-
1
-
-
85048437373
-
-
The right whale dataset. https://www. kaggle. com/c/whale-detection-challenge/data.
-
The Right Whale Dataset
-
-
-
2
-
-
84937961091
-
Do deep nets really need to be deep?
-
Ba, J. and Caruana, R. Do deep nets really need to be deep? In NIPS, 2014.
-
(2014)
NIPS
-
-
Ba, J.1
Caruana, R.2
-
4
-
-
85048418348
-
-
BonsaiCode. Code for Bonsai. http://www.manikvarma.org/code/Bonsai/download.html.
-
Code for Bonsai
-
-
-
5
-
-
0035478854
-
Random forests
-
Breiman, L. Random forests. ML, 2001.
-
(2001)
ML
-
-
Breiman, L.1
-
6
-
-
0003802343
-
-
CRC press
-
Brciman, L., Friedman, J., Stone, C. J., and Olshcn, R. A. Classification and regression trees. In CRC press, 1984.
-
(1984)
Classification and Regression Trees
-
-
Brciman, L.1
Friedman, J.2
Stone, C.J.3
Olshcn, R.A.4
-
8
-
-
84870035074
-
From ranknet to lambdarank to lambdamart: An overview
-
Burges, C. J. From ranknet to lambdarank to lambdamart: An overview. Learning, 11(23-581), 2010.
-
(2010)
Learning
, vol.11
, Issue.23
, pp. 581
-
-
Burges, C.J.1
-
11
-
-
84937896655
-
Exploiting linear structure within convolutional networks for efficient evaluation
-
Denton, E. L., Zaremba, W., Bruna, J., LeCun, Y, and Fergus, R. Exploiting linear structure within convolutional networks for efficient evaluation. In NIPS, 2014.
-
(2014)
NIPS
-
-
Denton, E.L.1
Zaremba, W.2
Bruna, J.3
LeCun, Y.4
Fergus, R.5
-
12
-
-
0003922190
-
-
John Wiley and Sons, 2nd edition
-
Duda, R. O., Hart, P. E., and Stork, D. G. Pattern Classification. John Wiley and Sons, 2nd edition, 2002.
-
(2002)
Pattern Classification
-
-
Duda, R.O.1
Hart, P.E.2
Stork, D.G.3
-
13
-
-
85083950579
-
Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding
-
Han, S., Mao, H., and Dally, W. J. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. In ICLR, 2016.
-
(2016)
ICLR
-
-
Han, S.1
Mao, H.2
Dally, W.J.3
-
14
-
-
84937824211
-
Fast prediction for large-scale kernel machines
-
Hsieh, C. J., Si, S., and Dhillon, I. Fast prediction for large-scale kernel machines. In NIPS, 2014.
-
(2014)
NIPS
-
-
Hsieh, C.J.1
Si, S.2
Dhillon, I.3
-
15
-
-
85034212473
-
Quantized neural networks: Training neural networks with low precision weights and activations
-
abs/1609.07061
-
Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R., and Bengio, Y Quantized neural networks: Training neural networks with low precision weights and activations. CoRR, abs/1609.07061, 2016.
-
(2016)
CoRR
-
-
Hubara, I.1
Courbariaux, M.2
Soudry, D.3
El-Yaniv, R.4
Bengio, Y.5
-
16
-
-
0028428774
-
A database for handwritten text recognition research
-
Hull, J. J. A database for handwritten text recognition research. IEEE PAMI, 16, 1994.
-
(1994)
IEEE PAMI
, vol.16
-
-
Hull, J.J.1
-
17
-
-
85014063345
-
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1MB model size
-
abs/1602.07360
-
Iandola, F. N., Moskewicz, M. W, Ashraf, K., Han, S., Dally, W. J., and Keutzer, K. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1MB model size. CoRR, abs/1602.07360, 2016.
