메뉴 건너뛰기




Volumn 17, Issue 1, 2018, Pages

Metabolome analysis-based design and engineering of a metabolic pathway in Corynebacterium glutamicum to match rates of simultaneous utilization of d-glucose and l-arabinose

Author keywords

Corynebacterium glutamicum; l Arabinose; Metabolic engineering; Metabolome analysis; Simultaneous utilization

Indexed keywords

6 PHOSPHOFRUCTOKINASE; ACETYL COENZYME A; ARABINOSE; CITRATE SYNTHASE; GLUCOSE; HEXOSE; PENTOSE; PHOSPHOENOLPYRUVATE; PHOSPHOTRANSFERASE; PYRUVATE KINASE;

EID: 85047063076     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-018-0927-6     Document Type: Article
Times cited : (25)

References (61)
  • 1
    • 9944252948 scopus 로고    scopus 로고
    • Features of promising technologies for pretreatment of lignocellulosic biomass
    • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673-86. https://doi.org/10.1016/j.biortech.2004.06.025.
    • (2005) Bioresour Technol , vol.96 , pp. 673-686
    • Mosier, N.1    Wyman, C.2    Dale, B.3    Elander, R.4    Lee, Y.Y.5    Holtzapple, M.6
  • 2
    • 85017664799 scopus 로고    scopus 로고
    • Combined approaches to xylose production from corn stover by dilute acid hydrolysis
    • Fehér A, Fehér C, Rozbach M, Barta Z. Combined approaches to xylose production from corn stover by dilute acid hydrolysis. Chem Biochem Eng Q. 2017;31:77-87. https://doi.org/10.15255/cabeq.2016.913.
    • (2017) Chem Biochem Eng Q , vol.31 , pp. 77-87
    • Fehér, A.1    Fehér, C.2    Rozbach, M.3    Barta, Z.4
  • 3
    • 77649235958 scopus 로고    scopus 로고
    • Production of butanol (a biofuel) from agricultural residues: part I-use of barley straw hydrolysate
    • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA. Production of butanol (a biofuel) from agricultural residues: part I-use of barley straw hydrolysate. Biomass Bioenergy. 2010;34:559-65. https://doi.org/10.1016/j.biombioe.2009.12.024.
    • (2010) Biomass Bioenergy , vol.34 , pp. 559-565
    • Qureshi, N.1    Saha, B.C.2    Dien, B.3    Hector, R.E.4    Cotta, M.A.5
  • 4
    • 0037036694 scopus 로고    scopus 로고
    • Hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast
    • Nigam JN. Hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol. 2002;97:107-16. https://doi.org/10.1016/s0168-1656(02)00013-5.
    • (2002) J Biotechnol , vol.97 , pp. 107-116
    • Nigam, J.N.1
  • 5
    • 33745185309 scopus 로고    scopus 로고
    • Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis
    • Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol. 2006;97:1974-8. https://doi.org/10.1016/j.biortech.2005.08.015.
    • (2006) Bioresour Technol , vol.97 , pp. 1974-1978
    • Rao, R.S.1    Jyothi, C.P.2    Prakasham, R.S.3    Sarma, P.N.4    Rao, L.V.5
  • 6
    • 10944227305 scopus 로고    scopus 로고
    • Xylanase production by Trichoderma reesei Rut C-30 grown on l-arabinose-rich plant hydrolysates
    • Xiong H, von Weymarn N, Turunen O, Leisola M, Pastinen O. Xylanase production by Trichoderma reesei Rut C-30 grown on l-arabinose-rich plant hydrolysates. Bioresour Technol. 2005;96:753-9. https://doi.org/10.1016/j.biortech.2004.08.007.
