메뉴 건너뛰기




Volumn 74, Issue , 2018, Pages 86-93

Molecular regulation of MCU: Implications in physiology and disease

Author keywords

Calcium; Channel; EMRE; Magnesium; MCU; MCUb; MCUR1; MICU1; Miro1; MiST; Mitochondria; Oxidants; SLC25A23

Indexed keywords

CALCIUM; DIVALENT CATION; GLYCOSAMINOGLYCAN; INWARDLY RECTIFYING POTASSIUM CHANNEL; NICOTINIC ACID ADENINE DINUCLEOTIDE PHOSPHATE; PHOSPHOLIPID; CALCIUM CHANNEL; CARRIER PROTEIN; MITOCHONDRIAL CALCIUM UNIPORTER;

EID: 85049352289     PISSN: 01434160     EISSN: 15321991     Source Type: Journal    
DOI: 10.1016/j.ceca.2018.06.006     Document Type: Review
Times cited : (95)

References (95)
  • 2
    • 0038125598 scopus 로고    scopus 로고
    • Calcium: calcium signalling: dynamics, homeostasis and remodelling
    • Berridge, M.J., Bootman, M.D., Roderick, H.L., Calcium: calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4 (2003), 517–529.
    • (2003) Nat. Rev. Mol. Cell Biol. , vol.4 , pp. 517-529
    • Berridge, M.J.1    Bootman, M.D.2    Roderick, H.L.3
  • 3
    • 0027237616 scopus 로고
    • Calcium influx and its control by calcium release
    • Penner, R., Fasolato, C., Hoth, M., Calcium influx and its control by calcium release. Curr. Opin. Neurobiol. 3:3 (1993), 368–374.
    • (1993) Curr. Opin. Neurobiol. , vol.3 , Issue.3 , pp. 368-374
    • Penner, R.1    Fasolato, C.2    Hoth, M.3
  • 4
    • 0032968164 scopus 로고    scopus 로고
    • Capacitative calcium entry channels
    • Putney, J.W., McKay, R.R., Capacitative calcium entry channels. BioEssays 21:1 (1999), 38–46.
    • (1999) BioEssays , vol.21 , Issue.1 , pp. 38-46
    • Putney, J.W.1    McKay, R.R.2
  • 5
    • 0025292743 scopus 로고
    • Mechanisms by which mitochondria transport calcium
    • p. C755-86
    • Gunter, T.E., Pfeiffer, D.R., Mechanisms by which mitochondria transport calcium. Am. J. Physiol., 258(5 Pt 1), 1990 p. C755-86.
    • (1990) Am. J. Physiol. , vol.258 , Issue.5
    • Gunter, T.E.1    Pfeiffer, D.R.2
  • 6
    • 84859560882 scopus 로고    scopus 로고
    • Role of mitochondrial Ca2+in the regulation of cellular energetics
    • Glancy, B., Balaban, R.S., Role of mitochondrial Ca2+in the regulation of cellular energetics. Biochemistry 51 (2012), 2959–2973.
    • (2012) Biochemistry , vol.51 , pp. 2959-2973
    • Glancy, B.1    Balaban, R.S.2
  • 7
    • 0030982181 scopus 로고    scopus 로고
    • Mitochondrial regulation of store-operated calcium signaling in T lymphocytes
    • Hoth, M., Fanger, C.M., Lewis, R.S., Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J. Cell. Biol. 137:3 (1997), 633–648.
    • (1997) J. Cell. Biol. , vol.137 , Issue.3 , pp. 633-648
    • Hoth, M.1    Fanger, C.M.2    Lewis, R.S.3
  • 8
    • 0034406802 scopus 로고    scopus 로고
    • Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC)
    • Gilabert, J.A., Parekh, A.B., Respiring mitochondria determine the pattern of activation and inactivation of the store-operated Ca(2+) current I(CRAC). EMBO J. 19:23 (2000), 6401–6407.
    • (2000) EMBO J. , vol.19 , Issue.23 , pp. 6401-6407
    • Gilabert, J.A.1    Parekh, A.B.2
  • 9
    • 0032504568 scopus 로고    scopus 로고
    • The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy
    • Lemasters, J.J., et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366:1-2 (1998), 177–196.
    • (1998) Biochim. Biophys. Acta , vol.1366 , Issue.1-2 , pp. 177-196
    • Lemasters, J.J.1
  • 10
    • 15844407874 scopus 로고    scopus 로고
    • Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death
    • Nakagawa, T., et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:7033 (2005), 652–658.
