-
1
-
-
9944252948
-
Features of promising technologies for pretreatment of lignocellulosic biomass
-
Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673-86. https://doi.org/10.1016/j.biortech.2004.06.025.
-
(2005)
Bioresour Technol
, vol.96
, pp. 673-686
-
-
Mosier, N.1
Wyman, C.2
Dale, B.3
Elander, R.4
Lee, Y.Y.5
Holtzapple, M.6
-
2
-
-
85017664799
-
Combined approaches to xylose production from corn stover by dilute acid hydrolysis
-
Fehér A, Fehér C, Rozbach M, Barta Z. Combined approaches to xylose production from corn stover by dilute acid hydrolysis. Chem Biochem Eng Q. 2017;31:77-87. https://doi.org/10.15255/cabeq.2016.913.
-
(2017)
Chem Biochem Eng Q
, vol.31
, pp. 77-87
-
-
Fehér, A.1
Fehér, C.2
Rozbach, M.3
Barta, Z.4
-
3
-
-
77649235958
-
Production of butanol (a biofuel) from agricultural residues: part I-use of barley straw hydrolysate
-
Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA. Production of butanol (a biofuel) from agricultural residues: part I-use of barley straw hydrolysate. Biomass Bioenergy. 2010;34:559-65. https://doi.org/10.1016/j.biombioe.2009.12.024.
-
(2010)
Biomass Bioenergy
, vol.34
, pp. 559-565
-
-
Qureshi, N.1
Saha, B.C.2
Dien, B.3
Hector, R.E.4
Cotta, M.A.5
-
4
-
-
0037036694
-
Hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast
-
Nigam JN. Hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. J Biotechnol. 2002;97:107-16. https://doi.org/10.1016/s0168-1656(02)00013-5.
-
(2002)
J Biotechnol
, vol.97
, pp. 107-116
-
-
Nigam, J.N.1
-
5
-
-
33745185309
-
Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis
-
Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol. 2006;97:1974-8. https://doi.org/10.1016/j.biortech.2005.08.015.
-
(2006)
Bioresour Technol
, vol.97
, pp. 1974-1978
-
-
Rao, R.S.1
Jyothi, C.P.2
Prakasham, R.S.3
Sarma, P.N.4
Rao, L.V.5
-
6
-
-
10944227305
-
Xylanase production by Trichoderma reesei Rut C-30 grown on l-arabinose-rich plant hydrolysates
-
Xiong H, von Weymarn N, Turunen O, Leisola M, Pastinen O. Xylanase production by Trichoderma reesei Rut C-30 grown on l-arabinose-rich plant hydrolysates. Bioresour Technol. 2005;96:753-9. https://doi.org/10.1016/j.biortech.2004.08.007.
-
(2005)
Bioresour Technol
, vol.96
, pp. 753-759
-
-
Xiong, H.1
Weymarn, N.2
Turunen, O.3
Leisola, M.4
Pastinen, O.5
-
7
-
-
84942599630
-
Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion
-
Zhang G, Liu J, Kong II, Kwak S, Jin Y. Combining C6 and C5 sugar metabolism for enhancing microbial bioconversion. Curr Opin Chem Biol. 2015;29:49-57. https://doi.org/10.1016/j.cbpa.2015.09.008.
-
(2015)
Curr Opin Chem Biol
, vol.29
, pp. 49-57
-
-
Zhang, G.1
Liu, J.2
Kong, I.I.3
Kwak, S.4
Jin, Y.5
-
8
-
-
0014960317
-
Control of xylose metabolism in Escherichia coli
-
David JD, Weismeyer H. Control of xylose metabolism in Escherichia coli. Biochim Biophys Acta. 1970;201:497-9. https://doi.org/10.1016/0304-4165(70)90171-90176.
-
(1970)
Biochim Biophys Acta
, vol.201
, pp. 497-499
-
-
David, J.D.1
Weismeyer, H.2
-
9
-
-
0007188544
-
The Escherichia colil-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation
-
Ogden S, Haggerty D, Stoner CM, Kolodrubetz D, Schleif R. The Escherichia coli l-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. Proc Natl Acad Sci USA. 1980;77:3346-50. https://doi.org/10.1073/pnas.77.6.3346.
-
(1980)
Proc Natl Acad Sci USA
, vol.77
, pp. 3346-3350
-
-
Ogden, S.1
Haggerty, D.2
Stoner, C.M.3
Kolodrubetz, D.4
Schleif, R.5
-
10
-
-
0019769532
-
Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli
-
Daruwalla KR, Paxton AT, Henderson PJ. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem J. 1981;200:611-27. https://doi.org/10.1042/bj2000611.
