-
1
-
-
0034304906
-
The versatility and universality of calcium signalling
-
p. 11
-
Berridge, M.J., Lipp, P., Bootman, M.D., The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol., 1, 2000 p. 11.
-
(2000)
Nat. Rev. Mol. Cell Biol.
, vol.1
-
-
Berridge, M.J.1
Lipp, P.2
Bootman, M.D.3
-
2
-
-
0038125598
-
Calcium: calcium signalling: dynamics, homeostasis and remodelling
-
Berridge, M.J., Bootman, M.D., Roderick, H.L., Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4 (2003), 517–529.
-
(2003)
Nat. Rev. Mol. Cell Biol.
, vol.4
, pp. 517-529
-
-
Berridge, M.J.1
Bootman, M.D.2
Roderick, H.L.3
-
3
-
-
0027237616
-
Calcium influx and its control by calcium release
-
Penner, R., Fasolato, C., Hoth, M., Calcium influx and its control by calcium release. Curr. Opin. Neurobiol. 3:3 (1993), 368–374.
-
(1993)
Curr. Opin. Neurobiol.
, vol.3
, Issue.3
, pp. 368-374
-
-
Penner, R.1
Fasolato, C.2
Hoth, M.3
-
4
-
-
0032968164
-
Capacitative calcium entry channels
-
Putney, J.W., McKay, R.R., Capacitative calcium entry channels. BioEssays 21:1 (1999), 38–46.
-
(1999)
BioEssays
, vol.21
, Issue.1
, pp. 38-46
-
-
Putney, J.W.1
McKay, R.R.2
-
5
-
-
0025292743
-
Mechanisms by which mitochondria transport calcium
-
p. C755-86
-
Gunter, T.E., Pfeiffer, D.R., Mechanisms by which mitochondria transport calcium. Am. J. Physiol., 258(5 Pt 1), 1990 p. C755-86.
-
(1990)
Am. J. Physiol.
, vol.258
, Issue.5
-
-
Gunter, T.E.1
Pfeiffer, D.R.2
-
6
-
-
84859560882
-
Role of mitochondrial Ca2+in the regulation of cellular energetics
-
Glancy, B., Balaban, R.S., Role of mitochondrial Ca2+in the regulation of cellular energetics. Biochemistry 51 (2012), 2959–2973.
-
(2012)
Biochemistry
, vol.51
, pp. 2959-2973
-
-
Glancy, B.1
Balaban, R.S.2
-
7
-
-
0030982181
-
Mitochondrial regulation of store-operated calcium signaling in T lymphocytes
-
Hoth, M., Fanger, C.M., Lewis, R.S., Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell. Biol. 137:3 (1997), 633–648.
-
(1997)
J. Cell. Biol.
, vol.137
, Issue.3
, pp. 633-648
-
-
Hoth, M.1
Fanger, C.M.2
Lewis, R.S.3
-
8
-
-
0034406802
-
Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC)
-
Gilabert, J.A., Parekh, A.B., Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J. 19:23 (2000), 6401–6407.
-
(2000)
EMBO J.
, vol.19
, Issue.23
, pp. 6401-6407
-
-
Gilabert, J.A.1
Parekh, A.B.2
-
9
-
-
0032504568
-
The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy
-
Lemasters, J.J., et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366:1-2 (1998), 177–196.
-
(1998)
Biochim. Biophys. Acta
, vol.1366
, Issue.1-2
, pp. 177-196
-
-
Lemasters, J.J.1
-
10
-
-
15844407874
-
Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
-
Nakagawa, T., et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:7033 (2005), 652–658.
-
(2005)
Nature
, vol.434
, Issue.7033
, pp. 652-658
-
-
Nakagawa, T.1
-
11
-
-
80051946060
-
Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
-
Baughman, J.M., et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476 (2011), 341–345.
-
(2011)
Nature
, vol.476
, pp. 341-345
-
-
Baughman, J.M.1
-
12
-
-
80051936634
-
A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter
-
De Stefani, D., et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:7360 (2011), 336–340.
-
(2011)
Nature
, vol.476
, Issue.7360
, pp. 336-340
-
-
De Stefani, D.1
-
13
-
-
0015151547
-
Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action
-
Luft, J.H., Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat. Rec. 171:3 (1971), 347–368.
-
(1971)
Anat. Rec.