    • (2005) Bioresour Technol , vol.96 , pp. 753-759
    • Xiong, H.1    Weymarn, N.2    Turunen, O.3    Leisola, M.4    Pastinen, O.5
  • 7
    • 84942599630 scopus 로고    scopus 로고
    • Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion
    • Zhang G, Liu J, Kong II, Kwak S, Jin Y. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol. 2015;29:49-57. https://doi.org/10.1016/j.cbpa.2015.09.008.
    • (2015) Curr Opin Chem Biol , vol.29 , pp. 49-57
    • Zhang, G.1    Liu, J.2    Kong, I.I.3    Kwak, S.4    Jin, Y.5
  • 8
    • 0014960317 scopus 로고
    • Control of xylose metabolism in Escherichia coli
    • David JD, Weismeyer H. Control of xylose metabolism in Escherichia coli. Biochim Biophys Acta. 1970;201:497-9. https://doi.org/10.1016/0304-4165(70)90171-90176.
    • (1970) Biochim Biophys Acta , vol.201 , pp. 497-499
    • David, J.D.1    Weismeyer, H.2
  • 9
    • 0007188544 scopus 로고
    • The Escherichia colil-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation
    • Ogden S, Haggerty D, Stoner CM, Kolodrubetz D, Schleif R. The Escherichia coli l-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc Natl Acad Sci USA. 1980;77:3346-50. https://doi.org/10.1073/pnas.77.6.3346.
    • (1980) Proc Natl Acad Sci USA , vol.77 , pp. 3346-3350
    • Ogden, S.1    Haggerty, D.2    Stoner, C.M.3    Kolodrubetz, D.4    Schleif, R.5
  • 10
    • 0019769532 scopus 로고
    • Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli
    • Daruwalla KR, Paxton AT, Henderson PJ. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J. 1981;200:611-27. https://doi.org/10.1042/bj2000611.
    • (1981) Biochem J , vol.200 , pp. 611-627
    • Daruwalla, K.R.1    Paxton, A.T.2    Henderson, P.J.3
  • 11
    • 0024336675 scopus 로고
    • Genetic reconstitution of the high-affinity l-arabinose transport system
    • Horazdovsky BF, Hogg RW. Genetic reconstitution of the high-affinity l-arabinose transport system. J Bacteriol. 1989;171:3053-9. https://doi.org/10.1128/jb.171.6.3053-3059.1989.
    • (1989) J Bacteriol , vol.171 , pp. 3053-3059
    • Horazdovsky, B.F.1    Hogg, R.W.2
  • 12
    • 33845626641 scopus 로고    scopus 로고
    • How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria
    • Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70:939-1031. https://doi.org/10.1128/mmbr.00024-06.
    • (2006) Microbiol Mol Biol Rev , vol.70 , pp. 939-1031
    • Deutscher, J.1    Francke, C.2    Postma, P.W.3
  • 13
    • 0034911540 scopus 로고    scopus 로고
    • Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
    • Nichols NN, Dien BS, Bothast RJ. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol. 2001;56:120-5. https://doi.org/10.1007/s002530100628.
    • (2001) Appl Microbiol Biotechnol , vol.56 , pp. 120-125
    • Nichols, N.N.1    Dien, B.S.2    Bothast, R.J.3
  • 14
    • 84937414415 scopus 로고    scopus 로고
    • Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli
    • Carmona SB, Moreno F, Bolívar F, Gosset G, Escalante A. Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli. J Mol Microbiol Biotechnol. 2015;25:195-208. https://doi.org/10.1159/000380854.
    • (2015) J Mol Microbiol Biotechnol , vol.25 , pp. 195-208
    • Carmona, S.B.1    Moreno, F.2    Bolívar, F.3    Gosset, G.4    Escalante, A.5
  • 15
    • 84930869278 scopus 로고    scopus 로고
    • Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant
    • Zhou Z, Wang C, Xu H, Chen Z, Cai H. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. J Ind Microbiol Biotechnol. 2015;42:1073-82. https://doi.org/10.1007/s10295-015-1630-9.