-
(1981)
Biochem J
, vol.200
, pp. 611-627
-
-
Daruwalla, K.R.1
Paxton, A.T.2
Henderson, P.J.3
-
11
-
-
0024336675
-
Genetic reconstitution of the high-affinity l-arabinose transport system
-
Horazdovsky BF, Hogg RW. Genetic reconstitution of the high-affinity l-arabinose transport system. J Bacteriol. 1989;171:3053-9. https://doi.org/10.1128/jb.171.6.3053-3059.1989.
-
(1989)
J Bacteriol
, vol.171
, pp. 3053-3059
-
-
Horazdovsky, B.F.1
Hogg, R.W.2
-
12
-
-
33845626641
-
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria
-
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70:939-1031. https://doi.org/10.1128/mmbr.00024-06.
-
(2006)
Microbiol Mol Biol Rev
, vol.70
, pp. 939-1031
-
-
Deutscher, J.1
Francke, C.2
Postma, P.W.3
-
13
-
-
0034911540
-
Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
-
Nichols NN, Dien BS, Bothast RJ. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol. 2001;56:120-5. https://doi.org/10.1007/s002530100628.
-
(2001)
Appl Microbiol Biotechnol
, vol.56
, pp. 120-125
-
-
Nichols, N.N.1
Dien, B.S.2
Bothast, R.J.3
-
14
-
-
84937414415
-
Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli
-
Carmona SB, Moreno F, Bolívar F, Gosset G, Escalante A. Inactivation of the PTS as a strategy to engineer the production of aromatic metabolites in Escherichia coli. J Mol Microbiol Biotechnol. 2015;25:195-208. https://doi.org/10.1159/000380854.
-
(2015)
J Mol Microbiol Biotechnol
, vol.25
, pp. 195-208
-
-
Carmona, S.B.1
Moreno, F.2
Bolívar, F.3
Gosset, G.4
Escalante, A.5
-
15
-
-
84930869278
-
Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant
-
Zhou Z, Wang C, Xu H, Chen Z, Cai H. Increasing succinic acid production using the PTS-independent glucose transport system in a Corynebacterium glutamicum PTS-defective mutant. J Ind Microbiol Biotechnol. 2015;42:1073-82. https://doi.org/10.1007/s10295-015-1630-9.
-
(2015)
J Ind Microbiol Biotechnol
, vol.42
, pp. 1073-1082
-
-
Zhou, Z.1
Wang, C.2
Xu, H.3
Chen, Z.4
Cai, H.5
-
16
-
-
38449090698
-
Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease
-
Flores N, Leal L, Sigala JC, de Anda R, Escalante A, Martínez A, et al. Growth recovery on glucose under aerobic conditions of an Escherichia coli strain carrying a phosphoenolpyruvate:carbohydrate phosphotransferase system deletion by inactivating arcA and overexpressing the genes coding for glucokinase and galactose permease. J Mol Microbiol Biotechnol. 2007;13:105-16. https://doi.org/10.1159/000103602.
-
(2007)
J Mol Microbiol Biotechnol
, vol.13
, pp. 105-116
-
-
Flores, N.1
Leal, L.2
Sigala, J.C.3
Anda, R.4
Escalante, A.5
Martínez, A.6
-
17
-
-
85045363650
-
History of modern biotechnology I
-
Berlin: Springer
-
Kumagai H. History of modern biotechnology I. Berlin: Springer; 2000. https://doi.org/10.1007/3-540-44964-7.
-
(2000)
-
-
Kumagai, H.1
-
18
-
-
84864801619
-
Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory
-
Becker J, Wittmann C. Bio-based production of chemicals, materials and fuels-Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol. 2012;23:631-40. https://doi.org/10.1016/j.copbio.2011.11.012.
-
(2012)
Curr Opin Biotechnol
, vol.23
, pp. 631-640
-
-
Becker, J.1
Wittmann, C.2
-
19
-
-
84873978248
-
Bio-based production of organic acids with Corynebacterium glutamicum
-
Wieschalka S, Blombach B, Bott M, Eikmanns BJ. Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol. 2013;6:87-102. https://doi.org/10.1111/1751-7915.12013.
-
(2013)
Microb Biotechnol
, vol.6
, pp. 87-102
-
-
Wieschalka, S.1
Blombach, B.2
Bott, M.3
Eikmanns, B.J.4
-
20
-
-
0004318743
-
Bergey's manual of systematic bacteriology
-
Boston: Springer
-
Collins MD, Cummins CS. Bergey's manual of systematic bacteriology. Boston: Springer; 2005. https://doi.org/10.1007/0-387-28021-9.
