Science 2010 Springer-Verlag Berlin, Heidelberg 88 96
    • (2010) Artificial Intelligence and Soft Computing (ICAISC), Vol. 6113 of Lecture Notes in Computer Science , pp. 88-96
    • Gorzałczany, M.B.1    Rudziński, F.2
  • 11
    • 84860650444 scopus 로고    scopus 로고
    • Accuracy vs. interpretability of the fuzzy rule-based classifiers - an evolutionary approach
    • L. Rutkowski, K. Marcin, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Springer-Verlag Berlin, Heidelberg
    • M.B. Gorzałczany, and F. Rudziński Accuracy vs. interpretability of the fuzzy rule-based classifiers - an evolutionary approach L. Rutkowski, K. Marcin, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Artificial Intelligence and Soft Computing (ICAISC), Vol. 7269 of Lecture Notes in Computer Science 2012 Springer-Verlag Berlin, Heidelberg 222 230
    • (2012) Artificial Intelligence and Soft Computing (ICAISC), Vol. 7269 of Lecture Notes in Computer Science , pp. 222-230
    • Gorzałczany, M.B.1    Rudziński, F.2
  • 12
    • 84860664110 scopus 로고    scopus 로고
    • Genetic fuzzy rule-based modelling of dynamic systems using time series
    • L. Rutkowski, K. Marcin, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Springer-Verlag Berlin, Heidelberg
    • M.B. Gorzałczany, and F. Rudziński Genetic fuzzy rule-based modelling of dynamic systems using time series L. Rutkowski, K. Marcin, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada, Artificial Intelligence and Soft Computing (ICAISC), Vol. 7269 of Lecture Notes in Computer Science 2012 Springer-Verlag Berlin, Heidelberg 231 239
    • (2012) Artificial Intelligence and Soft Computing (ICAISC), Vol. 7269 of Lecture Notes in Computer Science , pp. 231-239
    • Gorzałczany, M.B.1    Rudziński, F.2
  • 13
    • 84860698241 scopus 로고    scopus 로고
    • Measurement data in genetic fuzzy modelling of dynamic systems
    • M.B. Gorzałczany, and F. Rudziński Measurement data in genetic fuzzy modelling of dynamic systems Meas. Autom. Monit. 56 12 2010 1420 1423
    • (2010) Meas. Autom. Monit. , vol.56 , Issue.12 , pp. 1420-1423
    • Gorzałczany, M.B.1    Rudziński, F.2
  • 14
    • 0014534297 scopus 로고
    • A new approach to clustering
    • E.H. Ruspini A new approach to clustering Inf. Control 15 1 1969 22 32
    • (1969) Inf. Control , vol.15 , Issue.1 , pp. 22-32
    • Ruspini, E.H.1
  • 15
    • 84867615518 scopus 로고    scopus 로고
    • Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams
    • San Francisco, CA, USA
    • J.M. Alonso, O. Cordon, A. Quirin, and L. Magdalena Analyzing interpretability of fuzzy rule-based systems by means of fuzzy inference-grams 1st World Conference on Soft Computing San Francisco, CA, USA 2011 181.1 181.8
    • (2011) 1st World Conference on Soft Computing , pp. 1811-1818
    • Alonso, J.M.1    Cordon, O.2    Quirin, A.3    Magdalena, L.4
  • 18
    • 70350057609 scopus 로고    scopus 로고
    • A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems
    • R. Alcalá, P. Ducange, F. Herrera, B. Lazzerini, and F. Marcelloni A multiobjective evolutionary approach to concurrently learn rule and data bases of linguistic fuzzy-rule-based systems IEEE Trans. Fuzzy Syst. 17 5 2009 1106 1122
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.5 , pp. 1106-1122
    • Alcalá, R.1    Ducange, P.2    Herrera, F.3    Lazzerini, B.4    Marcelloni, F.5
  • 21
    • 0000942050 scopus 로고
    • A theory and methodology of inductive learning
    • R.S. Michalski A theory and methodology of inductive learning Artif. Intell. 20 2 1983 111 161
    • (1983) Artif. Intell. , vol.20 , Issue.2 , pp. 111-161
