메뉴 건너뛰기




Volumn , Issue PART 2, 2013, Pages 1523-1531

Local deep kernel learning for efficient non-linear SVM prediction

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); SUPPORT VECTOR MACHINES;

EID: 84897556730     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (47)

References (41)
  • 2
    • 84858766876 scopus 로고    scopus 로고
    • Exploring large feature spaces with hierarchical multiple kernel learning
    • Bach, F. R. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS, pp. 105-112, 2008.
    • (2008) NIPS , pp. 105-112
    • Bach, F.R.1
  • 3
    • 78649265006 scopus 로고    scopus 로고
    • Decision trees do not generalize to new variations
    • Bengio, Y., Delalleau, O., and Simard, C. Decision trees do not generalize to new variations. Compt. Intl., 26, 2010.
    • (2010) Compt. Intl. , vol.26
    • Bengio, Y.1    Delalleau, O.2    Simard, C.3
  • 5
    • 84898957872 scopus 로고    scopus 로고
    • Improving the accuracy and speed of support vector machines
    • Burges, C. J. C. and Schölkopf, B. Improving the accuracy and speed of support vector machines. In NIPS, 1997.
    • (1997) NIPS
    • Burges, C.J.C.1    Schölkopf, B.2
  • 6
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing multiple parameters for Support Vector Machines. Machine Learning, 46:131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 7
    • 65449122452 scopus 로고    scopus 로고
    • Learning subspace kernels for classification
    • Chen, J., Ji, S., Ceran, B., Li, Q., Wu, M., and Ye, J. Learning subspace kernels for classification. In KDD, 2008.
    • (2008) KDD
    • Chen, J.1    Ji, S.2    Ceran, B.3    Li, Q.4    Wu, M.5    Ye, J.6
  • 8
    • 78149327741 scopus 로고    scopus 로고
    • Kernel methods for deep learning
    • Cho, Y. and Saul, L. Kernel methods for deep learning. In NIPS, 2009.
    • (2009) NIPS
    • Cho, Y.1    Saul, L.2
  • 9
    • 77958134983 scopus 로고    scopus 로고
    • L2 regularization for learning kernels
    • Cortes, C., Mohri, M., and Rostamizadeh, A. L2 regularization for learning kernels. In UAI, 2009a.
    • (2009) UAI
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 10
    • 84858743760 scopus 로고    scopus 로고
    • Learning non-linear combinations of kernels
    • Cortes, C., Mohri, M., and Rostamizadeh, A. Learning non-linear combinations of kernels. In NIPS, 2009b.
    • (2009) NIPS
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 11
    • 80053459990 scopus 로고    scopus 로고
    • Adaptive kernel approximation for large-scale non-linear svm prediction
    • Cossalter, M., Yan, R., and Zheng, L. Adaptive kernel approximation for large-scale non-linear svm prediction. In ICML, 2011.
    • (2011) ICML
    • Cossalter, M.1    Yan, R.2    Zheng, L.3
  • 12
    • 56449124689 scopus 로고    scopus 로고
    • Localized multiple kernel learning
    • Gonen, M. and Alpaydin, E. Localized multiple kernel learning. In ICML, 2008.
    • (2008) ICML
    • Gonen, M.1    Alpaydin, E.2
  • 14
    • 84866010566 scopus 로고    scopus 로고
    • Spg-gmkl: Generalized multiple kernel learning with a million kernels
    • Jain, A., Vishwanathan, S. V. N., and Varma, M. Spg-gmkl: Generalized multiple kernel learning with a million kernels. In KDD, 2012.
    • (2012) KDD
    • Jain, A.1    Vishwanathan, S.V.N.2    Varma, M.3
  • 15
    • 68949154453 scopus 로고    scopus 로고
    • Sparse kernel SVMs via cutting-plane training
    • Joachims, T. and Yu, C.-N. J. Sparse kernel SVMs via cutting-plane training. Machine Learning, 76, 2009.
    • (2009) Machine Learning , vol.76
    • Joachims, T.1    Yu, C.-N.J.2
  • 17
    • 84897567068 scopus 로고    scopus 로고
    • Random feature maps for dot product kernels
    • Kar, P. and Karnick, H. Random feature maps for dot product kernels. In AISTATS, 2012.
    • (2012) AISTATS
    • Kar, P.1    Karnick, H.2
  • 18
    • 33745789043 scopus 로고    scopus 로고
    • Building support vector machines with reduced classifier complexity
    • Keerthi, S. S., Chapelle, O., and DeCoste, D. Building support vector machines with reduced classifier complexity. JMLR, 7, 2006.
    • (2006) JMLR , vol.7
    • Keerthi, S.S.1    Chapelle, O.2    DeCoste, D.3
  • 20
    • 80053436893 scopus 로고    scopus 로고
    • Locally linear support vector machines
    • Ladicky, L. and Torr, P. H. S. Locally linear support vector machines. In ICML, 2011.
    • (2011) ICML
    • Ladicky, L.1    Torr, P.H.S.2
  • 22
    • 84870201308 scopus 로고    scopus 로고
    • Efficient classification for additive kernel SVMs
    • Maji, S., Berg, A. C., and Malik, J. Efficient classification for additive kernel SVMs. IEEE PAMI, 35(1), 2013.
