메뉴 건너뛰기




Volumn 4, Issue , 2017, Pages 3062-3071

Resource-efficient machine learning in 2 KB RAM for the Internet of Things

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; DIGITAL ARITHMETIC; FORECASTING; LEARNING SYSTEMS; MICROCONTROLLERS; RANDOM ACCESS STORAGE; TREES (MATHEMATICS);

EID: 85048452922     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (84)

References (54)
  • 1
    • 85048437373 scopus 로고    scopus 로고
    • The right whale dataset. https://www. kaggle. com/c/whale-detection-challenge/data.
    • The Right Whale Dataset
  • 2
    • 84937961091 scopus 로고    scopus 로고
    • Do deep nets really need to be deep?
    • Ba, J. and Caruana, R. Do deep nets really need to be deep? In NIPS, 2014.
    • (2014) NIPS
    • Ba, J.1    Caruana, R.2
  • 4
    • 85048418348 scopus 로고    scopus 로고
    • BonsaiCode. Code for Bonsai. http://www.manikvarma.org/code/Bonsai/download.html.
    • Code for Bonsai
  • 5
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. ML, 2001.
    • (2001) ML
    • Breiman, L.1
  • 8
    • 84870035074 scopus 로고    scopus 로고
    • From ranknet to lambdarank to lambdamart: An overview
    • Burges, C. J. From ranknet to lambdarank to lambdamart: An overview. Learning, 11(23-581), 2010.
    • (2010) Learning , vol.11 , Issue.23 , pp. 581
    • Burges, C.J.1
  • 9
    • 70349280061 scopus 로고    scopus 로고
    • Character recognition in natural images
    • Campos, T. E., Babu, B. R., and Varma, M. Character recognition in natural images. In VISAPP(2), 2009.
    • (2009) VISAPP(2)
    • Campos, T.E.1    Babu, B.R.2    Varma, M.3
  • 11
    • 84937896655 scopus 로고    scopus 로고
    • Exploiting linear structure within convolutional networks for efficient evaluation
    • Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y, and Fergus, R. Exploiting linear structure within convolutional networks for efficient evaluation. In NIPS, 2014.
    • (2014) NIPS
    • Denton, E.L.1    Zaremba, W.2    Bruna, J.3    LeCun, Y.4    Fergus, R.5
  • 13
    • 85083950579 scopus 로고    scopus 로고
    • Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
    • Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR, 2016.
    • (2016) ICLR
    • Han, S.1    Mao, H.2    Dally, W.J.3
  • 14
    • 84937824211 scopus 로고    scopus 로고
    • Fast prediction for large-scale kernel machines
    • Hsieh, C. J., Si, S., and Dhillon, I. Fast prediction for large-scale kernel machines. In NIPS, 2014.
    • (2014) NIPS
    • Hsieh, C.J.1    Si, S.2    Dhillon, I.3
  • 15
    • 85034212473 scopus 로고    scopus 로고
    • Quantized neural networks: Training neural networks with low precision weights and activations
    • abs/1609.07061
    • Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y Quantized neural networks: Training neural networks with low precision weights and activations. CoRR, abs/1609.07061, 2016.
    • (2016) CoRR
    • Hubara, I.1    Courbariaux, M.2    Soudry, D.3    El-Yaniv, R.4    Bengio, Y.5
  • 16
    • 0028428774 scopus 로고
    • A database for handwritten text recognition research
    • Hull, J. J. A database for handwritten text recognition research. IEEE PAMI, 16, 1994.
    • (1994) IEEE PAMI , vol.16
    • Hull, J.J.1
  • 17
    • 85014063345 scopus 로고    scopus 로고
    • Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1MB model size
    • abs/1602.07360
    • Iandola, F. N., Moskewicz, M. W, Ashraf, K., Han, S., Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1MB model size. CoRR, abs/1602.07360, 2016.
    • (2016) CoRR
    • Iandola, F.N.1    Moskewicz, M.W.2    Ashraf, K.3    Han, S.4    Dally, W.J.5    Keutzer, K.6
  • 20
    • 84937844304 scopus 로고    scopus 로고
    • On iterative hard thresholding methods for high-dimensional m-estimation
    • Jain, P., Tewari, A., and Kar, P. On iterative hard thresholding methods for high-dimensional m-estimation. In NIPS, 2014.
    • (2014) NIPS
    • Jain, P.1    Tewari, A.2    Kar, P.3
  • 22
    • 84897556730 scopus 로고    scopus 로고
    • Local deep kernel learning for efficient non-linear SVM prediction
    • Jose, C, Goyal, P., Aggrwal, P., and Varma, M. Local deep kernel learning for efficient non-linear svm prediction. In ICML, 2013. https://manikvarma.github.io/code/LDKL/download.html.
    • (2013) ICML
    • Jose, C.1    Goyal, P.2    Aggrwal, P.3    Varma, M.4
  • 23
    • 85048428832 scopus 로고    scopus 로고
    • Eye movement in biometrics
    • Kasprowski, P. and Ober, J. Eye movement in biometrics. In eccv, 2004.
    • (2004) ICCV
    • Kasprowski, P.1    Ober, J.2
  • 26
    • 84867380027 scopus 로고    scopus 로고
    • Pruning of random forest classifiers: A survey and future directions
    • Kulkami, V. Y. and Sinha, P. K. Pruning of random forest classifiers: A survey and future directions. In ICDSE, 2012.