, vol.171
, Issue.3
, pp. 347-368
-
-
Luft, J.H.1
-
14
-
-
0016246085
-
The inhibition of mitochondrial calcium transport by lanthanides and ruthenium Red
-
Reed, K.C., Bygrave, F.L., The inhibition of mitochondrial calcium transport by lanthanides and ruthenium Red. Biochem. J. 140:2 (1974), 143–155.
-
(1974)
Biochem. J.
, vol.140
, Issue.2
, pp. 143-155
-
-
Reed, K.C.1
Bygrave, F.L.2
-
15
-
-
1642540210
-
The mitochondrial calcium uniporter is a highly selective ion channel
-
Kirichok, Y., Krapivinsky, G., Clapham, D.E., The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427 (2004), 360–364.
-
(2004)
Nature
, vol.427
, pp. 360-364
-
-
Kirichok, Y.1
Krapivinsky, G.2
Clapham, D.E.3
-
16
-
-
84902579068
-
Reconstitution of the mitochondrial calcium uniporter in yeast
-
Kovacs-Bogdan, E., et al. Reconstitution of the mitochondrial calcium uniporter in yeast. Proc. Natl. Acad. Sci. U. S. A. 111:24 (2014), 8985–8990.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, Issue.24
, pp. 8985-8990
-
-
Kovacs-Bogdan, E.1
-
17
-
-
84942776229
-
Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter
-
Lee, Y., et al. Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter. EMBO Rep. 16:10 (2015), 1318–1333.
-
(2015)
EMBO Rep.
, vol.16
, Issue.10
, pp. 1318-1333
-
-
Lee, Y.1
-
18
-
-
84988556835
-
Structural insights into mitochondrial calcium uniporter regulation by divalent cations
-
Lee, S.K., et al. Structural insights into mitochondrial calcium uniporter regulation by divalent cations. Cell. Chem. Biol. 23 (2016), 1157–1169.
-
(2016)
Cell. Chem. Biol.
, vol.23
, pp. 1157-1169
-
-
Lee, S.K.1
-
19
-
-
84969194530
-
Architecture of the mitochondrial calcium uniporter
-
Oxenoid, K., et al. Architecture of the mitochondrial calcium uniporter. Nature 533:7602 (2016), 269–273.
-
(2016)
Nature
, vol.533
, Issue.7602
, pp. 269-273
-
-
Oxenoid, K.1
-
20
-
-
84870621600
-
MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism
-
Mallilankaraman, K., et al. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell. Biol. 14:12 (2012), 1336–1343.
-
(2012)
Nat. Cell. Biol.
, vol.14
, Issue.12
, pp. 1336-1343
-
-
Mallilankaraman, K.1
-
21
-
-
77956928316
-
MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake
-
Perocchi, F., Gohli, V., Girgis, H.S., Bao, X.R., McCombs, J.E., Palmer, A.E., Mootha, V.K., MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature, 2010.
-
(2010)
Nature
-
-
Perocchi, F.1
Gohli, V.2
Girgis, H.S.3
Bao, X.R.4
McCombs, J.E.5
Palmer, A.E.6
Mootha, V.K.7
-
22
-
-
84873572862
-
MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling
-
p. e55785
-
Plovanich, M., et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One, 8(2), 2013 p. e55785.
-
(2013)
PLoS One
, vol.8
, Issue.2
-
-
Plovanich, M.1
-
23
-
-
84890116192
-
EMRE Is an essential component of the mitochondrial calcium uniporter complex
-
Yasemin Sancak, A.L.M., Kitami, Toshimori, Kovács-Bogdán, Erika, Kamer, Kimberli J., Udeshi, Namrata D., Carr, Steven A., Chaudhuri, Dipayan, Clapham, David E., Li, Andrew A., Calvo, Sarah E., Goldberger, Olga, Mootha, Vamsi K., EMRE Is an essential component of the mitochondrial calcium uniporter complex. Science, 342, 2013.
-
(2013)
Science
, vol.342
-
-
Yasemin Sancak, A.L.M.1
Kitami, T.2
Kovács-Bogdán, E.3
Kamer, K.J.4
Udeshi, N.D.5
Carr, S.A.6
Chaudhuri, D.7
Clapham, D.E.8
Li, A.A.9
Calvo, S.E.10
Goldberger, O.11
Mootha, V.K.12
-
24
-
-
84896262743
-
SLC25A23 augments mitochondrial Ca(2)(+) uptake, interacts with MCU, and induces oxidative stress-mediated cell death
-
Hoffman, N.E., et al. SLC25A23 augments mitochondrial Ca(2)(+) uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol. Biol. Cell. 25:6 (2014), 936–947.
