메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1729-1737

Efficient non-greedy optimization of decision trees

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; COMPUTER VISION; DATA MINING; INFORMATION SCIENCE; LEARNING SYSTEMS; OPTIMIZATION; STOCHASTIC SYSTEMS;

EID: 84965166157     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (101)

References (25)
  • 1
    • 0041347160 scopus 로고
    • Global tree optimization: A non-greedy decision tree algorithm
    • K. P. Bennett. Global tree optimization: A non-greedy decision tree algorithm. Computing Science and Statistics, pages 156-156, 1994.
    • (1994) Computing Science and Statistics , pp. 156
    • Bennett, K.P.1
  • 4
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 8
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages 1189-1232, 2001.
    • (2001) Annals of Statistics , pp. 1189-1232
    • Friedman, J.H.1
  • 9
    • 80053120334 scopus 로고    scopus 로고
    • Hough forests for object detection, tracking, and action recognition
    • J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky. Hough forests for object detection, tracking, and action recognition. IEEE Trans. PAMI, 33(11):2188-2202, 2011.
    • (2011) IEEE Trans. PAMI , vol.33 , Issue.11 , pp. 2188-2202
    • Gall, J.1    Yao, A.2    Razavi, N.3    Van Gool, L.4    Lempitsky, V.5
  • 11
    • 0001815269 scopus 로고
    • Constructing optimal binary decision trees is NP-complete
    • L. Hyafil and R. L. Rivest. Constructing optimal binary decision trees is NP-complete. Information Processing Letters, 5(1):15-17, 1976.
    • (1976) Information Processing Letters , vol.5 , Issue.1 , pp. 15-17
    • Hyafil, L.1    Rivest, R.L.2
  • 12
    • 84881043004 scopus 로고    scopus 로고
    • Loss-specific training of non-parametric image restoration models: A new state of the art
    • J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration models: A new state of the art. ECCV, 2012.
    • (2012) ECCV
    • Jancsary, J.1    Nowozin, S.2    Rother, C.3
  • 13
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the em algorithm
    • M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural Comput., 6(2):181-214, 1994.
    • (1994) Neural Comput. , vol.6 , Issue.2 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 16
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision tree induction
    • J. Mingers. An empirical comparison of pruning methods for decision tree induction. Machine Learning, 4(2):227-243, 1989.
    • (1989) Machine Learning , vol.4 , Issue.2 , pp. 227-243
    • Mingers, J.1
  • 21
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine learning, 1(1):81-106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.