    • ICDSE , vol.2012
    • Kulkami, V.Y.1    Sinha, P.K.2
  • 27
    • 85018876907 scopus 로고    scopus 로고
    • Feature-cost sensitive learning with submodular trees of classifiers
    • Kusner, M. J., Chen, W., Zhou, Q., Xu, Z. E., Weinberger, K. Q., and Chen, Y. Feature-cost sensitive learning with submodular trees of classifiers. In AAAI, 2014a.
    • (2014) AAAI
    • Kusner, M.J.1    Chen, W.2    Zhou, Q.3    Xu, Z.E.4    Weinberger, K.Q.5    Chen, Y.6
  • 29
    • 84897549944 scopus 로고    scopus 로고
    • Fastfood-approximating kernel expansions in loglinear time
    • Le, Q., Sarlós, T., and Smola, A. Fastfood-approximating kernel expansions in loglinear time. In ICML, 2013.
    • (2013) ICML
    • Le, Q.1    Sarlós, T.2    Smola, A.3
  • 30
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 32
    • 85007240255 scopus 로고    scopus 로고
    • Fast and accurate refined nyström-based kernel SVM
    • Li, Z., Yang, T., Zhang, L., and Jin, R. Fast and accurate refined nyström-based kernel svm. In AAAI, 2016.
    • (2016) AAAI
    • Li, Z.1    Yang, T.2    Zhang, L.3    Jin, R.4
  • 34
    • 0000229628 scopus 로고
    • A system for induction of oblique decision trees
    • Murthy, S. K., Kasif, S., and Salzberg, S. A system for induction of oblique decision trees. JAIR, 2, 1994.
    • (1994) JAIR , vol.2
    • Murthy, S.K.1    Kasif, S.2    Salzberg, S.3
  • 35
    • 84969975074 scopus 로고    scopus 로고
    • Feature-budgeted random forest
    • Nan, F., Wang, J., and Saligrama, V. Feature-budgeted random forest. In ICML, 2015. http://sites.bu.edu/data/code-4/.
    • (2015) ICML
    • Nan, F.1    Wang, J.2    Saligrama, V.3
  • 36
    • 85018892105 scopus 로고    scopus 로고
    • Pruning random forests for prediction on a budget
    • Nan, F., Wang, J., and Saligrama, V. Pruning random forests for prediction on a budget. In NIPS, 2016.
    • (2016) NIPS
    • Nan, F.1    Wang, J.2    Saligrama, V.3
  • 39
    • 85016074905 scopus 로고    scopus 로고
    • Xnor-net: Imagenet classification using binary convolutional neural networks
    • Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks. In ECCV, 2016.
    • (2016) ECCV
    • Rastegari, M.1    Ordonez, V.2    Redmon, J.3    Farhadi, A.4
  • 44
    • 84945766475 scopus 로고
    • Perceptron trees: A case study in hybrid concept representations
    • Utgoff, P. E. Perceptron trees: A case study in hybrid concept representations. Connection Science, 1(4), 1989
    • (1989) Connection Science , vol.1 , Issue.4
    • Utgoff, P.E.1
  • 45
    • 8644258401 scopus 로고    scopus 로고
    • A statistical approach to texture classification from single images
    • Varma, M. and Zisserman, A. A statistical approach to texture classification from single images. IJCV, 62(1- 2): 61-81, 2005.
    • (2005) IJCV , vol.62 , Issue.1-2 , pp. 61-81
    • Varma, M.1    Zisserman, A.2
  • 46
    • 2142812371 scopus 로고    scopus 로고
    • Robust real-time face detection
    • Viola, P. and Jones, M. J. Robust real-time face detection. IJCV, 57(2), 2004.
    • (2004) IJCV , vol.57 , pp. 2
    • Viola, P.1    Jones, M.J.2
  • 47
    • 84965156319 scopus 로고    scopus 로고
    • Efficient learning by directed acyclic graph for resource constrained prediction
    • Wang, J., Trapeznikov, K., and Saligrama, V. Efficient learning by directed acyclic graph for resource constrained prediction. In NIPS, 2015.
    • (2015) NIPS
    • Wang, J.1    Trapeznikov, K.2    Saligrama, V.3
  • 48
    • 85048405163 scopus 로고    scopus 로고
    • Deep distance metric learning with data summarization
    • Wang, W, Chen, C, Chen, W., Rai, P., and Carin, L. Deep distance metric learning with data summarization. In ECMLPKDD, 2016.
    • (2016) ECMLPKDD
    • Wang, W.1    Chen, C.2    Chen, W.3    Rai, P.4    Carin, L.5
  • 49
    • 84986275157 scopus 로고    scopus 로고
    • Quantized convolutional neural networks for mobile devices
    • Wu, J., Leng, C, Wang, Y., Hu, Q., and Cheng, J. Quantized convolutional neural networks for mobile devices. In CVPR, 2016.
    • (2016) CVPR
    • Wu, J.1    Leng, C.2    Wang, Y.3    Hu, Q.4    Cheng, J.5
  • 50
    • 84867129211 scopus 로고    scopus 로고
    • The greedy miser: Learning under test-time budgets
    • Xu, Z., Weinberger, K. Q., and Chapelle, O. The greedy miser: Learning under test-time budgets. In ICML, 2012.
    • ICML , vol.2012
    • Xu, Z.1    Weinberger, K.Q.2    Chapelle, O.3
  • 52
    • 77952494909 scopus 로고    scopus 로고
    • Group-sensitive multiple kernel learning for object categorization
    • Yang, J., Li, Y., Tian, Y, Duan, L., and Gao, W. Group-sensitive multiple kernel learning for object categorization. In ICCV, 2009.
    • (2009) ICCV
    • Yang, J.1    Li, Y.2    Tian, Y.3    Duan, L.4    Gao, W.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.