    • (2015) J Ind Microbiol Biotechnol , vol.42 , pp. 1073-1082
    • Zhou, Z.1    Wang, C.2    Xu, H.3    Chen, Z.4    Cai, H.5
  • 16
    • 38449090698 scopus 로고    scopus 로고
    • Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease
    • Flores N, Leal L, Sigala JC, de Anda R, Escalante A, Martínez A, et al. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. J Mol Microbiol Biotechnol. 2007;13:105-16. https://doi.org/10.1159/000103602.
    • (2007) J Mol Microbiol Biotechnol , vol.13 , pp. 105-116
    • Flores, N.1    Leal, L.2    Sigala, J.C.3    Anda, R.4    Escalante, A.5    Martínez, A.6
  • 17
    • 85045363650 scopus 로고    scopus 로고
    • History of modern biotechnology I
    • Berlin: Springer
    • Kumagai H. History of modern biotechnology I. Berlin: Springer; 2000. https://doi.org/10.1007/3-540-44964-7.
    • (2000)
    • Kumagai, H.1
  • 18
    • 84864801619 scopus 로고    scopus 로고
    • Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory
    • Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol. 2012;23:631-40. https://doi.org/10.1016/j.copbio.2011.11.012.
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 631-640
    • Becker, J.1    Wittmann, C.2
  • 19
    • 84873978248 scopus 로고    scopus 로고
    • Bio-based production of organic acids with Corynebacterium glutamicum
    • Wieschalka S, Blombach B, Bott M, Eikmanns BJ. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol. 2013;6:87-102. https://doi.org/10.1111/1751-7915.12013.
    • (2013) Microb Biotechnol , vol.6 , pp. 87-102
    • Wieschalka, S.1    Blombach, B.2    Bott, M.3    Eikmanns, B.J.4
  • 20
    • 0004318743 scopus 로고    scopus 로고
    • Bergey's manual of systematic bacteriology
    • Boston: Springer
    • Collins MD, Cummins CS. Bergey's manual of systematic bacteriology. Boston: Springer; 2005. https://doi.org/10.1007/0-387-28021-9.
    • (2005)
    • Collins, M.D.1    Cummins, C.S.2
  • 21
    • 66249111468 scopus 로고    scopus 로고
    • Identification and functional analysis of the gene cluster for l-arabinose utilization in Corynebacterium glutamicum
    • Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H. Identification and functional analysis of the gene cluster for l-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol. 2009;75:3419-29. https://doi.org/10.1128/aem.02912-08.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 3419-3429
    • Kawaguchi, H.1    Sasaki, M.2    Vertes, A.A.3    Inui, M.4    Yukawa, H.5
  • 22
    • 37249004845 scopus 로고    scopus 로고
    • Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum
    • Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2008;77:1053-62. https://doi.org/10.1007/s00253-007-1244-x.
    • (2008) Appl Microbiol Biotechnol , vol.77 , pp. 1053-1062
    • Kawaguchi, H.1    Sasaki, M.2    Vertès, A.A.3    Inui, M.4    Yukawa, H.5
  • 23
    • 33646678414 scopus 로고    scopus 로고
    • Engineering of a xylose metabolic pathway in Corynebacterium glutamicum
    • Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol. 2006;72:3418-28. https://doi.org/10.1128/aem.72.5.3418-3428.2006.
    • (2006) Appl Environ Microbiol , vol.72 , pp. 3418-3428
    • Kawaguchi, H.1    Vertes, A.A.2    Okino, S.3    Inui, M.4    Yukawa, H.5
  • 24
    • 84873979633 scopus 로고    scopus 로고
    • Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine
    • Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol. 2013;6:131-40. https://doi.org/10.1111/1751-7915.12001.
    • (2013) Microb Biotechnol , vol.6 , pp. 131-140
    • Meiswinkel, T.M.1    Gopinath, V.2    Lindner, S.N.3    Nampoothiri, K.M.4    Wendisch, V.F.5
  • 25
    • 79958698899 scopus 로고    scopus 로고
    • Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum
    • Schneider J, Niermann K, Wendisch VF. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol. 2011;154:191-8. https://doi.org/10.1016/j.jbiotec.2010.07.009.