    • (2005) Nature , vol.434 , Issue.7033 , pp. 652-658
    • Nakagawa, T.1
  • 11
    • 80051946060 scopus 로고    scopus 로고
    • Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
    • Baughman, J.M., et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476 (2011), 341–345.
    • (2011) Nature , vol.476 , pp. 341-345
    • Baughman, J.M.1
  • 12
    • 80051936634 scopus 로고    scopus 로고
    • A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter
    • De Stefani, D., et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:7360 (2011), 336–340.
    • (2011) Nature , vol.476 , Issue.7360 , pp. 336-340
    • De Stefani, D.1
  • 13
    • 0015151547 scopus 로고
    • Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action
    • Luft, J.H., Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat. Rec. 171:3 (1971), 347–368.
    • (1971) Anat. Rec. , vol.171 , Issue.3 , pp. 347-368
    • Luft, J.H.1
  • 14
    • 0016246085 scopus 로고
    • The inhibition of mitochondrial calcium transport by lanthanides and ruthenium Red
    • Reed, K.C., Bygrave, F.L., The inhibition of mitochondrial calcium transport by lanthanides and ruthenium Red. Biochem. J. 140:2 (1974), 143–155.
    • (1974) Biochem. J. , vol.140 , Issue.2 , pp. 143-155
    • Reed, K.C.1    Bygrave, F.L.2
  • 15
    • 1642540210 scopus 로고    scopus 로고
    • The mitochondrial calcium uniporter is a highly selective ion channel
    • Kirichok, Y., Krapivinsky, G., Clapham, D.E., The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427 (2004), 360–364.
    • (2004) Nature , vol.427 , pp. 360-364
    • Kirichok, Y.1    Krapivinsky, G.2    Clapham, D.E.3
  • 16
    • 84902579068 scopus 로고    scopus 로고
    • Reconstitution of the mitochondrial calcium uniporter in yeast
    • Kovacs-Bogdan, E., et al. Reconstitution of the mitochondrial calcium uniporter in yeast. Proc. Natl. Acad. Sci. U. S. A. 111:24 (2014), 8985–8990.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111 , Issue.24 , pp. 8985-8990
    • Kovacs-Bogdan, E.1
  • 17
    • 84942776229 scopus 로고    scopus 로고
    • Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter
    • Lee, Y., et al. Structure and function of the N-terminal domain of the human mitochondrial calcium uniporter. EMBO Rep. 16:10 (2015), 1318–1333.
    • (2015) EMBO Rep. , vol.16 , Issue.10 , pp. 1318-1333
    • Lee, Y.1
  • 18
    • 84988556835 scopus 로고    scopus 로고
    • Structural insights into mitochondrial calcium uniporter regulation by divalent cations
    • Lee, S.K., et al. Structural insights into mitochondrial calcium uniporter regulation by divalent cations. Cell. Chem. Biol. 23 (2016), 1157–1169.
    • (2016) Cell. Chem. Biol. , vol.23 , pp. 1157-1169
    • Lee, S.K.1
  • 19
    • 84969194530 scopus 로고    scopus 로고
    • Architecture of the mitochondrial calcium uniporter
    • Oxenoid, K., et al. Architecture of the mitochondrial calcium uniporter. Nature 533:7602 (2016), 269–273.
    • (2016) Nature , vol.533 , Issue.7602 , pp. 269-273
    • Oxenoid, K.1
  • 20
    • 84870621600 scopus 로고    scopus 로고
    • MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism
    • Mallilankaraman, K., et al. MCUR1 is an essential component of mitochondrial Ca2+ uptake that regulates cellular metabolism. Nat. Cell. Biol. 14:12 (2012), 1336–1343.
    • (2012) Nat. Cell. Biol. , vol.14 , Issue.12 , pp. 1336-1343
    • Mallilankaraman, K.1
  • 22
    • 84873572862 scopus 로고    scopus 로고
    • MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling
    • p. e55785
    • Plovanich, M., et al. MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One, 8(2), 2013 p. e55785.
    • (2013) PLoS One , vol.8 , Issue.2
    • Plovanich, M.1
  • 24
    • 84896262743 scopus 로고    scopus 로고
    • SLC25A23 augments mitochondrial Ca(2)(+) uptake, interacts with MCU, and induces oxidative stress-mediated cell death
    • Hoffman, N.E., et al. SLC25A23 augments mitochondrial Ca(2)(+) uptake, interacts with MCU, and induces oxidative stress-mediated cell death. Mol. Biol. Cell. 25:6 (2014), 936–947.
