-
1
-
-
79952749920
-
Variable sparsity kernel learning
-
Aflalo, J., Ben-Tal, A., Bhattacharyya, C., Nath, J. Saketha, and Raman, S. Variable sparsity kernel learning. JMLR, 12:565-592, 2011.
-
(2011)
JMLR
, vol.12
, pp. 565-592
-
-
Aflalo, J.1
Ben-Tal, A.2
Bhattacharyya, C.3
Nath, J.S.4
Raman, S.5
-
2
-
-
84858766876
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
Bach, F. R. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS, pp. 105-112, 2008.
-
(2008)
NIPS
, pp. 105-112
-
-
Bach, F.R.1
-
3
-
-
78649265006
-
Decision trees do not generalize to new variations
-
Bengio, Y., Delalleau, O., and Simard, C. Decision trees do not generalize to new variations. Compt. Intl., 26, 2010.
-
(2010)
Compt. Intl.
, vol.26
-
-
Bengio, Y.1
Delalleau, O.2
Simard, C.3
-
4
-
-
84897496232
-
Fourier kernel learning
-
Bǎzǎvan, E. G., Li, F., and Sminchisescu, C. Fourier kernel learning. In Proc. ECCV, 2012.
-
Proc. ECCV, 2012
-
-
Bǎzǎvan, E.G.1
Li, F.2
Sminchisescu, C.3
-
5
-
-
84898957872
-
Improving the accuracy and speed of support vector machines
-
Burges, C. J. C. and Schölkopf, B. Improving the accuracy and speed of support vector machines. In NIPS, 1997.
-
(1997)
NIPS
-
-
Burges, C.J.C.1
Schölkopf, B.2
-
6
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
Chapelle, O., Vapnik, V., Bousquet, O., and Mukherjee, S. Choosing multiple parameters for Support Vector Machines. Machine Learning, 46:131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
7
-
-
65449122452
-
Learning subspace kernels for classification
-
Chen, J., Ji, S., Ceran, B., Li, Q., Wu, M., and Ye, J. Learning subspace kernels for classification. In KDD, 2008.
-
(2008)
KDD
-
-
Chen, J.1
Ji, S.2
Ceran, B.3
Li, Q.4
Wu, M.5
Ye, J.6
-
8
-
-
78149327741
-
Kernel methods for deep learning
-
Cho, Y. and Saul, L. Kernel methods for deep learning. In NIPS, 2009.
-
(2009)
NIPS
-
-
Cho, Y.1
Saul, L.2
-
10
-
-
84858743760
-
Learning non-linear combinations of kernels
-
Cortes, C., Mohri, M., and Rostamizadeh, A. Learning non-linear combinations of kernels. In NIPS, 2009b.
-
(2009)
NIPS
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
11
-
-
80053459990
-
Adaptive kernel approximation for large-scale non-linear svm prediction
-
Cossalter, M., Yan, R., and Zheng, L. Adaptive kernel approximation for large-scale non-linear svm prediction. In ICML, 2011.
-
(2011)
ICML
-
-
Cossalter, M.1
Yan, R.2
Zheng, L.3
-
12
-
-
56449124689
-
Localized multiple kernel learning
-
Gonen, M. and Alpaydin, E. Localized multiple kernel learning. In ICML, 2008.
-
(2008)
ICML
-
-
Gonen, M.1
Alpaydin, E.2
-
13
-
-
56449086680
-
A dual coordinate descent method for large-scale linear svm
-
Hsieh, C.-J., Chang, K.-W., Lin, C.-J., Keerthi, S. S., and Sundarajan, S. A dual coordinate descent method for large-scale linear svm. In ICML, 2008.
-
(2008)
ICML
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Keerthi, S.S.4
Sundarajan, S.5
-
14
-
-
84866010566
-
Spg-gmkl: Generalized multiple kernel learning with a million kernels
-
Jain, A., Vishwanathan, S. V. N., and Varma, M. Spg-gmkl: Generalized multiple kernel learning with a million kernels. In KDD, 2012.
-
(2012)
KDD
-
-
Jain, A.1
Vishwanathan, S.V.N.2
Varma, M.3
-
15
-
-
68949154453
-
Sparse kernel SVMs via cutting-plane training
-
Joachims, T. and Yu, C.-N. J. Sparse kernel SVMs via cutting-plane training. Machine Learning, 76, 2009.