    • (2011) J Biotechnol , vol.154 , pp. 191-198
    • Schneider, J.1    Niermann, K.2    Wendisch, V.F.3
  • 26
    • 85011349337 scopus 로고    scopus 로고
    • Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production
    • Jo S, Yoon J, Lee S-M, Um Y, Han SO, Woo HM. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. J Biotechnol. 2017;258:69-78. https://doi.org/10.1016/j.jbiotec.2017.01.015.
    • (2017) J Biotechnol , vol.258 , pp. 69-78
    • Jo, S.1    Yoon, J.2    Lee, S.-M.3    Um, Y.4    Han, S.O.5    Woo, H.M.6
  • 27
    • 84925507413 scopus 로고    scopus 로고
    • Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
    • Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, et al. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99:1165-72. https://doi.org/10.1007/s00253-014-6223-4.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 1165-1172
    • Jojima, T.1    Noburyu, R.2    Sasaki, M.3    Tajima, T.4    Suda, M.5    Yukawa, H.6
  • 28
    • 84888845794 scopus 로고    scopus 로고
    • Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum
    • Chen T, Zhu N, Xia H. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Bioresour Technol. 2014;151:411-4. https://doi.org/10.1016/j.biortech.2013.10.017.
    • (2014) Bioresour Technol , vol.151 , pp. 411-414
    • Chen, T.1    Zhu, N.2    Xia, H.3
  • 29
    • 85033222902 scopus 로고    scopus 로고
    • Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum
    • Lange J, Müller F, Takors R, Blombach B. Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb Biotechnol. 2018;11:257-63. https://doi.org/10.1111/1751-7915.12879.
    • (2018) Microb Biotechnol , vol.11 , pp. 257-263
    • Lange, J.1    Müller, F.2    Takors, R.3    Blombach, B.4
  • 30
    • 84909957408 scopus 로고    scopus 로고
    • Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates
    • Radek A, Krumbach K, Gätgens J, Wendisch VF, Wiechert W, Bott M, et al. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates. J Biotechnol. 2014;192(Part A):156-60. https://doi.org/10.1016/j.jbiotec.2014.09.026.
    • (2014) J Biotechnol , vol.192 , pp. 156-160
    • Radek, A.1    Krumbach, K.2    Gätgens, J.3    Wendisch, V.F.4    Wiechert, W.5    Bott, M.6
  • 31
    • 84975830542 scopus 로고    scopus 로고
    • Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains
    • Radek A, Müller M-F, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, et al. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains. J Biotechnol. 2016;231:160-6. https://doi.org/10.1016/j.jbiotec.2016.06.009.
    • (2016) J Biotechnol , vol.231 , pp. 160-166
    • Radek, A.1    Müller, M.-F.2    Gätgens, J.3    Eggeling, L.4    Krumbach, K.5    Marienhagen, J.6
  • 32
    • 85019835431 scopus 로고    scopus 로고
    • Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization
    • Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, et al. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization. Bioresour Technol. 2017;245:1377-85. https://doi.org/10.1016/j.biortech.2017.05.055.
    • (2017) Bioresour Technol , vol.245 , pp. 1377-1385
    • Radek, A.1    Tenhaef, N.2    Müller, M.F.3    Brüsseler, C.4    Wiechert, W.5    Marienhagen, J.6
  • 33
    • 82355173361 scopus 로고    scopus 로고
    • Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum
    • Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;92:985-96. https://doi.org/10.1007/s00253-011-3478-x.
    • (2011) Appl Microbiol Biotechnol , vol.92 , pp. 985-996
    • Gopinath, V.1    Meiswinkel, T.M.2    Wendisch, V.F.3    Nampoothiri, K.M.4
  • 34
    • 73349135662 scopus 로고    scopus 로고
    • Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars
    • Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol. 2009;85:105-15. https://doi.org/10.1007/s00253-009-2065-x.