    • (2014) Mol. Biol. Cell. , vol.25 , Issue.6 , pp. 936-947
    • Hoffman, N.E.1
  • 25
    • 84883286784 scopus 로고    scopus 로고
    • The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit
    • Raffaello, A., et al. The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J. 32:17 (2013), 2362–2376.
    • (2013) EMBO J. , vol.32 , Issue.17 , pp. 2362-2376
    • Raffaello, A.1
  • 26
    • 84868027665 scopus 로고    scopus 로고
    • MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival
    • Mallilankaraman, K., et al. MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival. Cell 151:3 (2012), 630–644.
    • (2012) Cell , vol.151 , Issue.3 , pp. 630-644
    • Mallilankaraman, K.1
  • 28
    • 84891011448 scopus 로고    scopus 로고
    • MICU1 motifs define mitochondrial calcium uniporter binding and activity
    • Hoffman, N.E., et al. MICU1 motifs define mitochondrial calcium uniporter binding and activity. Cell. Rep. 5:6 (2013), 1576–1588.
    • (2013) Cell. Rep. , vol.5 , Issue.6 , pp. 1576-1588
    • Hoffman, N.E.1
  • 29
    • 84898628109 scopus 로고    scopus 로고
    • Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake
    • Wang, L., et al. Structural and mechanistic insights into MICU1 regulation of mitochondrial calcium uptake. EMBO J. 33:6 (2014), 594–604.
    • (2014) EMBO J. , vol.33 , Issue.6 , pp. 594-604
    • Wang, L.1
  • 30
    • 84979735997 scopus 로고    scopus 로고
    • MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload
    • Liu, J.C., et al. MICU1 serves as a molecular gatekeeper to prevent in vivo mitochondrial calcium overload. Cell. Rep. 16:6 (2016), 1561–1573.
    • (2016) Cell. Rep. , vol.16 , Issue.6 , pp. 1561-1573
    • Liu, J.C.1
  • 31
    • 84895426147 scopus 로고    scopus 로고
    • Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling
    • Logan, C.V., et al. Loss-of-function mutations in MICU1 cause a brain and muscle disorder linked to primary alterations in mitochondrial calcium signaling. Nat. Genet 46:2 (2014), 188–193.
    • (2014) Nat. Genet , vol.46 , Issue.2 , pp. 188-193
    • Logan, C.V.1
  • 32
    • 85011382773 scopus 로고    scopus 로고
    • Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics
    • Bhosale, G., et al. Pathological consequences of MICU1 mutations on mitochondrial calcium signalling and bioenergetics. Biochim. Biophys. Acta 1864:6 (2017), 1009–1017.
    • (2017) Biochim. Biophys. Acta , vol.1864 , Issue.6 , pp. 1009-1017
    • Bhosale, G.1
  • 33
    • 84960532961 scopus 로고    scopus 로고
    • MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration
    • p. 10955
    • Antony, A.N., et al. MICU1 regulation of mitochondrial Ca(2+) uptake dictates survival and tissue regeneration. Nat. Commun., 7, 2016 p. 10955.
    • (2016) Nat. Commun. , vol.7
    • Antony, A.N.1
  • 34
    • 84898644111 scopus 로고    scopus 로고
    • MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter
    • Kamer, K.J., Mootha, V.K., MICU1 and MICU2 play nonredundant roles in the regulation of the mitochondrial calcium uniporter. EMBO Rep. 15:3 (2014), 299–307.
    • (2014) EMBO Rep. , vol.15 , Issue.3 , pp. 299-307
    • Kamer, K.J.1    Mootha, V.K.2
  • 35
    • 85032214680 scopus 로고    scopus 로고
    • Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter
    • Bick, A.G., et al. Cardiovascular homeostasis dependence on MICU2, a regulatory subunit of the mitochondrial calcium uniporter. Proc. Natl. Acad. Sci. U. S. A. 114:43 (2017), E9096–E9104.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , Issue.43 , pp. E9096-E9104
    • Bick, A.G.1
  • 36
    • 85020692763 scopus 로고    scopus 로고
    • High-affinity cooperative Ca(2+) binding by MICU1-MICU2 serves as an on-off switch for the uniporter
    • Kamer, K.J., Grabarek, Z., Mootha, V.K., High-affinity cooperative Ca(2+) binding by MICU1-MICU2 serves as an on-off switch for the uniporter. EMBO Rep. 18:8 (2017), 1397–1411.
