-
2
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
Bartlett, Peter L. and Mendelson, Shahar. Rademacher and gaussian complexities: Risk bounds and structural results. The Journal of Machine Learning Research, 3: 463-482, 2002.
-
(2002)
The Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
3
-
-
0036643049
-
Model selection and error estimation
-
Bartlett, Peter L., Boucheron, Stéphane, and Lugosi, Gabor. Model selection and error estimation. Machine Learning, 48:85-113, 2002.
-
(2002)
Machine Learning
, vol.48
, pp. 85-113
-
-
Bartlett, P.L.1
Boucheron, S.2
Lugosi, G.3
-
5
-
-
34247558132
-
Preventing overfitting during model selection via bayesian régularisation of the hyper-parameters
-
Cawley, Gavin C. and Talbot, Nicola L. C. Preventing overfitting during model selection via bayesian régularisation of the hyper-parameters. Journal of Machine Learning Research, 8:841-861, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 841-861
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
6
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Chapelle, Olivier, Vapnik, Vladimir, Bousquet, Olivier, and Mukherjee, Sayan. Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3): 131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
7
-
-
44649157733
-
Bouligand derivatives and robustness of support vector machines for regression
-
Christmann, Andreas and Messem, Arnout Van. Bouligand derivatives and robustness of support vector machines for regression. Journal of Machine Learning Research, 9:915-936, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 915-936
-
-
Christmann, A.1
Van Messem, A.2
-
8
-
-
18244390064
-
On robustness properties of convex risk minimization methods for pattern recognition
-
Christmann, Andreas and Steinwart, Ingo. On robustness properties of convex risk minimization methods for pattern recognition. Journal of Machine Learning Research, 5:1007-1034, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1007-1034
-
-
Christmann, A.1
Steinwart, I.2
-
9
-
-
42449093653
-
Consistency and robustness of kernel based regression
-
Christmann, Andreas and Steinwart, Ingo. Consistency and robustness of kernel based regression. Bernoulli, 13: 799-819, 2007.
-
(2007)
Bernoulli
, vol.13
, pp. 799-819
-
-
Christmann, A.1
Steinwart, I.2
-
10
-
-
77955851485
-
On consistency and robustness properties of support vector machines for heavy-tailed distributions
-
Christmann, Andreas, Messem, Arnout Van, and Steinwart, Ingo. On consistency and robustness properties of support vector machines for heavy-tailed distributions. Statistics and Its Interface, 2:311-327, 2009.
-
(2009)
Statistics and Its Interface
, vol.2
, pp. 311-327
-
-
Christmann, A.1
Van Messem, A.2
Steinwart, I.3
-
11
-
-
56349086986
-
Model selection in kernel based regression using the influence function
-
Debruyne, Michiel, Hubert, Mia, and Suykens, Johan A.K. Model selection in kernel based regression using the influence function. Journal of Machine Learning Research, 9:2377-2400, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2377-2400
-
-
Debruyne, M.1
Hubert, M.2
Suykens, J.A.K.3
-
12
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
Golub, Gene H., Heath, Michael, and Wahba, Grace. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2):215-223, 1979.
-
(1979)
Technometrics
, vol.21
, Issue.2
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
13
-
-
0003841907
-
-
Wiley, New York
-
Hampel, Frank R, Ronchetti, Elvezio M, Rousseeuw, Peter J, and Stahel, Werner A. Robust Statistics: The Approach Based on Influence Functions. Wiley, New York, 1986.
-
(1986)
Robust Statistics: The Approach Based on Influence Functions
-
-
Hampel, F.R.1
Ronchetti, E.M.2
Rousseeuw, P.J.3
Stahel, W.A.4
-
15
-
-
15844406872
-
A compression approach to Support Vector model selection
-
Luxburg, Ulrike Von, Bousquet, Olivier, and Scholkopf, Bernhard. A compression approach to Support Vector model selection. Journal of Machine Learning Research, 5:293-323, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 293-323
-
-
Von Luxburg, U.1
Bousquet, O.2
Scholkopf, B.3
-
16
-
-
77955850781
-
A review on consistency and robustness properties of support vector machines for heavy-tailed distributions
-
Messem, Arnout Van and Christmann, Andreas. A review on consistency and robustness properties of support vector machines for heavy-tailed distributions. Advances in Data Analysis and Classification, 4(2-3): 199-220, 2010.
-
(2010)
Advances in Data Analysis and Classification
, vol.4
, Issue.2-3
, pp. 199-220
-
-
Van Messem, A.1
Christmann, A.2
-
17
-
-
0000516813
-
An implicit-function theorem for a class of nonsmooth functions
-
Robinson, Stephen M. An implicit-function theorem for a class of nonsmooth functions. Mathematics of Operations Research, 16:292-309, 1991.
-
(1991)
Mathematics of Operations Research
, vol.16
, pp. 292-309
-
-
Robinson, S.M.1
-
21
-
-
0032638628
-
Least squares Support Vector Machine classifiers
-
Suykens, Johan A. K. and Vandewalle, Joos. Least squares Support Vector Machine classifiers. Neural Processing Letters, 9(3):293-300, 1999.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
23
-
-
23244462944
-
Some properties of regularized kernel methods
-
Vito, Ernesto De, Rosasco, Lorenzo, Caponnetto, Andrea, Piana, Michele, and Verri, Alessandro. Some properties of regularized kernel methods. Journal of Machine Learning Research, 5:1363-1390, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1363-1390
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
Piana, M.4
Verri, A.5
-
25
-
-
0003267918
-
GACV for support vector machines
-
MIT Press, Cambridge
-
Wahba, Grace, Lin, Yi, and Zhang, Hao. GACV for support vector machines. In Advances in Large Margin Classifiers. MIT Press, Cambridge, , 1999.
-
(1999)
Advances in Large Margin Classifiers
-
-
Grace, W.1
Yi, L.2
Hao, Z.3
|