    • Michalski, R.S.1
  • 22
    • 84883622819 scopus 로고    scopus 로고
    • A computational-intelligence-based approach to decision support
    • H. Bunke, A. Kandel, World Scientific Publishing Singapore, London
    • M.B. Gorzałczany A computational-intelligence-based approach to decision support H. Bunke, A. Kandel, Neuro-Fuzzy Pattern Recognition 2000 World Scientific Publishing Singapore, London 51 73
    • (2000) Neuro-Fuzzy Pattern Recognition , pp. 51-73
    • Gorzałczany, M.B.1
  • 23
    • 0038059006 scopus 로고    scopus 로고
    • Computational Intelligence Systems and Applications: Neuro-Fuzzy and Fuzzy Neural Synergisms
    • Physica-Verlag Heidelberg, New York
    • M.B. Gorzałczany Computational Intelligence Systems and Applications: Neuro-Fuzzy and Fuzzy Neural Synergisms Studies in Fuzziness and Soft Computing 2002 Physica-Verlag Heidelberg, New York
    • (2002) Studies in Fuzziness and Soft Computing
    • Gorzałczany, M.B.1
  • 26
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • T. Takagi, and M. Sugeno Fuzzy identification of systems and its applications to modeling and control IEEE Trans. Syst. Man Cybern. 1 1985 116 132
    • (1985) IEEE Trans. Syst. Man Cybern. , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 29
    • 0033330756 scopus 로고    scopus 로고
    • On some idea of a neuro-fuzzy controller
    • M.B. Gorzałczany On some idea of a neuro-fuzzy controller Inf. Sci. 120 1-4 1999 69 87
    • (1999) Inf. Sci. , vol.120 , Issue.1-4 , pp. 69-87
    • Gorzałczany, M.B.1
  • 30
    • 0033078615 scopus 로고    scopus 로고
    • Simplifying fuzzy rule-based models using orthogonal transformation methods
    • J. Yen, and L. Wang Simplifying fuzzy rule-based models using orthogonal transformation methods IEEE Trans. Syst. Man Cybern. (B) 29 1 1999 13 24
    • (1999) IEEE Trans. Syst. Man Cybern. (B) , vol.29 , Issue.1 , pp. 13-24
    • Yen, J.1    Wang, L.2
  • 31
    • 0030130047 scopus 로고    scopus 로고
    • Simplification of fuzzy-neural systems using similarity analysis
    • C.T. Chao, Y.J. Chen, and C.C. Teng Simplification of fuzzy-neural systems using similarity analysis IEEE Trans. Syst. Man Cybern. (B) 26 2 1996 344 354
    • (1996) IEEE Trans. Syst. Man Cybern. (B) , vol.26 , Issue.2 , pp. 344-354
    • Chao, C.T.1    Chen, Y.J.2    Teng, C.C.3
  • 32
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement
    • Y. Jin Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement IEEE Trans. Fuzzy Syst. 8 2 2000 212 221
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.2 , pp. 212-221
    • Jin, Y.1
  • 33
    • 0035415950 scopus 로고    scopus 로고
    • Compact and transparent fuzzy models and classifiers through iterative complexity reduction
    • H. Roubos, and M. Setnes Compact and transparent fuzzy models and classifiers through iterative complexity reduction IEEE Trans. Fuzzy Syst. 9 4 2001 516 524
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 516-524
    • Roubos, H.1    Setnes, M.2
  • 37
    • 0034294243 scopus 로고    scopus 로고
    • GA-fuzzy modeling and classification: complexity and performance
    • M. Setnes, and H. Roubos GA-fuzzy modeling and classification: complexity and performance IEEE Trans. Fuzzy Syst. 8 5 2000 509 522
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.5 , pp. 509-522
    • Setnes, M.1    Roubos, H.2
  • 38
    • 0035360372 scopus 로고    scopus 로고
    • Designing fuzzy inference systems from data: an interpretability-oriented review
    • S. Guillaume Designing fuzzy inference systems from data: an interpretability-oriented review IEEE Trans. Fuzzy Syst. 9 3 2001 426 443