    • (2017) EMBO Rep. , vol.18 , Issue.8 , pp. 1397-1411
    • Kamer, K.J.1    Grabarek, Z.2    Mootha, V.K.3
  • 37
    • 84943383907 scopus 로고    scopus 로고
    • MCUR1, CCDC90A, Is a regulator of the mitochondrial calcium uniporter
    • Vais, H., et al. MCUR1, CCDC90A, Is a regulator of the mitochondrial calcium uniporter. Cell. Metab. 22:4 (2015), 533–535.
    • (2015) Cell. Metab. , vol.22 , Issue.4 , pp. 533-535
    • Vais, H.1
  • 38
    • 84920617467 scopus 로고    scopus 로고
    • CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter
    • Paupe, V., et al. CCDC90A (MCUR1) is a cytochrome c oxidase assembly factor and not a regulator of the mitochondrial calcium uniporter. Cell. Metab. 21:1 (2015), 109–116.
    • (2015) Cell. Metab. , vol.21 , Issue.1 , pp. 109-116
    • Paupe, V.1
  • 39
    • 84966652095 scopus 로고    scopus 로고
    • MCUR1 Is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics
    • Tomar, D., et al. MCUR1 Is a scaffold factor for the MCU complex function and promotes mitochondrial bioenergetics. Cell. Rep. 15:8 (2016), 1673–1685.
    • (2016) Cell. Rep. , vol.15 , Issue.8 , pp. 1673-1685
    • Tomar, D.1
  • 40
    • 84962091374 scopus 로고    scopus 로고
    • Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition
    • Chaudhuri, D., et al. Mitochondrial calcium uniporter regulator 1 (MCUR1) regulates the calcium threshold for the mitochondrial permeability transition. Proc. Natl. Acad. Sci. U. S. A. 113:13 (2016), E1872–80.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , Issue.13 , pp. E1872-80
    • Chaudhuri, D.1
  • 41
    • 84953438754 scopus 로고    scopus 로고
    • EMRE Is a matrix Ca(2+) sensor that governs gatekeeping of the mitochondrial Ca(2+) uniporter
    • Vais, H., et al. EMRE Is a matrix Ca(2+) sensor that governs gatekeeping of the mitochondrial Ca(2+) uniporter. Cell. Rep. 14:3 (2016), 403–410.
    • (2016) Cell. Rep. , vol.14 , Issue.3 , pp. 403-410
    • Vais, H.1
  • 42
    • 84964577752 scopus 로고    scopus 로고
    • Analysis of the structure and function of EMRE in a yeast expression system
    • Yamamoto, T., et al. Analysis of the structure and function of EMRE in a yeast expression system. Biochim. Biophys. Acta 1857:6 (2016), 831–839.
    • (2016) Biochim. Biophys. Acta , vol.1857 , Issue.6 , pp. 831-839
    • Yamamoto, T.1
  • 43
    • 0029143569 scopus 로고
    • Decoding of cytosolic calcium oscillations in the mitochondria
    • Hajnóczky, G., et al. Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82:3 (1995), 415–424.
    • (1995) Cell , vol.82 , Issue.3 , pp. 415-424
    • Hajnóczky, G.1
  • 44
    • 0032169351 scopus 로고    scopus 로고
    • Integrating cytosolic calcium signals into mitochondrial metabolic responses
    • Robb-Gaspers, L.D., et al. Integrating cytosolic calcium signals into mitochondrial metabolic responses. EMBO J. 17:17 (1998), 4987–5000.
    • (1998) EMBO J. , vol.17 , Issue.17 , pp. 4987-5000
    • Robb-Gaspers, L.D.1
  • 45
    • 0034668833 scopus 로고    scopus 로고
    • Mitochondria and calcium: from cell signalling to cell death
    • Duchen, M.R., Mitochondria and calcium: from cell signalling to cell death. J. Physiol. 529:Pt 1 (2000), 57–68.
    • (2000) J. Physiol. , vol.529 , pp. 57-68
    • Duchen, M.R.1
  • 47
    • 77950377028 scopus 로고    scopus 로고
    • Molecular basis of calcium signaling in lymphocytes: STIM and ORAI
    • Hogan, P.G., Lewis, R.S., Rao, A., Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28 (2010), 491–533.
    • (2010) Annu. Rev. Immunol. , vol.28 , pp. 491-533
    • Hogan, P.G.1    Lewis, R.S.2    Rao, A.3
  • 48
    • 33646576875 scopus 로고    scopus 로고
    • A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function
    • Feske, S., et al. A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:7090 (2006), 179–185.