-
(2016)
CoRR
-
-
Iandola, F.N.1
Moskewicz, M.W.2
Ashraf, K.3
Han, S.4
Dally, W.J.5
Keutzer, K.6
-
18
-
-
85034822541
-
-
arXiv preprint arXiv: 1605. 06489
-
Ioannou, Y, Robertson, D., Cipolla, R., and Criminisi, A. Deep roots: Improving enn efficiency with hierarchical filter groups. arXiv preprint arXiv: 1605.06489, 2016a.
-
(2016)
Deep Roots: Improving Enn Efficiency with Hierarchical Filter Groups
-
-
Ioannou, Y.1
Robertson, D.2
Cipolla, R.3
Criminisi, A.4
-
19
-
-
85048439350
-
Decision forests, convolutional networks and the models in-between
-
Ioannou, Y, Robertson, D., Kontschieder, D. Zikicand P., Shotton, J., Brown, M., and Criminisi, A. Decision forests, convolutional networks and the models in-between. arXiv preprint arXiv: 1603.01250, 2016b.
-
ArXiv Preprint ArXiv: 1603. 01250, 2016b
-
-
Ioannou, Y.1
Robertson, D.2
Kontschieder, D.3
Zikicand, P.4
Shotton, J.5
Brown, M.6
Criminisi, A.7
-
20
-
-
84937844304
-
On iterative hard thresholding methods for high-dimensional m-estimation
-
Jain, P., Tewari, A., and Kar, P. On iterative hard thresholding methods for high-dimensional m-estimation. In NIPS, 2014.
-
(2014)
NIPS
-
-
Jain, P.1
Tewari, A.2
Kar, P.3
-
21
-
-
84947706844
-
Ll-based compression of random forest models
-
Joly, A., Schnitzler, F., Geurts, P., and Wehenkel, L. Ll-based compression of random forest models. In ESANN, 2012.
-
(2012)
ESANN
-
-
Joly, A.1
Schnitzler, F.2
Geurts, P.3
Wehenkel, L.4
-
22
-
-
84897556730
-
Local deep kernel learning for efficient non-linear SVM prediction
-
Jose, C, Goyal, P., Aggrwal, P., and Varma, M. Local deep kernel learning for efficient non-linear svm prediction. In ICML, 2013. https://manikvarma.github.io/code/LDKL/download.html.
-
(2013)
ICML
-
-
Jose, C.1
Goyal, P.2
Aggrwal, P.3
Varma, M.4
-
23
-
-
85048428832
-
Eye movement in biometrics
-
Kasprowski, P. and Ober, J. Eye movement in biometrics. In eccv, 2004.
-
(2004)
ICCV
-
-
Kasprowski, P.1
Ober, J.2
-
24
-
-
84973896955
-
Deep neural decision forests
-
Kontschieder, P., Fiterau, M., Criminisi, A., and Bulo, S. R. Deep neural decision forests. In ICCV, 2015.
-
(2015)
ICCV
-
-
Kontschieder, P.1
Fiterau, M.2
Criminisi, A.3
Bulo, S.R.4
-
26
-
-
84867380027
-
Pruning of random forest classifiers: A survey and future directions
-
Kulkami, V. Y. and Sinha, P. K. Pruning of random forest classifiers: A survey and future directions. In ICDSE, 2012.
-
ICDSE
, vol.2012
-
-
Kulkami, V.Y.1
Sinha, P.K.2
-
27
-
-
85018876907
-
Feature-cost sensitive learning with submodular trees of classifiers
-
Kusner, M. J., Chen, W., Zhou, Q., Xu, Z. E., Weinberger, K. Q., and Chen, Y. Feature-cost sensitive learning with submodular trees of classifiers. In AAAI, 2014a.
-
(2014)
AAAI
-
-
Kusner, M.J.1
Chen, W.2
Zhou, Q.3
Xu, Z.E.4
Weinberger, K.Q.5
Chen, Y.6
-
28
-
-
84919880581
-
Stochastic neighbor compression
-
Kusner, M. J., Tyree, S., Weinberger, K. Q., and Agrawal, K. Stochastic neighbor compression. In ICML, 2014b. http://mkusner.github.io/#code.