-
(2014)
Mol. Biol. Cell.
, vol.25
, Issue.6
, pp. 936-947
-
-
Hoffman, N.E.1
-
25
-
-
84883286784
-
The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit
-
Raffaello, A., et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32:17 (2013), 2362–2376.
-
(2013)
EMBO J.
, vol.32
, Issue.17
, pp. 2362-2376
-
-
Raffaello, A.1
-
26
-
-
84868027665
-
MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival
-
Mallilankaraman, K., et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival. Cell 151:3 (2012), 630–644.
-
(2012)
Cell
, vol.151
, Issue.3
, pp. 630-644
-
-
Mallilankaraman, K.1
-
27
-
-
84878796986
-
+ uniporter
-
+ uniporter. Cell Metab., 2013.
-
(2013)
Cell Metab.
-
-
Csordás, G.1
Tünde, G,2
Seifert, E.L.3
Kamer, K.J.4
Sancak, Y.5
Perocchi, F.6
Moffat, C.7
Weaver, D.8
de la Fuente Perez, S.9
Bogorad, R.10
Koteliansky, V.11
Adijanto, J.12
Mootha, V.K.13
Hajnóczky, G.14
-
28
-
-
84891011448
-
MICU1 motifs define mitochondrial calcium uniporter binding and activity
-
Hoffman, N.E., et al. MICU1 motifs define mitochondrial calcium uniporter binding and activity. Cell. Rep. 5:6 (2013), 1576–1588.
-
(2013)
Cell. Rep.
, vol.5
, Issue.6
, pp. 1576-1588
-
-
Hoffman, N.E.1
-
29
-
-
84898628109
-
Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake
-
Wang, L., et al. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake. EMBO J. 33:6 (2014), 594–604.
-
(2014)
EMBO J.
, vol.33
, Issue.6
, pp. 594-604
-
-
Wang, L.1
-
30
-
-
84979735997
-
MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload
-
Liu, J.C., et al. MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload. Cell. Rep. 16:6 (2016), 1561–1573.
-
(2016)
Cell. Rep.
, vol.16
, Issue.6
, pp. 1561-1573
-
-
Liu, J.C.1
-
31
-
-
84895426147
-
Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling
-
Logan, C.V., et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet 46:2 (2014), 188–193.
-
(2014)
Nat. Genet
, vol.46
, Issue.2
, pp. 188-193
-
-
Logan, C.V.1
-
32
-
-
85011382773
-
Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics
-
Bhosale, G., et al. Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics. Biochim. Biophys. Acta 1864:6 (2017), 1009–1017.
-
(2017)
Biochim. Biophys. Acta
, vol.1864
, Issue.6
, pp. 1009-1017
-
-
Bhosale, G.1
-
33
-
-
84960532961
-
MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration
-
p. 10955
-
Antony, A.N., et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat. Commun., 7, 2016 p. 10955.
-
(2016)
Nat. Commun.
, vol.7
-
-
Antony, A.N.1
-
34
-
-
84898644111
-
MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter
-
Kamer, K.J., Mootha, V.K., MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 15:3 (2014), 299–307.
-
(2014)
EMBO Rep.
, vol.15
, Issue.3
, pp. 299-307
-
-
Kamer, K.J.1
Mootha, V.K.2
-
35
-
-
85032214680
-
Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter
-
Bick, A.G., et al. Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc. Natl. Acad. Sci. U. S. A. 114:43 (2017), E9096–E9104.
-
(2017)
Proc. Natl. Acad. Sci. U. S. A.
, vol.114
, Issue.43
, pp. E9096-E9104
-
-
Bick, A.G.1
-
36
-
-
85020692763
-
High-affinity cooperative Ca(2+) binding by MICU1-MICU2 serves as an on-off switch for the uniporter
-
Kamer, K.J., Grabarek, Z., Mootha, V.K., High-affinity cooperative Ca(2+) binding by MICU1-MICU2 serves as an on-off switch for the uniporter. EMBO Rep. 18:8 (2017), 1397–1411.