    • (2006) Nature , vol.441 , Issue.7090 , pp. 179-185
    • Feske, S.1
  • 49
    • 21044439334 scopus 로고    scopus 로고
    • STIM1, an essential and conserved component of store-operated Ca2+ channel function
    • Roos, J., et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J. Cell. Biol. 169:3 (2005), 435–445.
    • (2005) J. Cell. Biol. , vol.169 , Issue.3 , pp. 435-445
    • Roos, J.1
  • 50
    • 33745139810 scopus 로고    scopus 로고
    • Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity
    • Zhang, S.L., et al. Genome-wide RNAi screen of Ca(2+) influx identifies genes that regulate Ca(2+) release-activated Ca(2+) channel activity. Proc. Natl. Acad. Sci. U. S. A 103:24 (2006), 9357–9362.
    • (2006) Proc. Natl. Acad. Sci. U. S. A , vol.103 , Issue.24 , pp. 9357-9362
    • Zhang, S.L.1
  • 51
    • 21844432686 scopus 로고    scopus 로고
    • STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx
    • Liou, J., et al. STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr. Biol. 15:13 (2005), 1235–1241.
    • (2005) Curr. Biol. , vol.15 , Issue.13 , pp. 1235-1241
    • Liou, J.1
  • 52
    • 47949132511 scopus 로고    scopus 로고
    • Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation
    • Luik, R.M., et al. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:7203 (2008), 538–542.
    • (2008) Nature , vol.454 , Issue.7203 , pp. 538-542
    • Luik, R.M.1
  • 53
    • 84856961815 scopus 로고    scopus 로고
    • Gated regulation of CRAC channel ion selectivity by STIM1
    • McNally, B.A., et al. Gated regulation of CRAC channel ion selectivity by STIM1. Nature 482:7384 (2012), 241–245.
    • (2012) Nature , vol.482 , Issue.7384 , pp. 241-245
    • McNally, B.A.1
  • 54
    • 84924180724 scopus 로고    scopus 로고
    • Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU
    • p. ra23
    • Shanmughapriya, S., et al. Ca2+ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca2+ uniporter gene MCU. Sci. Signal., 8(366), 2015 p. ra23.
    • (2015) Sci. Signal. , vol.8 , Issue.366
    • Shanmughapriya, S.1
  • 55
    • 38349169664 scopus 로고    scopus 로고
    • Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?
    • Filipowicz, W., Bhattacharyya, S.N., Sonenberg, N., Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat. Rev. Genet 9:2 (2008), 102–114.
    • (2008) Nat. Rev. Genet , vol.9 , Issue.2 , pp. 102-114
    • Filipowicz, W.1    Bhattacharyya, S.N.2    Sonenberg, N.3
  • 56
    • 84872117185 scopus 로고    scopus 로고
    • Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25
    • Marchi, S., et al. Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr. Biol. 23:1 (2013), 58–63.
    • (2013) Curr. Biol. , vol.23 , Issue.1 , pp. 58-63
    • Marchi, S.1
  • 57
    • 85014956067 scopus 로고    scopus 로고
    • MicroRNA-138 and MicroRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype
    • Hong, Z., et al. MicroRNA-138 and MicroRNA-25 down-regulate mitochondrial calcium uniporter, causing the pulmonary arterial hypertension cancer phenotype. Am. J. Respir. Crit. Care Med. 195:4 (2017), 515–529.
    • (2017) Am. J. Respir. Crit. Care Med. , vol.195 , Issue.4 , pp. 515-529
    • Hong, Z.1
  • 58
    • 85031036972 scopus 로고    scopus 로고
    • Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of metastasis via enhancing the Warburg effect
    • Yu, C., et al. Mitochondrial calcium uniporter as a target of microRNA-340 and promoter of metastasis via enhancing the Warburg effect. Oncotarget 8:48 (2017), 83831–83844.
    • (2017) Oncotarget , vol.8 , Issue.48 , pp. 83831-83844
    • Yu, C.1
  • 59
    • 85032010924 scopus 로고    scopus 로고
    • Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy
    • Zaglia, T., et al. Content of mitochondrial calcium uniporter (MCU) in cardiomyocytes is regulated by microRNA-1 in physiologic and pathologic hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 114:43 (2017), E9006–E9015.
    • (2017) Proc. Natl. Acad. Sci. U. S. A. , vol.114 , Issue.43 , pp. E9006-E9015
    • Zaglia, T.1
  • 60
    • 77953808534 scopus 로고    scopus 로고
    • The fateful encounter of mitochondria with calcium: how did it happen?