-
(2014)
ICML
-
-
Kusner, M.J.1
Tyree, S.2
Weinberger, K.Q.3
Agrawal, K.4
-
29
-
-
84897549944
-
Fastfood-approximating kernel expansions in loglinear time
-
Le, Q., Sarlós, T., and Smola, A. Fastfood-approximating kernel expansions in loglinear time. In ICML, 2013.
-
(2013)
ICML
-
-
Le, Q.1
Sarlós, T.2
Smola, A.3
-
30
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11): 2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
32
-
-
85007240255
-
Fast and accurate refined nyström-based kernel SVM
-
Li, Z., Yang, T., Zhang, L., and Jin, R. Fast and accurate refined nyström-based kernel svm. In AAAI, 2016.
-
(2016)
AAAI
-
-
Li, Z.1
Yang, T.2
Zhang, L.3
Jin, R.4
-
33
-
-
84990878791
-
-
Technical report Morgan Stanley
-
Meunier, F., Wood, A., Weiss, K., Huberty, K., Flannery, S., Moore, J., Hettenbach, C, and Lu, B. The internet of things is now connecting the real economy. Technical report, Morgan Stanley, 2014.
-
(2014)
The Internet of Things Is Now Connecting the Real Economy
-
-
Meunier, F.1
Wood, A.2
Weiss, K.3
Huberty, K.4
Flannery, S.5
Moore, J.6
Hettenbach, C.7
Lu, B.8
-
34
-
-
0000229628
-
A system for induction of oblique decision trees
-
Murthy, S. K., Kasif, S., and Salzberg, S. A system for induction of oblique decision trees. JAIR, 2, 1994.
-
(1994)
JAIR
, vol.2
-
-
Murthy, S.K.1
Kasif, S.2
Salzberg, S.3
-
35
-
-
84969975074
-
Feature-budgeted random forest
-
Nan, F., Wang, J., and Saligrama, V. Feature-budgeted random forest. In ICML, 2015. http://sites.bu.edu/data/code-4/.
-
(2015)
ICML
-
-
Nan, F.1
Wang, J.2
Saligrama, V.3
-
36
-
-
85018892105
-
Pruning random forests for prediction on a budget
-
Nan, F., Wang, J., and Saligrama, V. Pruning random forests for prediction on a budget. In NIPS, 2016.
-
(2016)
NIPS
-
-
Nan, F.1
Wang, J.2
Saligrama, V.3
-
37
-
-
84965166157
-
Efficient non-greedy optimization of decision trees
-
Norouzi, M., Collins, M., Johnson, M. A., Fleet, D. J., and Kohli, P. Efficient non-greedy optimization of decision trees. In NIPS, 2015.
-
(2015)
NIPS
-
-
Norouzi, M.1
Collins, M.2
Johnson, M.A.3
Fleet, D.J.4
Kohli, P.5
-
39
-
-
85016074905
-
Xnor-net: Imagenet classification using binary convolutional neural networks
-
Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A. Xnor-net: Imagenet classification using binary convolutional neural networks. In ECCV, 2016.
-
(2016)
ECCV
-
-
Rastegari, M.1
Ordonez, V.2
Redmon, J.3
Farhadi, A.4
-
41
-
-
84986275851
-
Refining architectures of deep convolutional neural networks
-
Shankar, S., Robertson, D., Ioannou, Y., Criminisi, A., and Cipolla, R. Refining architectures of deep convolutional neural networks. In CVPR, 2016.
-
(2016)
CVPR
-
-
Shankar, S.1
Robertson, D.2
Ioannou, Y.3
Criminisi, A.4
Cipolla, R.5
-
42
-
-
67649980316
-
An optimal constrained pruning strategy for decision trees
-
Sherali, H. D, Hobeika, A. G., and Jeenanunta, C. An optimal constrained pruning strategy for decision trees. INFORMS Journal on Computing, 21(1), 2009.
-
(2009)
INFORMS Journal on Computing
, vol.21
, Issue.1
-
-
Sherali, H.D.1
Hobeika, A.G.2
Jeenanunta, C.3
-
43
-
-
85044272839
-
Decision jungles: Compact and rich models for classification
-
Shotton, J., Sharp, T., Kohli, P., Nowozin, S., Winn, J., and Criminisi, A. Decision jungles: Compact and rich models for classification. In NIPS, 2013.