-
(2017)
EMBO Rep.
, vol.18
, Issue.8
, pp. 1397-1411
-
-
Kamer, K.J.1
Grabarek, Z.2
Mootha, V.K.3
-
37
-
-
84943383907
-
MCUR1, CCDC90A, Is a regulator of the mitochondrial calcium uniporter
-
Vais, H., et al. MCUR1, CCDC90A, Is a regulator of the mitochondrial calcium uniporter. Cell. Metab. 22:4 (2015), 533–535.
-
(2015)
Cell. Metab.
, vol.22
, Issue.4
, pp. 533-535
-
-
Vais, H.1
-
38
-
-
84920617467
-
CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter
-
Paupe, V., et al. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell. Metab. 21:1 (2015), 109–116.
-
(2015)
Cell. Metab.
, vol.21
, Issue.1
, pp. 109-116
-
-
Paupe, V.1
-
39
-
-
84966652095
-
MCUR1 Is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics
-
Tomar, D., et al. MCUR1 Is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics. Cell. Rep. 15:8 (2016), 1673–1685.
-
(2016)
Cell. Rep.
, vol.15
, Issue.8
, pp. 1673-1685
-
-
Tomar, D.1
-
40
-
-
84962091374
-
Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition
-
Chaudhuri, D., et al. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proc. Natl. Acad. Sci. U. S. A. 113:13 (2016), E1872–80.
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, Issue.13
, pp. E1872-80
-
-
Chaudhuri, D.1
-
41
-
-
84953438754
-
EMRE Is a matrix Ca(2+) sensor that governs gatekeeping of the mitochondrial Ca(2+) uniporter
-
Vais, H., et al. EMRE Is a matrix Ca(2+) sensor that governs gatekeeping of the mitochondrial Ca(2+) uniporter. Cell. Rep. 14:3 (2016), 403–410.
-
(2016)
Cell. Rep.
, vol.14
, Issue.3
, pp. 403-410
-
-
Vais, H.1
-
42
-
-
84964577752
-
Analysis of the structure and function of EMRE in a yeast expression system
-
Yamamoto, T., et al. Analysis of the structure and function of EMRE in a yeast expression system. Biochim. Biophys. Acta 1857:6 (2016), 831–839.
-
(2016)
Biochim. Biophys. Acta
, vol.1857
, Issue.6
, pp. 831-839
-
-
Yamamoto, T.1
-
43
-
-
0029143569
-
Decoding of cytosolic calcium oscillations in the mitochondria
-
Hajnóczky, G., et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:3 (1995), 415–424.
-
(1995)
Cell
, vol.82
, Issue.3
, pp. 415-424
-
-
Hajnóczky, G.1
-
44
-
-
0032169351
-
Integrating cytosolic calcium signals into mitochondrial metabolic responses
-
Robb-Gaspers, L.D., et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 17:17 (1998), 4987–5000.
-
(1998)
EMBO J.
, vol.17
, Issue.17
, pp. 4987-5000
-
-
Robb-Gaspers, L.D.1
-
45
-
-
0034668833
-
Mitochondria and calcium: from cell signalling to cell death
-
Duchen, M.R., Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529:Pt 1 (2000), 57–68.
-
(2000)
J. Physiol.
, vol.529
, pp. 57-68
-
-
Duchen, M.R.1
-
46
-
-
0038125598
-
Calcium signalling: dynamics, homeostasis and remodelling
-
Berridge, M.J., Bootman, M.D., Roderick, H.L., Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell. Biol. 4:7 (2003), 517–529.
-
(2003)
Nat. Rev. Mol. Cell. Biol.
, vol.4
, Issue.7
, pp. 517-529
-
-
Berridge, M.J.1
Bootman, M.D.2
Roderick, H.L.3
-
47
-
-
77950377028
-
Molecular basis of calcium signaling in lymphocytes: STIM and ORAI
-
Hogan, P.G., Lewis, R.S., Rao, A., Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28 (2010), 491–533.
-
(2010)
Annu. Rev. Immunol.
, vol.28
, pp. 491-533
-
-
Hogan, P.G.1
Lewis, R.S.2
Rao, A.3
-
48
-
-
33646576875
-
A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function
-
Feske, S., et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:7090 (2006), 179–185.