-
(2009)
Machine Learning
, vol.76
-
-
Joachims, T.1
Yu, C.-N.J.2
-
16
-
-
84897499918
-
-
Jose, C., Goyal, P., Aggrwal, P., and Varma, M. The LDKL code. http://research.microsoft.com/enus/um/people/manik/code/LDKL/download.html, 2013.
-
(2013)
The LDKL Code
-
-
Jose, C.1
Goyal, P.2
Aggrwal, P.3
Varma, M.4
-
17
-
-
84897567068
-
Random feature maps for dot product kernels
-
Kar, P. and Karnick, H. Random feature maps for dot product kernels. In AISTATS, 2012.
-
(2012)
AISTATS
-
-
Kar, P.1
Karnick, H.2
-
18
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
Keerthi, S. S., Chapelle, O., and DeCoste, D. Building support vector machines with reduced classifier complexity. JMLR, 7, 2006.
-
(2006)
JMLR
, vol.7
-
-
Keerthi, S.S.1
Chapelle, O.2
DeCoste, D.3
-
19
-
-
84858738634
-
Efficient and accurate l-p-norm Multiple Kernel Learning
-
Kloft, M., Brefeld, U., Sonnenburg, S., Laskov, P., Muller, K.-R., and Zien, A. Efficient and accurate l-p-norm Multiple Kernel Learning. In NIPS, 2009.
-
(2009)
NIPS
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Muller, K.-R.5
Zien, A.6
-
20
-
-
80053436893
-
Locally linear support vector machines
-
Ladicky, L. and Torr, P. H. S. Locally linear support vector machines. In ICML, 2011.
-
(2011)
ICML
-
-
Ladicky, L.1
Torr, P.H.S.2
-
21
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Lanckriet, G. R. G., Cristianini, N., Bartlett, P., El Ghaoui, L., and Jordan, M. I. Learning the kernel matrix with semidefinite programming. JMLR, 5:27-72, 2004.
-
(2004)
JMLR
, vol.5
, pp. 27-72
-
-
Lanckriet, G.R.G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.I.5
-
22
-
-
84870201308
-
Efficient classification for additive kernel SVMs
-
Maji, S., Berg, A. C., and Malik, J. Efficient classification for additive kernel SVMs. IEEE PAMI, 35(1), 2013.
-
(2013)
IEEE PAMI
, vol.35
, Issue.1
-
-
Maji, S.1
Berg, A.C.2
Malik, J.3
-
23
-
-
21844468979
-
Learning the kernel with hyperkernels
-
Ong, C. S., Smola, A. J., and Williamson, R. C. Learning the kernel with hyperkernels. JMLR, 6:1043-1071, 2005.
-
(2005)
JMLR
, vol.6
, pp. 1043-1071
-
-
Ong, C.S.1
Smola, A.J.2
Williamson, R.C.3
-
24
-
-
80053459750
-
Ultra-fast optimization algorithm for sparse multi kernel learning
-
June
-
Orabona, F. and Jie, L. Ultra-fast optimization algorithm for sparse multi kernel learning. In ICML, June 2011.
-
(2011)
ICML
-
-
Orabona, F.1
Jie, L.2
-
25
-
-
77955993905
-
Online-batch strongly convex multi kernel learning
-
San Francisco, California, June
-
Orabona, F., Jie, L., and Caputo, B. Online-batch strongly convex multi kernel learning. In CVPR, pp. 787-794, San Francisco, California, June 2010.
-
(2010)
CVPR
, pp. 787-794
-
-
Orabona, F.1
Jie, L.2
Caputo, B.3
-
26
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. JMLR, 12, 2011.
-
(2011)
JMLR
, vol.12
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
27
-
-
77953218689
-
Random features for large-scale kernel machines
-
Rahimi, A. and Recht, B. Random features for large-scale kernel machines. In NIPS, 2007.
-
(2007)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
28
-
-
77953199346
-
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
-
Rahimi, A. and Recht, B. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In NIPS, 2008.
-
(2008)
NIPS
-
-
Rahimi, A.1
Recht, B.2
-
29
-
-
57249084590
-
SimpleMKL
-
Rakotomamonjy, A., Bach, F., Grandvalet, Y., and Canu, S. SimpleMKL. JMLR, 9:2491-2521, 2008.