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.3 , pp. 426-443
    • Guillaume, S.1
  • 40
    • 34547875674 scopus 로고
    • Cognitive systems based on adaptive algorithms
    • J.H. Holland, and J.S. Reitman Cognitive systems based on adaptive algorithms SIGART Bull. 63 1977 49
    • (1977) SIGART Bull. , vol.63 , pp. 49
    • Holland, J.H.1    Reitman, J.S.2
  • 42
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka Selecting fuzzy if-then rules for classification problems using genetic algorithms IEEE Trans. Fuzzy Syst. 3 3 1995 260 270
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 43
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • H. Ishibuchi, T. Murata, and I.B. Türkşen Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems Fuzzy Sets Syst. 89 2 1997 135 150
    • (1997) Fuzzy Sets Syst. , vol.89 , Issue.2 , pp. 135-150
    • Ishibuchi, H.1    Murata, T.2    Türkşen, I.B.3
  • 44
    • 0035426682 scopus 로고    scopus 로고
    • Three-objective genetics-based machine learning for linguistic rule extraction
    • H. Ishibuchi, T. Nakashima, and T. Murata Three-objective genetics-based machine learning for linguistic rule extraction Inf. Sci. 136 1-4 2001 109 133
    • (2001) Inf. Sci. , vol.136 , Issue.1-4 , pp. 109-133
    • Ishibuchi, H.1    Nakashima, T.2    Murata, T.3
  • 45
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • H. Ishibuchi, and T. Yamamoto Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining Fuzzy Sets Syst. 141 1 2004 59 88
    • (2004) Fuzzy Sets Syst. , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 46
    • 0036457939 scopus 로고    scopus 로고
    • Quantitative measures of the accuracy, comprehensibility, and completeness of a fuzzy expert system
    • Honolulu, Hawaii
    • P. Meesad, and G. Yen Quantitative measures of the accuracy, comprehensibility, and completeness of a fuzzy expert system Proceedings of IEEE International Conference on Fuzzy Systems Honolulu, Hawaii 2002 284 289
    • (2002) Proceedings of IEEE International Conference on Fuzzy Systems , pp. 284-289
    • Meesad, P.1    Yen, G.2
  • 47
    • 2442535151 scopus 로고    scopus 로고
    • Survey of multi-objective optimization methods for engineering
    • R. Marler, and J. Arora Survey of multi-objective optimization methods for engineering Struct. Multidiscip. Optim. 26 2004 369 395
    • (2004) Struct. Multidiscip. Optim. , vol.26 , pp. 369-395
    • Marler, R.1    Arora, J.2
  • 49
    • 43449135303 scopus 로고    scopus 로고
    • Pareto-based multiobjective machine learning: an overview and case studies
    • J. Yaochu, and B. Sendhoff Pareto-based multiobjective machine learning: an overview and case studies IEEE Trans. Syst. Man Cybern. (C) 38 3 2008 397 415
    • (2008) IEEE Trans. Syst. Man Cybern. (C) , vol.38 , Issue.3 , pp. 397-415
    • Yaochu, J.1    Sendhoff, B.2
  • 52
    • 9644257194 scopus 로고    scopus 로고
    • Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction
    • H. Wang, S. Kwong, Y. Jin, W. Wei, and K.F. Man Multi-objective hierarchical genetic algorithm for interpretable fuzzy rule-based knowledge extraction Fuzzy Sets Syst. 149 1 2005 149 186
    • (2005) Fuzzy Sets Syst. , vol.149 , Issue.1 , pp. 149-186
    • Wang, H.1    Kwong, S.2    Jin, Y.3    Wei, W.4    Man, K.F.5
  • 54
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach
    • E. Zitzler, and L. Thiele Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach IEEE Trans. Evol. Comput. 3 4 1999 257 271
    • (1999) IEEE Trans. Evol. Comput. , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 55