-
(2006)
Nature
, vol.441
, Issue.7090
, pp. 179-185
-
-
Feske, S.1
-
49
-
-
21044439334
-
STIM1, an essential and conserved component of store-operated Ca2+ channel function
-
Roos, J., et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell. Biol. 169:3 (2005), 435–445.
-
(2005)
J. Cell. Biol.
, vol.169
, Issue.3
, pp. 435-445
-
-
Roos, J.1
-
50
-
-
33745139810
-
Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity
-
Zhang, S.L., et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc. Natl. Acad. Sci. U. S. A 103:24 (2006), 9357–9362.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A
, vol.103
, Issue.24
, pp. 9357-9362
-
-
Zhang, S.L.1
-
51
-
-
21844432686
-
STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx
-
Liou, J., et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15:13 (2005), 1235–1241.
-
(2005)
Curr. Biol.
, vol.15
, Issue.13
, pp. 1235-1241
-
-
Liou, J.1
-
52
-
-
47949132511
-
Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation
-
Luik, R.M., et al. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:7203 (2008), 538–542.
-
(2008)
Nature
, vol.454
, Issue.7203
, pp. 538-542
-
-
Luik, R.M.1
-
53
-
-
84856961815
-
Gated regulation of CRAC channel ion selectivity by STIM1
-
McNally, B.A., et al. Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482:7384 (2012), 241–245.
-
(2012)
Nature
, vol.482
, Issue.7384
, pp. 241-245
-
-
McNally, B.A.1
-
54
-
-
84924180724
-
Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU
-
p. ra23
-
Shanmughapriya, S., et al. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci. Signal., 8(366), 2015 p. ra23.
-
(2015)
Sci. Signal.
, vol.8
, Issue.366
-
-
Shanmughapriya, S.1
-
55
-
-
38349169664
-
Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
-
Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N., Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat. Rev. Genet 9:2 (2008), 102–114.
-
(2008)
Nat. Rev. Genet
, vol.9
, Issue.2
, pp. 102-114
-
-
Filipowicz, W.1
Bhattacharyya, S.N.2
Sonenberg, N.3
-
56
-
-
84872117185
-
Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25
-
Marchi, S., et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23:1 (2013), 58–63.
-
(2013)
Curr. Biol.
, vol.23
, Issue.1
, pp. 58-63
-
-
Marchi, S.1
-
57
-
-
85014956067
-
MicroRNA-138 and MicroRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype
-
Hong, Z., et al. MicroRNA-138 and MicroRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype. Am. J. Respir. Crit. Care Med. 195:4 (2017), 515–529.
-
(2017)
Am. J. Respir. Crit. Care Med.
, vol.195
, Issue.4
, pp. 515-529
-
-
Hong, Z.1
-
58
-
-
85031036972
-
Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of metastasis via enhancing the Warburg effect
-
Yu, C., et al. Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of metastasis via enhancing the Warburg effect. Oncotarget 8:48 (2017), 83831–83844.
-
(2017)
Oncotarget
, vol.8
, Issue.48
, pp. 83831-83844
-
-
Yu, C.1
-
59
-
-
85032010924
-
Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy
-
Zaglia, T., et al. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 114:43 (2017), E9006–E9015.
-
(2017)
Proc. Natl. Acad. Sci. U. S. A.
, vol.114
, Issue.43
, pp. E9006-E9015
-
-
Zaglia, T.1
-
60
-
-
77953808534
-
The fateful encounter of mitochondria with calcium: how did it happen?
-
Carafoli, E., The fateful encounter of mitochondria with calcium: how did it happen?. Biochim. Biophys. Acta 1797:6-7 (2010), 595–606.
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, Issue.6-7
, pp. 595-606
-
-
Carafoli, E.1
-
61
-
-
38149032581
-
Studies on ion transport. III. The accumulation of calcium and inorganic phosphate by heart mitochondria
-
Brierley, G.P., Murer, E., Bachmann, E., Studies on ion transport. III. The accumulation of calcium and inorganic phosphate by heart mitochondria. Arch. Biochem. Biophys. 105 (1964), 89–102.
-
(1964)
Arch. Biochem. Biophys.