    • (2009) Appl Microbiol Biotechnol , vol.85 , pp. 105-115
    • Sasaki, M.1    Jojima, T.2    Kawaguchi, H.3    Inui, M.4    Yukawa, H.5
  • 35
    • 84984655327 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction
    • Kogure T, Kubota T, Suda M, Hiraga K, Inui M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng. 2016;38:204-16. https://doi.org/10.1016/j.ymben.2016.08.005.
    • (2016) Metab Eng , vol.38 , pp. 204-216
    • Kogure, T.1    Kubota, T.2    Suda, M.3    Hiraga, K.4    Inui, M.5
  • 36
    • 79958283261 scopus 로고    scopus 로고
    • Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases
    • Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol. 2011;77:3571-81. https://doi.org/10.1128/aem.02713-10.
    • (2011) Appl Environ Microbiol , vol.77 , pp. 3571-3581
    • Lindner, S.N.1    Seibold, G.M.2    Henrich, A.3    Krämer, R.4    Wendisch, V.F.5
  • 37
    • 0004136246 scopus 로고    scopus 로고
    • Molecular cloning: a laboratory manual
    • 3rd ed. New York: Cold Spring Harbor Laboratory Press
    • Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
    • (2001)
    • Sambrook, J.1    Russell, D.W.2
  • 38
    • 4644247295 scopus 로고    scopus 로고
    • Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions
    • Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol. 2004;7:182-96. https://doi.org/10.1159/000079827.
    • (2004) J Mol Microbiol Biotechnol , vol.7 , pp. 182-196
    • Inui, M.1    Murakami, S.2    Okino, S.3    Kawaguchi, H.4    Vertès, A.A.5    Yukawa, H.6
  • 39
    • 0027289448 scopus 로고
    • Presence of mrr- and mcr-like restriction systems in coryneform bacteria
    • Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H. Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol. 1993;144:181-5. https://doi.org/10.1016/0923-2508(93)90043-2.
    • (1993) Res Microbiol , vol.144 , pp. 181-185
    • Vertès, A.A.1    Inui, M.2    Kobayashi, M.3    Kurusu, Y.4    Yukawa, H.5
  • 40
    • 36248965184 scopus 로고    scopus 로고
    • Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence
    • Tateno T, Fukuda H, Kondo A. Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol. 2007;77:533-41. https://doi.org/10.1007/s00253-007-1191-6.
    • (2007) Appl Microbiol Biotechnol , vol.77 , pp. 533-541
    • Tateno, T.1    Fukuda, H.2    Kondo, A.3
  • 41
    • 84959099339 scopus 로고    scopus 로고
    • FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum
    • Tsuge Y, Kudou M, Kawaguchi H, Ishii J, Hasunuma T, Kondo A. FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2016;100:2685-92. https://doi.org/10.1007/s00253-015-7115-y.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 2685-2692
    • Tsuge, Y.1    Kudou, M.2    Kawaguchi, H.3    Ishii, J.4    Hasunuma, T.5    Kondo, A.6
  • 42
    • 77952985821 scopus 로고    scopus 로고
    • Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites
    • Buescher JM, Moco S, Sauer U, Zamboni N. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem. 2010;82:4403-12. https://doi.org/10.1021/ac100101d.
    • (2010) Anal Chem , vol.82 , pp. 4403-4412
    • Buescher, J.M.1    Moco, S.2    Sauer, U.3    Zamboni, N.4
  • 43
    • 84859919753 scopus 로고    scopus 로고
    • Widely targeted metabolic profiling analysis of yeast central metabolites
    • Kato H, Izumi Y, Hasunuma T, Matsuda F, Kondo A. Widely targeted metabolic profiling analysis of yeast central metabolites. J Biosci Bioeng. 2012;113:665-73. https://doi.org/10.1016/j.jbiosc.2011.12.013.