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • N. Srinivas, and D.K. Multiobjective optimization using nondominated sorting in genetic algorithms Evol. Comput. 2 1994 221 248
    • (1994) Evol. Comput. , vol.2 , pp. 221-248
    • Srinivas, N.1    K, D.2
  • 57
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan A fast and elitist multiobjective genetic algorithm: NSGA-II IEEE Trans. Evol. Comput. 6 2 2002 182 197
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 58
    • 33751186914 scopus 로고    scopus 로고
    • Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning
    • H. Ishibuchi, and Y. Nojima Analysis of interpretability-accuracy tradeoff of fuzzy systems by multiobjective fuzzy genetics-based machine learning Int. J. Approx. Reason. 44 1 2007 4 31
    • (2007) Int. J. Approx. Reason. , vol.44 , Issue.1 , pp. 4-31
    • Ishibuchi, H.1    Nojima, Y.2
  • 59
    • 78549275066 scopus 로고    scopus 로고
    • A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification
    • A. Marquez, F. Marquez, and A. Peregrin A multi-objective evolutionary algorithm with an interpretability improvement mechanism for linguistic fuzzy systems with adaptive defuzzification Proceedings of IEEE International Conference on Fuzzy Systems 2010 1 7
    • (2010) Proceedings of IEEE International Conference on Fuzzy Systems , pp. 1-7
    • Marquez, A.1    Marquez, F.2    Peregrin, A.3
  • 60
    • 35348831258 scopus 로고    scopus 로고
    • A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems
    • R. Alcalá, M.J. Gacto, F. Herrera, and J. Alcalá-Fdez A multi-objective genetic algorithm for tuning and rule selection to obtain accurate and compact linguistic fuzzy rule-based systems Int. J. Uncert. Fuzz. Knowl. Based Syst. 15 5 2007 539 557
    • (2007) Int. J. Uncert. Fuzz. Knowl. Based Syst. , vol.15 , Issue.5 , pp. 539-557
    • Alcalá, R.1    Gacto, M.J.2    Herrera, F.3    Alcalá-Fdez, J.4
  • 61
    • 63149186316 scopus 로고    scopus 로고
    • A hybrid coevolutionary algorithm for designing fuzzy classifiers
    • L. Minqiang, and W. Zhichun A hybrid coevolutionary algorithm for designing fuzzy classifiers Inf. Sci. 179 12 2009 1970 1983
    • (2009) Inf. Sci. , vol.179 , Issue.12 , pp. 1970-1983
    • Minqiang, L.1    Zhichun, W.2
  • 62
    • 77952875468 scopus 로고    scopus 로고
    • Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets
    • P. Ducange, B. Lazzerini, and F. Marcelloni Multi-objective genetic fuzzy classifiers for imbalanced and cost-sensitive datasets Soft Comput. 14 7 2010 713 728
    • (2010) Soft Comput. , vol.14 , Issue.7 , pp. 713-728
    • Ducange, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 63
    • 80052670129 scopus 로고    scopus 로고
    • Learning concurrently data and rule bases of mamdani fuzzy rule-based systems by exploiting a novel interpretability index
    • M. Antonelli, P. Ducange, B. Lazzerini, and F. Marcelloni Learning concurrently data and rule bases of mamdani fuzzy rule-based systems by exploiting a novel interpretability index Soft Comput. 15 2011 1981 1998
    • (2011) Soft Comput. , Issue.15 , pp. 1981-1998
    • Antonelli, M.1    Ducange, P.2    Lazzerini, B.3    Marcelloni, F.4
  • 64
    • 79960565310 scopus 로고    scopus 로고
    • Design of fuzzy rule-based classifiers with semantic cointension
    • C. Mencar, C. Castiello, R. Cannone, and A.M. Fanelli Design of fuzzy rule-based classifiers with semantic cointension Inf. Sci. 181 20 2011 4361 4377
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4361-4377
    • Mencar, C.1    Castiello, C.2    Cannone, R.3    Fanelli, A.M.4
  • 65
    • 79951943477 scopus 로고    scopus 로고