    • (2013) IEEE PAMI , vol.35 , Issue.1
    • Maji, S.1    Berg, A.C.2    Malik, J.3
  • 23
    • 21844468979 scopus 로고    scopus 로고
    • Learning the kernel with hyperkernels
    • Ong, C. S., Smola, A. J., and Williamson, R. C. Learning the kernel with hyperkernels. JMLR, 6:1043-1071, 2005.
    • (2005) JMLR , vol.6 , pp. 1043-1071
    • Ong, C.S.1    Smola, A.J.2    Williamson, R.C.3
  • 24
    • 80053459750 scopus 로고    scopus 로고
    • Ultra-fast optimization algorithm for sparse multi kernel learning
    • June
    • Orabona, F. and Jie, L. Ultra-fast optimization algorithm for sparse multi kernel learning. In ICML, June 2011.
    • (2011) ICML
    • Orabona, F.1    Jie, L.2
  • 25
    • 77955993905 scopus 로고    scopus 로고
    • Online-batch strongly convex multi kernel learning
    • San Francisco, California, June
    • Orabona, F., Jie, L., and Caputo, B. Online-batch strongly convex multi kernel learning. In CVPR, pp. 787-794, San Francisco, California, June 2010.
    • (2010) CVPR , pp. 787-794
    • Orabona, F.1    Jie, L.2    Caputo, B.3
  • 27
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • Rahimi, A. and Recht, B. Random features for large-scale kernel machines. In NIPS, 2007.
    • (2007) NIPS
    • Rahimi, A.1    Recht, B.2
  • 28
    • 77953199346 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In NIPS, 2008.
    • (2008) NIPS
    • Rahimi, A.1    Recht, B.2
  • 30
    • 85162475298 scopus 로고    scopus 로고
    • Non-parametric group orthogonal matching pursuit for sparse learning with multiple kernels
    • Sindhwani, V. and Lozano, A. C. Non-parametric group orthogonal matching pursuit for sparse learning with multiple kernels. In NIPS, 2011.
    • (2011) NIPS
    • Sindhwani, V.1    Lozano, A.C.2
  • 32
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast svm training on very large data sets
    • Tsang, I., Kwok, J. T., and Cheung, P. M. Core vector machines: Fast svm training on very large data sets. JMLR, 6, 2005.
    • (2005) JMLR , vol.6
    • Tsang, I.1    Kwok, J.T.2    Cheung, P.M.3
  • 33
    • 78649312446 scopus 로고    scopus 로고
    • Simpler core vector machines with enclosing balls
    • Tsang, I., Kocsor, A., and Kwok, J. T. Simpler core vector machines with enclosing balls. In ICML, 2007.
    • (2007) ICML
    • Tsang, I.1    Kocsor, A.2    Kwok, J.T.3
  • 34
    • 33144470194 scopus 로고    scopus 로고
    • Efficient hyperkernel learning using second-order cone programming
    • DOI 10.1109/TNN.2005.860848
    • Tsang, I. W. and Kwok, J. T. Efficient hyperkernel learning using second-order cone programming. IEEE Transactions on Neural Networks, 17(1):48-58, 2006. (Pubitemid 43263939)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.1 , pp. 48-58
    • Tsang, I.W.-H.1    Kwok, J.T.-Y.2
  • 35
    • 84856194352 scopus 로고    scopus 로고
    • Efficient additive kernels via explicit feature maps
    • Vedaldi, A. and Zisserman, A. Efficient additive kernels via explicit feature maps. IEEE PAMI, 34(3), 2011.
    • (2011) IEEE PAMI , vol.34 , Issue.3
    • Vedaldi, A.1    Zisserman, A.2
  • 36
    • 84866644207 scopus 로고    scopus 로고
    • Sparse kernel approximations for efficient classification and detection
    • Vedaldi, A. and Zisserman, A. Sparse kernel approximations for efficient classification and detection. In CVPR, 2012.
    • (2012) CVPR
    • Vedaldi, A.1    Zisserman, A.2
  • 37
    • 84877777313 scopus 로고    scopus 로고
    • Learning with recursive perceptual representations
    • Vinyals, O., Jia, Y., Deng, L., and Darrell, T. Learning with recursive perceptual representations. In NIPS, 2012.
    • (2012) NIPS
    • Vinyals, O.1    Jia, Y.2    Deng, L.3    Darrell, T.4
  • 39
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • Williams, C. and Seeger, M. Using the Nyström method to speed up kernel machines. In NIPS, 2001.
    • (2001) NIPS
    • Williams, C.1    Seeger, M.2
  • 40
    • 84877740547 scopus 로고    scopus 로고
    • Nyström method vs random fourier features: A theoretical and empirical comparison
    • Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H. Nyström method vs random fourier features: A theoretical and empirical comparison. In NIPS, 2012.
    • (2012) NIPS
    • Yang, T.1    Li, Y.-F.2    Mahdavi, M.3    Jin, R.4    Zhou, Z.-H.5
  • 41
    • 44649123652 scopus 로고    scopus 로고
    • Multi-class discriminant kernel learning via convex programming
    • Ye, J., Ji, S., and Chen, J. Multi-class discriminant kernel learning via convex programming. JMLR, 9:719-758, 2008.
    • (2008) JMLR , vol.9 , pp. 719-758
    • Ye, J.1    Ji, S.2    Chen, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.