, vol.105
, pp. 89-102
-
-
Brierley, G.P.1
Murer, E.2
Bachmann, E.3
-
62
-
-
0032575612
-
Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms a and B of the phosphate carrier from bovine mitochondria
-
Fiermonte, G., Dolce, V., Palmieri, F., Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms a and B of the phosphate carrier from bovine mitochondria. J. Biol. Chem. 273:35 (1998), 22782–22787.
-
(1998)
J. Biol. Chem.
, vol.273
, Issue.35
, pp. 22782-22787
-
-
Fiermonte, G.1
Dolce, V.2
Palmieri, F.3
-
64
-
-
0000868007
-
Stoichiometry of respiratory stimulation, accumulation of CA++ and phosphate, and oxidative phosphorylation in rat liver mitochondria
-
Rossi, C.S., Lehninger, A.L., Stoichiometry of respiratory stimulation, accumulation of CA++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. Biol. Chem. 239 (1964), 3971–3980.
-
(1964)
J. Biol. Chem.
, vol.239
, pp. 3971-3980
-
-
Rossi, C.S.1
Lehninger, A.L.2
-
65
-
-
0027528964
-
Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate. Effects on mitochondrial calcium
-
Zoeteweij, J.P., et al. Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate. Effects on mitochondrial calcium. J. Biol. Chem. 268:5 (1993), 3384–3388.
-
(1993)
J. Biol. Chem.
, vol.268
, Issue.5
, pp. 3384-3388
-
-
Zoeteweij, J.P.1
-
66
-
-
33847176234
-
Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation
-
Mayr, J.A., et al. Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. Am. J. Hum. Genet. 80:3 (2007), 478–484.
-
(2007)
Am. J. Hum. Genet.
, vol.80
, Issue.3
, pp. 478-484
-
-
Mayr, J.A.1
-
67
-
-
82455162377
-
Deficiency of the mitochondrial phosphate carrier presenting as myopathy and cardiomyopathy in a family with three affected children
-
Mayr, J.A., et al. Deficiency of the mitochondrial phosphate carrier presenting as myopathy and cardiomyopathy in a family with three affected children. Neuromuscul. Disord. 21:11 (2011), 803–808.
-
(2011)
Neuromuscul. Disord.
, vol.21
, Issue.11
, pp. 803-808
-
-
Mayr, J.A.1
-
68
-
-
84945252213
-
Pathologic variants of the mitochondrial phosphate carrier SLC25A3: Two New patients and expansion of the Cardiomyopathy/Skeletal myopathy phenotype with and without lactic acidosis
-
Bhoj, E.J., et al. Pathologic variants of the mitochondrial phosphate carrier SLC25A3: Two New patients and expansion of the Cardiomyopathy/Skeletal myopathy phenotype with and without lactic acidosis. JIMD Rep. 19 (2015), 59–66.
-
(2015)
JIMD Rep.
, vol.19
, pp. 59-66
-
-
Bhoj, E.J.1
-
69
-
-
85002583964
-
Natural and induced mitochondrial phosphate carrier loss: DIFFERENTIAL DEPENDENCE OF mitochondrial metabolism and dynamics and cell survival on the extent of depletion
-
Seifert, E.L., et al. Natural and induced mitochondrial phosphate carrier loss: DIFFERENTIAL DEPENDENCE OF mitochondrial metabolism and dynamics and cell survival on the extent of depletion. J. Biol. Chem. 291:50 (2016), 26126–26137.
-
(2016)
J. Biol. Chem.
, vol.291
, Issue.50
, pp. 26126-26137
-
-
Seifert, E.L.1
-
70
-
-
84905042938
-
Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy
-
Kwong, J.Q., et al. Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell. Death Differ. 21:8 (2014), 1209–1217.
-
(2014)
Cell. Death Differ.
, vol.21
, Issue.8
, pp. 1209-1217
-
-
Kwong, J.Q.1
-
71
-
-
84901359354
-
Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition
-
Gutiérrez-Aguilar, M., et al. Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J. Mol. Cell. Cardiol. 72 (2014), 316–3255.
-
(2014)
J. Mol. Cell. Cardiol.
, vol.72
, pp. 316-3255
-
-
Gutiérrez-Aguilar, M.1
-
72
-
-
0028802746
-
A hierarchy of ATP-consuming processes in mammalian cells
-
Buttgereit, F., Brand, M.D., A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312:Pt 1 (1995), 163–167.
-
(1995)
Biochem. J.