-
(2013)
NIPS
-
-
Shotton, J.1
Sharp, T.2
Kohli, P.3
Nowozin, S.4
Winn, J.5
Criminisi, A.6
-
44
-
-
84945766475
-
Perceptron trees: A case study in hybrid concept representations
-
Utgoff, P. E. Perceptron trees: A case study in hybrid concept representations. Connection Science, 1(4), 1989
-
(1989)
Connection Science
, vol.1
, Issue.4
-
-
Utgoff, P.E.1
-
45
-
-
8644258401
-
A statistical approach to texture classification from single images
-
Varma, M. and Zisserman, A. A statistical approach to texture classification from single images. IJCV, 62(1- 2): 61-81, 2005.
-
(2005)
IJCV
, vol.62
, Issue.1-2
, pp. 61-81
-
-
Varma, M.1
Zisserman, A.2
-
46
-
-
2142812371
-
Robust real-time face detection
-
Viola, P. and Jones, M. J. Robust real-time face detection. IJCV, 57(2), 2004.
-
(2004)
IJCV
, vol.57
, pp. 2
-
-
Viola, P.1
Jones, M.J.2
-
47
-
-
84965156319
-
Efficient learning by directed acyclic graph for resource constrained prediction
-
Wang, J., Trapeznikov, K., and Saligrama, V. Efficient learning by directed acyclic graph for resource constrained prediction. In NIPS, 2015.
-
(2015)
NIPS
-
-
Wang, J.1
Trapeznikov, K.2
Saligrama, V.3
-
48
-
-
85048405163
-
Deep distance metric learning with data summarization
-
Wang, W, Chen, C, Chen, W., Rai, P., and Carin, L. Deep distance metric learning with data summarization. In ECMLPKDD, 2016.
-
(2016)
ECMLPKDD
-
-
Wang, W.1
Chen, C.2
Chen, W.3
Rai, P.4
Carin, L.5
-
49
-
-
84986275157
-
Quantized convolutional neural networks for mobile devices
-
Wu, J., Leng, C, Wang, Y., Hu, Q., and Cheng, J. Quantized convolutional neural networks for mobile devices. In CVPR, 2016.
-
(2016)
CVPR
-
-
Wu, J.1
Leng, C.2
Wang, Y.3
Hu, Q.4
Cheng, J.5
-
50
-
-
84867129211
-
The greedy miser: Learning under test-time budgets
-
Xu, Z., Weinberger, K. Q., and Chapelle, O. The greedy miser: Learning under test-time budgets. In ICML, 2012.
-
ICML
, vol.2012
-
-
Xu, Z.1
Weinberger, K.Q.2
Chapelle, O.3
-
51
-
-
84897496647
-
Cost-sensitive tree of classifiers
-
Xu, Z. E., Kusner, M. J., Weinberger, K. Q., and Chen, M. Cost-sensitive tree of classifiers. In ICML, 2013.
-
(2013)
ICML
-
-
Xu, Z.E.1
Kusner, M.J.2
Weinberger, K.Q.3
Chen, M.4
-
52
-
-
77952494909
-
Group-sensitive multiple kernel learning for object categorization
-
Yang, J., Li, Y., Tian, Y, Duan, L., and Gao, W. Group-sensitive multiple kernel learning for object categorization. In ICCV, 2009.
-
(2009)
ICCV
-
-
Yang, J.1
Li, Y.2
Tian, Y.3
Duan, L.4
Gao, W.5
-
53
-
-
84973904224
-
Deep fried convnets
-
Yang, Z., Moczulski, M., Denil, M., Freitas, N., Smola, A. J., Song, L., and Wang, Z. Deep fried convnets. ICCV, 2015.
-
(2015)
ICCV
-
-
Yang, Z.1
Moczulski, M.2
Denil, M.3
Freitas, N.4
Smola, A.J.5
Song, L.6
Wang, Z.7
|