    • Interpretability assessment of fuzzy knowledge bases: a cointension based approach
    • C. Mencar, C. Castiello, R. Cannone, and A.M. Fanelli Interpretability assessment of fuzzy knowledge bases: a cointension based approach Int. J. Approx. Reason. 52 4 2011 501 518
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.4 , pp. 501-518
    • Mencar, C.1    Castiello, C.2    Cannone, R.3    Fanelli, A.M.4
  • 66
    • 79961039032 scopus 로고    scopus 로고
    • On-line elimination of local redundancies in evolving fuzzy systems
    • E. Lughofer, J.-L. Bouchot, and A. Shaker On-line elimination of local redundancies in evolving fuzzy systems Evol. Syst. 2 2011 165 187
    • (2011) Evol. Syst. , vol.2 , pp. 165-187
    • Lughofer, E.1    Bouchot, J.-L.2    Shaker, A.3
  • 68
    • 79960533640 scopus 로고    scopus 로고
    • Special issue on interpretable fuzzy systems
    • J.M. Alonso, and L. Magdalena Special issue on interpretable fuzzy systems Inf. Sci. 181 20 2011 4331 4822
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4331-4822
    • Alonso, J.M.1    Magdalena, L.2
  • 69
    • 79955551124 scopus 로고    scopus 로고
    • A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems
    • O. Cordón A historical review of evolutionary learning methods for Mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems Int. J. Approx. Reason. 52 6 2011 894 913
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.6 , pp. 894-913
    • Cordón, O.1
  • 70
    • 84864813509 scopus 로고    scopus 로고
    • A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions
    • M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, and F. Herrera A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions IEEE Trans. Fuzzy Syst. 21 1 2013 45 65
    • (2013) IEEE Trans. Fuzzy Syst. , vol.21 , Issue.1 , pp. 45-65
    • Fazzolari, M.1    Alcala, R.2    Nojima, Y.3    Ishibuchi, H.4    Herrera, F.5
  • 71
    • 0037716845 scopus 로고    scopus 로고
    • A new perspective on reasoning with fuzzy rules
    • D. Dubois, H. Prade, and L. Ughetto A new perspective on reasoning with fuzzy rules Int. J. Intell. Syst. 18 5 2003 541 567
    • (2003) Int. J. Intell. Syst. , vol.18 , Issue.5 , pp. 541-567
    • Dubois, D.1    Prade, H.2    Ughetto, L.3
  • 73
    • 0030577310 scopus 로고    scopus 로고
    • What are fuzzy rules and how to use them
    • D. Dubois, and H. Prade What are fuzzy rules and how to use them Fuzzy Sets Syst. 84 2 1996 169 185
    • (1996) Fuzzy Sets Syst. , vol.84 , Issue.2 , pp. 169-185
    • Dubois, D.1    Prade, H.2
  • 74
    • 0037652855 scopus 로고    scopus 로고
    • Knowledge-driven versus data-driven logics
    • D. Dubois, P. Hájek, and H. Prade Knowledge-driven versus data-driven logics J. Logic Lang. Inf. 9 1 2000 65 89
    • (2000) J. Logic Lang. Inf. , vol.9 , Issue.1 , pp. 65-89
    • Dubois, D.1    Hájek, P.2    Prade, H.3
  • 76
    • 35248887077 scopus 로고    scopus 로고
    • Performance scaling of multi-objective evolutionary algorithms
    • C.M. Fonseca, P.J. Fleming, E. Zitzler, L. Thiele, K. Deb, Springer Berlin Heidelberg
    • V. Khare, X. Yao, and K. Deb Performance scaling of multi-objective evolutionary algorithms C.M. Fonseca, P.J. Fleming, E. Zitzler, L. Thiele, K. Deb, Evolutionary Multi-Criterion Optimization, Vol. 2632 of Lecture Notes in Computer Science 2003 Springer Berlin Heidelberg 376 390
    • (2003) Evolutionary Multi-Criterion Optimization, Vol. 2632 of Lecture Notes in Computer Science , pp. 376-390
    • Khare, V.1    Yao, X.2    Deb, K.3
  • 77
    • 27144473875 scopus 로고    scopus 로고
    • Evolutionary many-objective optimisation: many once or one many?