, vol.312
, pp. 163-167
-
-
Buttgereit, F.1
Brand, M.D.2
-
73
-
-
3142764629
-
Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution
-
Fiermonte, G., et al. Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 279:29 (2004), 30722–30730.
-
(2004)
J. Biol. Chem.
, vol.279
, Issue.29
, pp. 30722-30730
-
-
Fiermonte, G.1
-
74
-
-
0023794703
-
Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role
-
Aprille, J.R., Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role. FASEB J. 2:10 (1988), 2547–2556.
-
(1988)
FASEB J.
, vol.2
, Issue.10
, pp. 2547-2556
-
-
Aprille, J.R.1
-
75
-
-
84875218644
-
The mitochondrial transporter family SLC25: identification, properties and physiopathology
-
Palmieri, F., The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 34:2-3 (2013), 465–484.
-
(2013)
Mol. Aspects Med.
, vol.34
, Issue.2-3
, pp. 465-484
-
-
Palmieri, F.1
-
76
-
-
84867025862
-
A biophysical model of the mitochondrial ATP-Mg/P(i) carrier
-
Tewari, S.G., et al. A biophysical model of the mitochondrial ATP-Mg/P(i) carrier. Biophys. J. 103:7 (2012), 1616–1625.
-
(2012)
Biophys. J.
, vol.103
, Issue.7
, pp. 1616-1625
-
-
Tewari, S.G.1
-
77
-
-
84875141425
-
Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3
-
Amigo, I., et al. Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3. J. Biol. Chem. 288:11 (2013), 7791–7802.
-
(2013)
J. Biol. Chem.
, vol.288
, Issue.11
, pp. 7791-7802
-
-
Amigo, I.1
-
78
-
-
84868200531
-
Cell signaling, post-translational protein modifications and NMR spectroscopy
-
Theillet, F.X., et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J. Biomol. NMR 54:3 (2012), 217–236.
-
(2012)
J. Biomol. NMR
, vol.54
, Issue.3
, pp. 217-236
-
-
Theillet, F.X.1
-
79
-
-
84930707903
-
Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins
-
Brewer, T.F., et al. Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84 (2015), 765–790.
-
(2015)
Annu. Rev. Biochem.
, vol.84
, pp. 765-790
-
-
Brewer, T.F.1
-
80
-
-
84868629814
-
CaMKII determines mitochondrial stress responses in heart
-
Joiner, M.L., et al. CaMKII determines mitochondrial stress responses in heart. Nature 491:7423 (2012), 269–273.
-
(2012)
Nature
, vol.491
, Issue.7423
, pp. 269-273
-
-
Joiner, M.L.1
-
81
-
-
84950321056
-
Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore
-
Davidson, S.M., et al. Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovasc. Res. 108:3 (2015), 357–366.
-
(2015)
Cardiovasc. Res.
, vol.108
, Issue.3
, pp. 357-366
-
-
Davidson, S.M.1
-
82
-
-
0032827410
-
Mitochondrial transport of cations: channels, exchangers, and permeability transition
-
Bernardi, P., Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79:4 (1999), 1127–1155.
-
(1999)
Physiol. Rev.
, vol.79
, Issue.4
, pp. 1127-1155
-
-
Bernardi, P.1
-
83
-
-
0027263440
-
Mitochondrial calcium handling and oxidative stress
-
Halestrap, A.P., Griffiths, E.J., Connern, C.P., Mitochondrial calcium handling and oxidative stress. Biochem. Soc. Trans. 21:2 (1993), 353–358.
-
(1993)
Biochem. Soc. Trans.
, vol.21
, Issue.2
, pp. 353-358
-
-
Halestrap, A.P.1
Griffiths, E.J.2
Connern, C.P.3
-
84
-
-
33845977959
-
Mitochondrial membrane permeabilization in cell death
-
Kroemer, G., Galluzzi, L., Brenner, C., Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87:1 (2007), 99–163.
-
(2007)
Physiol. Rev.
, vol.87
, Issue.1
, pp. 99-163
-
-
Kroemer, G.1
Galluzzi, L.2
Brenner, C.3
-
85
-
-
0037459081
-
Mitochondria: releasing power for life and unleashing the machineries of death
-
Newmeyer, D.D., Ferguson-Miller, S., Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:4 (2003), 481–490.