    • Carafoli, E., The fateful encounter of mitochondria with calcium: how did it happen?. Biochim. Biophys. Acta 1797:6-7 (2010), 595–606.
    • (2010) Biochim. Biophys. Acta , vol.1797 , Issue.6-7 , pp. 595-606
    • Carafoli, E.1
  • 61
    • 38149032581 scopus 로고
    • Studies on ion transport. III. The accumulation of calcium and inorganic phosphate by heart mitochondria
    • Brierley, G.P., Murer, E., Bachmann, E., Studies on ion transport. III. The accumulation of calcium and inorganic phosphate by heart mitochondria. Arch. Biochem. Biophys. 105 (1964), 89–102.
    • (1964) Arch. Biochem. Biophys. , vol.105 , pp. 89-102
    • Brierley, G.P.1    Murer, E.2    Bachmann, E.3
  • 62
    • 0032575612 scopus 로고    scopus 로고
    • Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms a and B of the phosphate carrier from bovine mitochondria
    • Fiermonte, G., Dolce, V., Palmieri, F., Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms a and B of the phosphate carrier from bovine mitochondria. J. Biol. Chem. 273:35 (1998), 22782–22787.
    • (1998) J. Biol. Chem. , vol.273 , Issue.35 , pp. 22782-22787
    • Fiermonte, G.1    Dolce, V.2    Palmieri, F.3
  • 64
    • 0000868007 scopus 로고
    • Stoichiometry of respiratory stimulation, accumulation of CA++ and phosphate, and oxidative phosphorylation in rat liver mitochondria
    • Rossi, C.S., Lehninger, A.L., Stoichiometry of respiratory stimulation, accumulation of CA++ and phosphate, and oxidative phosphorylation in rat liver mitochondria. J. Biol. Chem. 239 (1964), 3971–3980.
    • (1964) J. Biol. Chem. , vol.239 , pp. 3971-3980
    • Rossi, C.S.1    Lehninger, A.L.2
  • 65
    • 0027528964 scopus 로고
    • Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate. Effects on mitochondrial calcium
    • Zoeteweij, J.P., et al. Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate. Effects on mitochondrial calcium. J. Biol. Chem. 268:5 (1993), 3384–3388.
    • (1993) J. Biol. Chem. , vol.268 , Issue.5 , pp. 3384-3388
    • Zoeteweij, J.P.1
  • 66
    • 33847176234 scopus 로고    scopus 로고
    • Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation
    • Mayr, J.A., et al. Mitochondrial phosphate-carrier deficiency: a novel disorder of oxidative phosphorylation. Am. J. Hum. Genet. 80:3 (2007), 478–484.
    • (2007) Am. J. Hum. Genet. , vol.80 , Issue.3 , pp. 478-484
    • Mayr, J.A.1
  • 67
    • 82455162377 scopus 로고    scopus 로고
    • Deficiency of the mitochondrial phosphate carrier presenting as myopathy and cardiomyopathy in a family with three affected children
    • Mayr, J.A., et al. Deficiency of the mitochondrial phosphate carrier presenting as myopathy and cardiomyopathy in a family with three affected children. Neuromuscul. Disord. 21:11 (2011), 803–808.
    • (2011) Neuromuscul. Disord. , vol.21 , Issue.11 , pp. 803-808
    • Mayr, J.A.1
  • 68
    • 84945252213 scopus 로고    scopus 로고
    • Pathologic variants of the mitochondrial phosphate carrier SLC25A3: Two New patients and expansion of the Cardiomyopathy/Skeletal myopathy phenotype with and without lactic acidosis
    • Bhoj, E.J., et al. Pathologic variants of the mitochondrial phosphate carrier SLC25A3: Two New patients and expansion of the Cardiomyopathy/Skeletal myopathy phenotype with and without lactic acidosis. JIMD Rep. 19 (2015), 59–66.
    • (2015) JIMD Rep. , vol.19 , pp. 59-66
    • Bhoj, E.J.1
  • 69
    • 85002583964 scopus 로고    scopus 로고
    • Natural and induced mitochondrial phosphate carrier loss: DIFFERENTIAL DEPENDENCE OF mitochondrial metabolism and dynamics and cell survival on the extent of depletion
    • Seifert, E.L., et al. Natural and induced mitochondrial phosphate carrier loss: DIFFERENTIAL DEPENDENCE OF mitochondrial metabolism and dynamics and cell survival on the extent of depletion. J. Biol. Chem. 291:50 (2016), 26126–26137.