    • E. Hughes Evolutionary many-objective optimisation: many once or one many? The 2005 IEEE Congress on Evolutionary Computation, vol. 1 2005 222 227
    • (2005) The 2005 IEEE Congress on Evolutionary Computation , vol.1 , pp. 222-227
    • Hughes, E.1
  • 78
    • 84926357040 scopus 로고    scopus 로고
    • Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems
    • H. Ishibuchi, N. Akedo, and Y. Nojima Behavior of multiobjective evolutionary algorithms on many-objective knapsack problems IEEE Trans. Evol. Comput. 19 2 2015 264 283
    • (2015) IEEE Trans. Evol. Comput. , vol.19 , Issue.2 , pp. 264-283
    • Ishibuchi, H.1    Akedo, N.2    Nojima, Y.3
  • 79
    • 84877703416 scopus 로고    scopus 로고
    • An interpretable classification rule mining algorithm
    • A. Cano, A. Zafra, and S. Ventura An interpretable classification rule mining algorithm Inf. Sci. 240 2013 1 20
    • (2013) Inf. Sci. , vol.240 , pp. 1-20
    • Cano, A.1    Zafra, A.2    Ventura, S.3
  • 80
    • 80053653987 scopus 로고    scopus 로고
    • A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning
    • J. Alcalá-Fdez, R. Alcalá, and F. Herrera A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning IEEE Trans. Fuzzy Syst. 19 5 2011 857 872
    • (2011) IEEE Trans. Fuzzy Syst. , vol.19 , Issue.5 , pp. 857-872
    • Alcalá-Fdez, J.1    Alcalá, R.2    Herrera, F.3
  • 81
    • 70349270458 scopus 로고    scopus 로고
    • A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization
    • S. Garca, D. Molina, M. Lozano, and F. Herrera A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization J. Heuristics 15 2009 617 644
    • (2009) J. Heuristics , vol.15 , pp. 617-644
    • Garca, S.1    Molina, D.2    Lozano, M.3    Herrera, F.4
  • 82
    • 0004232308 scopus 로고    scopus 로고
    • Prentice-Hall/Pearson Upper Saddle River, NJ, USA
    • H.J. Zar Biostatistical Analysis 2010 Prentice-Hall/Pearson Upper Saddle River, NJ, USA
    • (2010) Biostatistical Analysis
    • Zar, H.J.1
  • 85
    • 70349632412 scopus 로고    scopus 로고
    • Performance and efficiency of memetic Pittsburgh learning classifier systems
    • J. Bacardit, and N. Krasnogor Performance and efficiency of memetic Pittsburgh learning classifier systems Evol. Comput. 17 2009 307 342
    • (2009) Evol. Comput. , vol.17 , pp. 307-342
    • Bacardit, J.1    Krasnogor, N.2
  • 86
    • 0036670786 scopus 로고    scopus 로고
    • Data mining with an ant colony optimization algorithm
    • R. Parpinelli, H. Lopes, and A. Freitas Data mining with an ant colony optimization algorithm IEEE Trans. Evol. Comput. 6 4 2002 321 332
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.4 , pp. 321-332
    • Parpinelli, R.1    Lopes, H.2    Freitas, A.3
  • 87
    • 33749017627 scopus 로고    scopus 로고
    • A coevolutionary algorithm for rules discovery in data mining
    • K.C. Tan, Q. Yu, and J.H. Ang A coevolutionary algorithm for rules discovery in data mining Int. J. Syst. Sci. 37 12 2006 835 864