-
(2003)
Cell
, vol.112
, Issue.4
, pp. 481-490
-
-
Newmeyer, D.D.1
Ferguson-Miller, S.2
-
86
-
-
0038464650
-
Regulation of cell death: the calcium-apoptosis link
-
Orrenius, S., Zhivotovsky, B., Nicotera, P., Regulation of cell death: the calcium-apoptosis link. Nat. Rev. Mol. Cell. Biol. 4:7 (2003), 552–565.
-
(2003)
Nat. Rev. Mol. Cell. Biol.
, vol.4
, Issue.7
, pp. 552-565
-
-
Orrenius, S.1
Zhivotovsky, B.2
Nicotera, P.3
-
87
-
-
84891393224
-
The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter
-
Pan, X., et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell. Biol. 15:12 (2013), 1464–1472.
-
(2013)
Nat. Cell. Biol.
, vol.15
, Issue.12
, pp. 1464-1472
-
-
Pan, X.1
-
88
-
-
84937525656
-
The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition
-
Luongo, T.S., et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell. Rep. 12:1 (2015), 23–34.
-
(2015)
Cell. Rep.
, vol.12
, Issue.1
, pp. 23-34
-
-
Luongo, T.S.1
-
89
-
-
0028047262
-
Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria
-
Voth, J.B.-H.A.M., Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech., 1994.
-
(1994)
Microsc. Res. Tech.
-
-
Voth, J.B.-H.A.M.1
-
90
-
-
0043166392
-
Dynamics of mitochondrial morphology in healthy cells and during apoptosis
-
Youle, M.Ka.R., Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell. Death Differ., 2003.
-
(2003)
Cell. Death Differ.
-
-
Youle, M.K.R.1
-
91
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle, R.J., van der Bliek, A.M., Mitochondrial fission, fusion, and stress. Science 337:6098 (2012), 1062–1065.
-
(2012)
Science
, vol.337
, Issue.6098
, pp. 1062-1065
-
-
Youle, R.J.1
van der Bliek, A.M.2
-
92
-
-
0033525615
-
The machinery of mitochondrial inheritance and behavior
-
Yaffe, M.P., The machinery of mitochondrial inheritance and behavior. Science 283:5407 (1999), 1493–1497.
-
(1999)
Science
, vol.283
, Issue.5407
, pp. 1493-1497
-
-
Yaffe, M.P.1
-
93
-
-
84910141948
-
Mitochondrial dynamics and inheritance during cell division, development and disease
-
Mishra, P., Chan, D.C., Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell. Biol. 15:10 (2014), 634–646.
-
(2014)
Nat. Rev. Mol. Cell. Biol.
, vol.15
, Issue.10
, pp. 634-646
-
-
Mishra, P.1
Chan, D.C.2
-
94
-
-
85042279507
-
BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis
-
McArthur, K.W., Whitehead, L., Heddleston, J.M., Li, L., Padman, B.S., Oorschot, V., Geoghegan, N.D., Chappaz, Davidson, S., San Chin, H., Lane, R.M., Dramicanin, M., Saunders, T.L., Sugiana, C., Lessene, R., Osellame, L.D., Chew, T.L., Dewson, G., Lazarou, M., Ramm, G., Lessene, G., Ryan, M.T., Rogers, K.L., van Delft, M.F., Kile, B.T., BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science, 359, 2018, 6378.
-
(2018)
Science
, vol.359
, pp. 6378
-
-
McArthur, K.W.1
Whitehead, L.2
Heddleston, J.M.3
Li, L.4
Padman, B.S.5
Oorschot, V.6
Geoghegan, N.D.7
Chappaz8
Davidson, S.9
San Chin, H.10
Lane, R.M.11
Dramicanin, M.12
Saunders, T.L.13
Sugiana, C.14
Lessene, R.15
Osellame, L.D.16
Chew, T.L.17
Dewson, G.18
Lazarou, M.19
Ramm, G.20
Lessene, G.21
Ryan, M.T.22
Rogers, K.L.23
van Delft, M.F.24
Kile, B.T.25
more..
-
95
-
-
85045578026
-
MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca(2+) stress
-
Nemani, N., et al. MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca(2+) stress. Cell. Rep. 23:4 (2018), 1005–1019.
-
(2018)
Cell. Rep.
, vol.23
, Issue.4
, pp. 1005-1019
-
-
Nemani, N.1
|