    • (2016) J. Biol. Chem. , vol.291 , Issue.50 , pp. 26126-26137
    • Seifert, E.L.1
  • 70
    • 84905042938 scopus 로고    scopus 로고
    • Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy
    • Kwong, J.Q., et al. Genetic deletion of the mitochondrial phosphate carrier desensitizes the mitochondrial permeability transition pore and causes cardiomyopathy. Cell. Death Differ. 21:8 (2014), 1209–1217.
    • (2014) Cell. Death Differ. , vol.21 , Issue.8 , pp. 1209-1217
    • Kwong, J.Q.1
  • 71
    • 84901359354 scopus 로고    scopus 로고
    • Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition
    • Gutiérrez-Aguilar, M., et al. Genetic manipulation of the cardiac mitochondrial phosphate carrier does not affect permeability transition. J. Mol. Cell. Cardiol. 72 (2014), 316–3255.
    • (2014) J. Mol. Cell. Cardiol. , vol.72 , pp. 316-3255
    • Gutiérrez-Aguilar, M.1
  • 72
    • 0028802746 scopus 로고
    • A hierarchy of ATP-consuming processes in mammalian cells
    • Buttgereit, F., Brand, M.D., A hierarchy of ATP-consuming processes in mammalian cells. Biochem. J. 312:Pt 1 (1995), 163–167.
    • (1995) Biochem. J. , vol.312 , pp. 163-167
    • Buttgereit, F.1    Brand, M.D.2
  • 73
    • 3142764629 scopus 로고    scopus 로고
    • Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution
    • Fiermonte, G., et al. Identification of the mitochondrial ATP-Mg/Pi transporter. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J. Biol. Chem. 279:29 (2004), 30722–30730.
    • (2004) J. Biol. Chem. , vol.279 , Issue.29 , pp. 30722-30730
    • Fiermonte, G.1
  • 74
    • 0023794703 scopus 로고
    • Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role
    • Aprille, J.R., Regulation of the mitochondrial adenine nucleotide pool size in liver: mechanism and metabolic role. FASEB J. 2:10 (1988), 2547–2556.
    • (1988) FASEB J. , vol.2 , Issue.10 , pp. 2547-2556
    • Aprille, J.R.1
  • 75
    • 84875218644 scopus 로고    scopus 로고
    • The mitochondrial transporter family SLC25: identification, properties and physiopathology
    • Palmieri, F., The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 34:2-3 (2013), 465–484.
    • (2013) Mol. Aspects Med. , vol.34 , Issue.2-3 , pp. 465-484
    • Palmieri, F.1
  • 76
    • 84867025862 scopus 로고    scopus 로고
    • A biophysical model of the mitochondrial ATP-Mg/P(i) carrier
    • Tewari, S.G., et al. A biophysical model of the mitochondrial ATP-Mg/P(i) carrier. Biophys. J. 103:7 (2012), 1616–1625.
    • (2012) Biophys. J. , vol.103 , Issue.7 , pp. 1616-1625
    • Tewari, S.G.1
  • 77
    • 84875141425 scopus 로고    scopus 로고
    • Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3
    • Amigo, I., et al. Glucagon regulation of oxidative phosphorylation requires an increase in matrix adenine nucleotide content through Ca2+ activation of the mitochondrial ATP-Mg/Pi carrier SCaMC-3. J. Biol. Chem. 288:11 (2013), 7791–7802.
    • (2013) J. Biol. Chem. , vol.288 , Issue.11 , pp. 7791-7802
    • Amigo, I.1
  • 78
    • 84868200531 scopus 로고    scopus 로고
    • Cell signaling, post-translational protein modifications and NMR spectroscopy
    • Theillet, F.X., et al. Cell signaling, post-translational protein modifications and NMR spectroscopy. J. Biomol. NMR 54:3 (2012), 217–236.
    • (2012) J. Biomol. NMR , vol.54 , Issue.3 , pp. 217-236
    • Theillet, F.X.1
  • 79
    • 84930707903 scopus 로고    scopus 로고
    • Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins
    • Brewer, T.F., et al. Chemical approaches to discovery and study of sources and targets of hydrogen peroxide redox signaling through NADPH oxidase proteins. Annu. Rev. Biochem. 84 (2015), 765–790.
    • (2015) Annu. Rev. Biochem. , vol.84 , pp. 765-790
    • Brewer, T.F.1
  • 80
    • 84868629814 scopus 로고    scopus 로고
    • CaMKII determines mitochondrial stress responses in heart
    • Joiner, M.L., et al. CaMKII determines mitochondrial stress responses in heart. Nature 491:7423 (2012), 269–273.