    • (2012) J Biosci Bioeng , vol.113 , pp. 665-673
    • Kato, H.1    Izumi, Y.2    Hasunuma, T.3    Matsuda, F.4    Kondo, A.5
  • 44
    • 84864031732 scopus 로고    scopus 로고
    • Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum
    • de Jonge LP, Douma RD, Heijnen JJ, van Gulik WM. Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum. Metabolomics. 2012;8:727-35. https://doi.org/10.1007/s11306-011-0367-3.
    • (2012) Metabolomics , vol.8 , pp. 727-735
    • Jonge, L.P.1    Douma, R.D.2    Heijnen, J.J.3    Gulik, W.M.4
  • 45
    • 78650995732 scopus 로고    scopus 로고
    • Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
    • Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:2. https://doi.org/10.1186/1475-2859-10-2.
    • (2011) Microb Cell Fact , vol.10 , pp. 2
    • Hasunuma, T.1    Sanda, T.2    Yamada, R.3    Yoshimura, K.4    Ishii, J.5    Kondo, A.6
  • 46
    • 84864087634 scopus 로고    scopus 로고
    • Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions
    • Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, et al. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol. 2012;78:4447-57. https://doi.org/10.1128/aem.07998-11.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 4447-4457
    • Yamamoto, S.1    Gunji, W.2    Suzuki, H.3    Toda, H.4    Suda, M.5    Jojima, T.6
  • 47
    • 85010223628 scopus 로고    scopus 로고
    • Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant
    • Hasegawa S, Tanaka Y, Suda M, Jojima T, Inui M. Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Appl Environ Microbiol. 2017;83:e02638-16. https://doi.org/10.1128/aem.02638-16.
    • (2017) Appl Environ Microbiol , vol.83
    • Hasegawa, S.1    Tanaka, Y.2    Suda, M.3    Jojima, T.4    Inui, M.5
  • 48
    • 84990175418 scopus 로고    scopus 로고
    • Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: blueprint for robustness to bioreactor inhomogeneities
    • Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, et al. Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: blueprint for robustness to bioreactor inhomogeneities. Biotechnol Bioeng. 2017;114:560-75. https://doi.org/10.1002/bit.26184.
    • (2017) Biotechnol Bioeng , vol.114 , pp. 560-575
    • Limberg, M.H.1    Schulte, J.2    Aryani, T.3    Mahr, R.4    Baumgart, M.5    Bott, M.6
  • 49
    • 84885847338 scopus 로고    scopus 로고
    • Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation
    • Matsuoka Y, Shimizu K. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol. 2013;168:155-73. https://doi.org/10.1016/j.jbiotec.2013.06.023.
    • (2013) J Biotechnol , vol.168 , pp. 155-173
    • Matsuoka, Y.1    Shimizu, K.2
  • 50
    • 84905123934 scopus 로고    scopus 로고
    • Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum
    • Wang C, Cai H, Zhou Z, Zhang K, Chen Z, Chen Y, et al. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum. J Ind Microbiol Biotechnol. 2014;41:1249-58. https://doi.org/10.1007/s10295-014-1455-y.
    • (2014) J Ind Microbiol Biotechnol , vol.41 , pp. 1249-1258
    • Wang, C.1    Cai, H.2    Zhou, Z.3    Zhang, K.4    Chen, Z.5    Chen, Y.6
  • 51
    • 84867322381 scopus 로고    scopus 로고
    • Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation
    • Escalante A, Salinas Cervantes A, Gosset G, Bolívar F. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol. 2012;94:1483-94. https://doi.org/10.1007/s00253-012-4101-5.
    • (2012) Appl Microbiol Biotechnol , vol.94 , pp. 1483-1494
    • Escalante, A.1    Salinas Cervantes, A.2    Gosset, G.3    Bolívar, F.4
  • 52
    • 84894231008 scopus 로고    scopus 로고
    • A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent
    • McCloskey D, Gangoiti JA, King ZA, Naviaux RK, Barshop BA, Palsson BO, et al. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng. 2014;111:803-15. https://doi.org/10.1002/bit.25133.