-
(2008)
JMLR
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Grandvalet, Y.3
Canu, S.4
-
30
-
-
85162475298
-
Non-parametric group orthogonal matching pursuit for sparse learning with multiple kernels
-
Sindhwani, V. and Lozano, A. C. Non-parametric group orthogonal matching pursuit for sparse learning with multiple kernels. In NIPS, 2011.
-
(2011)
NIPS
-
-
Sindhwani, V.1
Lozano, A.C.2
-
31
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg, S., Raetsch, G., Schaefer, C., and Schoelkopf, B. Large scale multiple kernel learning. JMLR, 7:1531-1565, 2006. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
32
-
-
21844440579
-
Core vector machines: Fast svm training on very large data sets
-
Tsang, I., Kwok, J. T., and Cheung, P. M. Core vector machines: Fast svm training on very large data sets. JMLR, 6, 2005.
-
(2005)
JMLR
, vol.6
-
-
Tsang, I.1
Kwok, J.T.2
Cheung, P.M.3
-
33
-
-
78649312446
-
Simpler core vector machines with enclosing balls
-
Tsang, I., Kocsor, A., and Kwok, J. T. Simpler core vector machines with enclosing balls. In ICML, 2007.
-
(2007)
ICML
-
-
Tsang, I.1
Kocsor, A.2
Kwok, J.T.3
-
34
-
-
33144470194
-
Efficient hyperkernel learning using second-order cone programming
-
DOI 10.1109/TNN.2005.860848
-
Tsang, I. W. and Kwok, J. T. Efficient hyperkernel learning using second-order cone programming. IEEE Transactions on Neural Networks, 17(1):48-58, 2006. (Pubitemid 43263939)
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.1
, pp. 48-58
-
-
Tsang, I.W.-H.1
Kwok, J.T.-Y.2
-
35
-
-
84856194352
-
Efficient additive kernels via explicit feature maps
-
Vedaldi, A. and Zisserman, A. Efficient additive kernels via explicit feature maps. IEEE PAMI, 34(3), 2011.
-
(2011)
IEEE PAMI
, vol.34
, Issue.3
-
-
Vedaldi, A.1
Zisserman, A.2
-
36
-
-
84866644207
-
Sparse kernel approximations for efficient classification and detection
-
Vedaldi, A. and Zisserman, A. Sparse kernel approximations for efficient classification and detection. In CVPR, 2012.
-
(2012)
CVPR
-
-
Vedaldi, A.1
Zisserman, A.2
-
37
-
-
84877777313
-
Learning with recursive perceptual representations
-
Vinyals, O., Jia, Y., Deng, L., and Darrell, T. Learning with recursive perceptual representations. In NIPS, 2012.
-
(2012)
NIPS
-
-
Vinyals, O.1
Jia, Y.2
Deng, L.3
Darrell, T.4
-
38
-
-
85162016686
-
Multiple kernel learning and the smo algorithm
-
Vishwanathan, S. V. N., Sun, Z., Theera-Ampornpunt, N., and Varma, M. Multiple kernel learning and the smo algorithm. In NIPS, 2010.
-
(2010)
NIPS
-
-
Vishwanathan, S.V.N.1
Sun, Z.2
Theera-Ampornpunt, N.3
Varma, M.4
-
39
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
Williams, C. and Seeger, M. Using the Nyström method to speed up kernel machines. In NIPS, 2001.
-
(2001)
NIPS
-
-
Williams, C.1
Seeger, M.2
-
40
-
-
84877740547
-
Nyström method vs random fourier features: A theoretical and empirical comparison
-
Yang, T., Li, Y.-F., Mahdavi, M., Jin, R., and Zhou, Z.-H. Nyström method vs random fourier features: A theoretical and empirical comparison. In NIPS, 2012.
-
(2012)
NIPS
-
-
Yang, T.1
Li, Y.-F.2
Mahdavi, M.3
Jin, R.4
Zhou, Z.-H.5
-
41
-
-
44649123652
-
Multi-class discriminant kernel learning via convex programming
-
Ye, J., Ji, S., and Chen, J. Multi-class discriminant kernel learning via convex programming. JMLR, 9:719-758, 2008.
-
(2008)
JMLR
, vol.9
, pp. 719-758
-
-
Ye, J.1
Ji, S.2
Chen, J.3
|