-
3
-
-
1542367492
-
-
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. http://stat-www.berkeley.edu/tech-reports/638.pdf, 2003.
-
(2003)
Convexity, Classification, and Risk Bounds
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
4
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
11
-
-
0000738844
-
Least median of weighted squares in logistic regression with large strata
-
A. Christmann. Least median of weighted squares in logistic regression with large strata. Biometrika, 81:413-417, 1994.
-
(1994)
Biometrika
, vol.81
, pp. 413-417
-
-
Christmann, A.1
-
14
-
-
0036016389
-
Comparison between various regression depth methods and the support vector machine to approximate the minimum number of misclassifications
-
A. Christmann, P. Fischer, and T. Joachims. Comparison between various regression depth methods and the support vector machine to approximate the minimum number of misclassifications. Computational Statistics, 17:273-287, 2002.
-
(2002)
Computational Statistics
, vol.17
, pp. 273-287
-
-
Christmann, A.1
Fischer, P.2
Joachims, T.3
-
16
-
-
0004217026
-
-
American Mathematical Society, Providence, RI
-
J. Diestel and J. J. Uhl. Vector Measures. American Mathematical Society, Providence, RI, 1977.
-
(1977)
Vector Measures
-
-
Diestel, J.1
Uhl, J.J.2
-
17
-
-
0002231562
-
The notion of breakdown point
-
P. J. Bickel, K. A. Doksum, and J. L. Hodges Jr, editors, Belmont, California, Wadsworth
-
D. L. Donoho and P. J. Huber. The notion of breakdown point. In P. J. Bickel, K. A. Doksum, and J. L. Hodges Jr, editors, A Festschrift for Erich L. Lehmann, pages 157-184, Belmont, California, Wadsworth, 1983.
-
(1983)
A Festschrift for Erich L. Lehmann
, pp. 157-184
-
-
Donoho, D.L.1
Huber, P.J.2
-
20
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussion)
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting (with discussion). Annals of Statistics, 28:337-407, 2000.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
22
-
-
0003841907
-
-
Wiley, New York
-
F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics. The approach based on influence functions. Wiley, New York, 1986.
-
(1986)
Robust Statistics. The Approach Based on Influence Functions
-
-
Hampel, F.R.1
Ronchetti, E.M.2
Rousseeuw, P.J.3
Stahel, W.A.4
-
23
-
-
0003987805
-
-
MIT Press, Cambridge, Massachusetts
-
D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, Cambridge, Massachusetts, 2001.
-
(2001)
Principles of Data Mining
-
-
Hand, D.1
Mannila, H.2
Smyth, P.3
-
25
-
-
84925801854
-
-
Santa Barbara, CA
-
J. Hipp, U. Güntzer, and U. Grimmer. Data quality mining - making a virtue of necessity. Workshop on Research Issues in Data Mining and Knowledge Discovery DMKD, Santa Barbara, CA, http://www.cs.cornell.edu/johannes/papers/dmkd2001-papers/p5-hipp.pdf, 2001.
-
(2001)
Data Quality Mining - Making a Virtue of Necessity. Workshop on Research Issues in Data Mining and Knowledge Discovery DMKD
-
-
Hipp, J.1
Güntzer, U.2
Grimmer, U.3
-
27
-
-
0003157339
-
Robust estimation of a location parameter
-
P. J. Huber. Robust estimation of a location parameter. Annals of Mathematical Statistics, 35:73-101, 1964.
-
(1964)
Annals of Mathematical Statistics
, vol.35
, pp. 73-101
-
-
Huber, P.J.1
-
29
-
-
0002714543
-
Making large-scale SVM learning practical
-
B. Schölkopf, C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, Massachusetts
-
T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 41-56, MIT Press, Cambridge, Massachusetts, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 41-56
-
-
Joachims, T.1
-
34
-
-
0003408420
-
-
MIT Press, Cambridge, Massachusetts
-
B. Schölkopf and A. J. Smola. Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, Massachusetts, 2002.
-
(2002)
Learning with Kernels Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
36
-
-
0010786475
-
On the influence of the kernel on the consistency of support vector machines
-
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 67-93
-
-
Steinwart, I.1
-
37
-
-
21844437252
-
Consistency of support vector machines and other regularized kernel machine
-
to appear
-
I. Steinwart. Consistency of support vector machines and other regularized kernel machine. IEEE Transactions on Information Theory, to appear, 2002a.
-
(2002)
IEEE Transactions on Information Theory
-
-
Steinwart, I.1
-
38
-
-
0036749277
-
Support vector machines are universally consistent
-
I. Steinwart. Support vector machines are universally consistent. Journal of Complexity, 18:768-791, 2002b.
-
(2002)
Journal of Complexity
, vol.18
, pp. 768-791
-
-
Steinwart, I.1
-
41
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
J. A. K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle. Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing, 48:85-105, 2002.
-
(2002)
Neurocomputing
, vol.48
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
42
-
-
3142725508
-
Optimal aggregation of classifiers in statistical learning
-
A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32:135-166, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 135-166
-
-
Tsybakov, A.B.1
-
45
-
-
0001873883
-
Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
-
B. Schölkopf, C. Burges, and A. J. Smola, editors, MIT Press, Cambridge, Massachusetts
-
G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Schölkopf, C. Burges, and A. J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, pages 69-88, MIT Press, Cambridge, Massachusetts, 1999.
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 69-88
-
-
Wahba, G.1
-
48
-
-
4644257995
-
Statistical behaviour and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behaviour and consistency of classification methods based on convex risk minimization. Annals of Statistics, 32:56-134, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 56-134
-
-
Zhang, T.1
|