    • (2006) Int. J. Syst. Sci. , vol.37 , Issue.12 , pp. 835-864
    • Tan, K.C.1    Yu, Q.2    Ang, J.H.3
  • 88
    • 2442682055 scopus 로고    scopus 로고
    • A hybrid decision tree/genetic algorithm method for data mining
    • D. Carvalho, and A. Freitas A hybrid decision tree/genetic algorithm method for data mining Inf. Sci. 163 1-3 2004 13 35
    • (2004) Inf. Sci. , vol.163 , Issue.1-3 , pp. 13-35
    • Carvalho, D.1    Freitas, A.2
  • 89
    • 0035426475 scopus 로고    scopus 로고
    • Combining GP operators with SA search to evolve fuzzy rule based classifiers
    • L. Sánchez, I. Couso, and J. Corrales Combining GP operators with SA search to evolve fuzzy rule based classifiers Inf. Sci. 136 1-4 2001 175 192
    • (2001) Inf. Sci. , vol.136 , Issue.1-4 , pp. 175-192
    • Sánchez, L.1    Couso, I.2    Corrales, J.3
  • 90
    • 17444409299 scopus 로고    scopus 로고
    • An incremental approach to genetic-algorithms-based classification
    • S. Guan, and Z.F. An incremental approach to genetic-algorithms-based classification IEEE Trans. Syst. Man Cybern. (B) 35 2 2005 227 239
    • (2005) IEEE Trans. Syst. Man Cybern. (B) , vol.35 , Issue.2 , pp. 227-239
    • Guan, S.1    F, Z.2
  • 91
    • 0033116171 scopus 로고    scopus 로고
    • SLAVE: a genetic learning system based on an iterative approach
    • A. Gonzalez, and R. Perez SLAVE: a genetic learning system based on an iterative approach IEEE Trans. Fuzzy Syst. 7 2 1999 176 191
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.2 , pp. 176-191
    • Gonzalez, A.1    Perez, R.2
  • 92
    • 0035359278 scopus 로고    scopus 로고
    • Selection of relevant features in a fuzzy genetic learning algorithm
    • A. Gonzalez, and R. Perez Selection of relevant features in a fuzzy genetic learning algorithm IEEE Trans. Syst. Man Cybern. (B) 31 3 2001 417 425
    • (2001) IEEE Trans. Syst. Man Cybern. (B) , vol.31 , Issue.3 , pp. 417-425
    • Gonzalez, A.1    Perez, R.2
  • 93
    • 17444427096 scopus 로고    scopus 로고
    • Hybridization of fuzzy GBML approaches for pattern classification problems
    • H. Ishibuchi, T. Yamamoto, and T. Nakashima Hybridization of fuzzy GBML approaches for pattern classification problems IEEE Trans. Syst. Man Cybern. (B) 35 2 2005 359 365
    • (2005) IEEE Trans. Syst. Man Cybern. (B) , vol.35 , Issue.2 , pp. 359-365
    • Ishibuchi, H.1    Yamamoto, T.2    Nakashima, T.3
  • 94
    • 50549085684 scopus 로고    scopus 로고
    • SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data
    • E. Mansoori, M. Zolghadri, and S. Katebi SGERD: A steady-state genetic algorithm for extracting fuzzy classification rules from data IEEE Trans. Fuzzy Syst. 16 4 2008 1061 1071
    • (2008) IEEE Trans. Fuzzy Syst. , vol.16 , Issue.4 , pp. 1061-1071
    • Mansoori, E.1    Zolghadri, M.2    Katebi, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.