메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1007-1034

On robustness properties of convex risk minimization methods for pattern recognition

Author keywords

AdaBoost loss function; Influence function; Kernel logistic regression; Robustness; Sensitivity curve; Statistical learning; Support vector machine; Total variation

Indexed keywords

ADAPTIVE BOOSTING; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS; METHOD OF MOMENTS; PATTERN RECOGNITION; REGRESSION ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS); SUPPORT VECTOR MACHINES;

EID: 18244390064     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (96)

References (48)
  • 4
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 11
    • 0000738844 scopus 로고
    • Least median of weighted squares in logistic regression with large strata
    • A. Christmann. Least median of weighted squares in logistic regression with large strata. Biometrika, 81:413-417, 1994.
    • (1994) Biometrika , vol.81 , pp. 413-417
    • Christmann, A.1
  • 14
    • 0036016389 scopus 로고    scopus 로고
    • Comparison between various regression depth methods and the support vector machine to approximate the minimum number of misclassifications
    • A. Christmann, P. Fischer, and T. Joachims. Comparison between various regression depth methods and the support vector machine to approximate the minimum number of misclassifications. Computational Statistics, 17:273-287, 2002.
    • (2002) Computational Statistics , vol.17 , pp. 273-287
    • Christmann, A.1    Fischer, P.2    Joachims, T.3
  • 16
    • 0004217026 scopus 로고
    • American Mathematical Society, Providence, RI
    • J. Diestel and J. J. Uhl. Vector Measures. American Mathematical Society, Providence, RI, 1977.
    • (1977) Vector Measures
    • Diestel, J.1    Uhl, J.J.2
  • 17
    • 0002231562 scopus 로고
    • The notion of breakdown point
    • P. J. Bickel, K. A. Doksum, and J. L. Hodges Jr, editors, Belmont, California, Wadsworth
    • D. L. Donoho and P. J. Huber. The notion of breakdown point. In P. J. Bickel, K. A. Doksum, and J. L. Hodges Jr, editors, A Festschrift for Erich L. Lehmann, pages 157-184, Belmont, California, Wadsworth, 1983.
    • (1983) A Festschrift for Erich L. Lehmann , pp. 157-184
    • Donoho, D.L.1    Huber, P.J.2
  • 20
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting (with discussion). Annals of Statistics, 28:337-407, 2000.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 27
    • 0003157339 scopus 로고
    • Robust estimation of a location parameter
    • P. J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35:73-101, 1964.
    • (1964) Annals of Mathematical Statistics , vol.35 , pp. 73-101
    • Huber, P.J.1
  • 29
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Schölkopf, C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, Massachusetts
    • T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 41-56, MIT Press, Cambridge, Massachusetts, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 41-56
    • Joachims, T.1
  • 36
    • 0010786475 scopus 로고    scopus 로고
    • On the influence of the kernel on the consistency of support vector machines
    • I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
    • (2001) Journal of Machine Learning Research , vol.2 , pp. 67-93
    • Steinwart, I.1
  • 37
    • 21844437252 scopus 로고    scopus 로고
    • Consistency of support vector machines and other regularized kernel machine
    • to appear
    • I. Steinwart. Consistency of support vector machines and other regularized kernel machine. IEEE Transactions on Information Theory, to appear, 2002a.
    • (2002) IEEE Transactions on Information Theory
    • Steinwart, I.1
  • 38
    • 0036749277 scopus 로고    scopus 로고
    • Support vector machines are universally consistent
    • I. Steinwart. Support vector machines are universally consistent. Journal of Complexity, 18:768-791, 2002b.
    • (2002) Journal of Complexity , vol.18 , pp. 768-791
    • Steinwart, I.1
  • 41
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 48:85-105, 2002.
    • (2002) Neurocomputing , vol.48 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 42
    • 3142725508 scopus 로고    scopus 로고
    • Optimal aggregation of classifiers in statistical learning
    • A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32:135-166, 2004.
    • (2004) Annals of Statistics , vol.32 , pp. 135-166
    • Tsybakov, A.B.1
  • 45
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
    • B. Schölkopf, C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, Massachusetts
    • G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Schölkopf, C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 69-88, MIT Press, Cambridge, Massachusetts, 1999.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 48
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behaviour and consistency of classification methods based on convex risk minimization
    • T. Zhang. Statistical behaviour and consistency of classification methods based on convex risk minimization. Annals of Statistics, 32:56-134, 2004.
    • (2004) Annals of Statistics , vol.32 , pp. 56-134
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.