    • (2012) Nature , vol.491 , Issue.7423 , pp. 269-273
    • Joiner, M.L.1
  • 81
    • 84950321056 scopus 로고    scopus 로고
    • Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore
    • Davidson, S.M., et al. Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovasc. Res. 108:3 (2015), 357–366.
    • (2015) Cardiovasc. Res. , vol.108 , Issue.3 , pp. 357-366
    • Davidson, S.M.1
  • 82
    • 0032827410 scopus 로고    scopus 로고
    • Mitochondrial transport of cations: channels, exchangers, and permeability transition
    • Bernardi, P., Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79:4 (1999), 1127–1155.
    • (1999) Physiol. Rev. , vol.79 , Issue.4 , pp. 1127-1155
    • Bernardi, P.1
  • 84
    • 33845977959 scopus 로고    scopus 로고
    • Mitochondrial membrane permeabilization in cell death
    • Kroemer, G., Galluzzi, L., Brenner, C., Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87:1 (2007), 99–163.
    • (2007) Physiol. Rev. , vol.87 , Issue.1 , pp. 99-163
    • Kroemer, G.1    Galluzzi, L.2    Brenner, C.3
  • 85
    • 0037459081 scopus 로고    scopus 로고
    • Mitochondria: releasing power for life and unleashing the machineries of death
    • Newmeyer, D.D., Ferguson-Miller, S., Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:4 (2003), 481–490.
    • (2003) Cell , vol.112 , Issue.4 , pp. 481-490
    • Newmeyer, D.D.1    Ferguson-Miller, S.2
  • 87
    • 84891393224 scopus 로고    scopus 로고
    • The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter
    • Pan, X., et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell. Biol. 15:12 (2013), 1464–1472.
    • (2013) Nat. Cell. Biol. , vol.15 , Issue.12 , pp. 1464-1472
    • Pan, X.1
  • 88
    • 84937525656 scopus 로고    scopus 로고
    • The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition
    • Luongo, T.S., et al. The mitochondrial calcium uniporter matches energetic supply with cardiac workload during stress and modulates permeability transition. Cell. Rep. 12:1 (2015), 23–34.
    • (2015) Cell. Rep. , vol.12 , Issue.1 , pp. 23-34
    • Luongo, T.S.1
  • 89
    • 0028047262 scopus 로고
    • Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria
    • Voth, J.B.-H.A.M., Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech., 1994.
    • (1994) Microsc. Res. Tech.
    • Voth, J.B.-H.A.M.1
  • 90
    • 0043166392 scopus 로고    scopus 로고
    • Dynamics of mitochondrial morphology in healthy cells and during apoptosis
    • Youle, M.Ka.R., Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell. Death Differ., 2003.
    • (2003) Cell. Death Differ.
    • Youle, M.K.R.1
  • 91
    • 84865544952 scopus 로고    scopus 로고
    • Mitochondrial fission, fusion, and stress
    • Youle, R.J., van der Bliek, A.M., Mitochondrial fission, fusion, and stress. Science 337:6098 (2012), 1062–1065.
    • (2012) Science , vol.337 , Issue.6098 , pp. 1062-1065
    • Youle, R.J.1    van der Bliek, A.M.2
  • 92
    • 0033525615 scopus 로고    scopus 로고
    • The machinery of mitochondrial inheritance and behavior
    • Yaffe, M.P., The machinery of mitochondrial inheritance and behavior. Science 283:5407 (1999), 1493–1497.
    • (1999) Science , vol.283 , Issue.5407 , pp. 1493-1497
    • Yaffe, M.P.1
  • 93
    • 84910141948 scopus 로고    scopus 로고
    • Mitochondrial dynamics and inheritance during cell division, development and disease
    • Mishra, P., Chan, D.C., Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell. Biol. 15:10 (2014), 634–646.
    • (2014) Nat. Rev. Mol. Cell. Biol. , vol.15 , Issue.10 , pp. 634-646
    • Mishra, P.1    Chan, D.C.2
  • 95
    • 85045578026 scopus 로고    scopus 로고
    • MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca(2+) stress
    • Nemani, N., et al. MIRO-1 determines mitochondrial shape transition upon GPCR activation and Ca(2+) stress. Cell. Rep. 23:4 (2018), 1005–1019.
    • (2018) Cell. Rep. , vol.23 , Issue.4 , pp. 1005-1019
    • Nemani, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.