    • (2014) Biotechnol Bioeng , vol.111 , pp. 803-815
    • McCloskey, D.1    Gangoiti, J.A.2    King, Z.A.3    Naviaux, R.K.4    Barshop, B.A.5    Palsson, B.O.6
  • 53
    • 0036007984 scopus 로고    scopus 로고
    • Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose
    • Gonzalez R, Tao H, Shanmugam KT, York SW, Ingram LO. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol Prog. 2002;18:6-20. https://doi.org/10.1021/bp010121i.
    • (2002) Biotechnol Prog , vol.18 , pp. 6-20
    • Gonzalez, R.1    Tao, H.2    Shanmugam, K.T.3    York, S.W.4    Ingram, L.O.5
  • 54
    • 0035039153 scopus 로고    scopus 로고
    • Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation
    • Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, et al. Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol. 2001;183:2979-88. https://doi.org/10.1128/jb.183.10.2979-2988.2001.
    • (2001) J Bacteriol , vol.183 , pp. 2979-2988
    • Tao, H.1    Gonzalez, R.2    Martinez, A.3    Rodriguez, M.4    Ingram, L.O.5    Preston, J.F.6
  • 55
    • 84924678364 scopus 로고    scopus 로고
    • Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase
    • Reddy GK, Lindner SN, Wendisch VF. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol. 2015;81:1996-2005. https://doi.org/10.1128/aem.03116-14.
    • (2015) Appl Environ Microbiol , vol.81 , pp. 1996-2005
    • Reddy, G.K.1    Lindner, S.N.2    Wendisch, V.F.3
  • 56
    • 85021879314 scopus 로고    scopus 로고
    • The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: new evidences from the central carbon metabolism of Corynebacterium glutamicum
    • Noack S, Voges R, Gätgens J, Wiechert W. The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: new evidences from the central carbon metabolism of Corynebacterium glutamicum. J Biotechnol. 2017;258:13-24. https://doi.org/10.1016/j.jbiotec.2017.06.407.
    • (2017) J Biotechnol , vol.258 , pp. 13-24
    • Noack, S.1    Voges, R.2    Gätgens, J.3    Wiechert, W.4
  • 58
    • 85008255923 scopus 로고    scopus 로고
    • Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum
    • Schulte J, Baumgart M, Bott M. Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum. Mol Microbiol. 2017;103:534-52. https://doi.org/10.1111/mmi.13574.
    • (2017) Mol Microbiol , vol.103 , pp. 534-552
    • Schulte, J.1    Baumgart, M.2    Bott, M.3
  • 59
    • 84893405383 scopus 로고    scopus 로고
    • Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum
    • Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol. 2014;80:1388-93. https://doi.org/10.1128/aem.03535-13.
    • (2014) Appl Environ Microbiol , vol.80 , pp. 1388-1393
    • Chen, Z.1    Bommareddy, R.R.2    Frank, D.3    Rappert, S.4    Zeng, A.P.5
  • 60
    • 84862689750 scopus 로고    scopus 로고
    • Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity
    • van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. 2012;109:2070-81. https://doi.org/10.1002/bit.24486.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 2070-2081
    • Ooyen, J.1    Noack, S.2    Bott, M.3    Reth, A.4    Eggeling, L.5
  • 61
    • 0036188941 scopus 로고    scopus 로고
    • Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation
    • Underwood SA, Buszko ML, Shanmugam KT, Ingram LO. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol. 2002;68:1071-81. https://doi.org/10.1128/aem.68.3.1071-1081.2002.
    • (2002) Appl Environ Microbiol , vol.68 , pp. 1071-1081
    • Underwood, S.A.1    Buszko, M.L.2    Shanmugam, K.T.3    Ingram, L.O.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.