-
(2005)
-
-
Collins, M.D.1
Cummins, C.S.2
-
21
-
-
66249111468
-
Identification and functional analysis of the gene cluster for l-arabinose utilization in Corynebacterium glutamicum
-
Kawaguchi H, Sasaki M, Vertes AA, Inui M, Yukawa H. Identification and functional analysis of the gene cluster for l-arabinose utilization in Corynebacterium glutamicum. Appl Environ Microbiol. 2009;75:3419-29. https://doi.org/10.1128/aem.02912-08.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 3419-3429
-
-
Kawaguchi, H.1
Sasaki, M.2
Vertes, A.A.3
Inui, M.4
Yukawa, H.5
-
22
-
-
37249004845
-
Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum
-
Kawaguchi H, Sasaki M, Vertès AA, Inui M, Yukawa H. Engineering of an l-arabinose metabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2008;77:1053-62. https://doi.org/10.1007/s00253-007-1244-x.
-
(2008)
Appl Microbiol Biotechnol
, vol.77
, pp. 1053-1062
-
-
Kawaguchi, H.1
Sasaki, M.2
Vertès, A.A.3
Inui, M.4
Yukawa, H.5
-
23
-
-
33646678414
-
Engineering of a xylose metabolic pathway in Corynebacterium glutamicum
-
Kawaguchi H, Vertes AA, Okino S, Inui M, Yukawa H. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl Environ Microbiol. 2006;72:3418-28. https://doi.org/10.1128/aem.72.5.3418-3428.2006.
-
(2006)
Appl Environ Microbiol
, vol.72
, pp. 3418-3428
-
-
Kawaguchi, H.1
Vertes, A.A.2
Okino, S.3
Inui, M.4
Yukawa, H.5
-
24
-
-
84873979633
-
Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine
-
Meiswinkel TM, Gopinath V, Lindner SN, Nampoothiri KM, Wendisch VF. Accelerated pentose utilization by Corynebacterium glutamicum for accelerated production of lysine, glutamate, ornithine and putrescine. Microb Biotechnol. 2013;6:131-40. https://doi.org/10.1111/1751-7915.12001.
-
(2013)
Microb Biotechnol
, vol.6
, pp. 131-140
-
-
Meiswinkel, T.M.1
Gopinath, V.2
Lindner, S.N.3
Nampoothiri, K.M.4
Wendisch, V.F.5
-
25
-
-
79958698899
-
Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum
-
Schneider J, Niermann K, Wendisch VF. Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol. 2011;154:191-8. https://doi.org/10.1016/j.jbiotec.2010.07.009.
-
(2011)
J Biotechnol
, vol.154
, pp. 191-198
-
-
Schneider, J.1
Niermann, K.2
Wendisch, V.F.3
-
26
-
-
85011349337
-
Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production
-
Jo S, Yoon J, Lee S-M, Um Y, Han SO, Woo HM. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. J Biotechnol. 2017;258:69-78. https://doi.org/10.1016/j.jbiotec.2017.01.015.
-
(2017)
J Biotechnol
, vol.258
, pp. 69-78
-
-
Jo, S.1
Yoon, J.2
Lee, S.-M.3
Um, Y.4
Han, S.O.5
Woo, H.M.6
-
27
-
-
84925507413
-
Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum
-
Jojima T, Noburyu R, Sasaki M, Tajima T, Suda M, Yukawa H, et al. Metabolic engineering for improved production of ethanol by Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2015;99:1165-72. https://doi.org/10.1007/s00253-014-6223-4.
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, pp. 1165-1172
-
-
Jojima, T.1
Noburyu, R.2
Sasaki, M.3
Tajima, T.4
Suda, M.5
Yukawa, H.6
-
28
-
-
84888845794
-
Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum
-
Chen T, Zhu N, Xia H. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Bioresour Technol. 2014;151:411-4. https://doi.org/10.1016/j.biortech.2013.10.017.
-
(2014)
Bioresour Technol
, vol.151
, pp. 411-414
-
-
Chen, T.1
Zhu, N.2
Xia, H.3
-
29
-
-
85033222902
-
Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum
-
Lange J, Müller F, Takors R, Blombach B. Harnessing novel chromosomal integration loci to utilize an organosolv-derived hemicellulose fraction for isobutanol production with engineered Corynebacterium glutamicum. Microb Biotechnol. 2018;11:257-63. https://doi.org/10.1111/1751-7915.12879.
-
(2018)
Microb Biotechnol
, vol.11
, pp. 257-263
-
-
Lange, J.1
Müller, F.2
Takors, R.3
Blombach, B.4
-
30
-
-
84909957408
-
Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates
-
Radek A, Krumbach K, Gätgens J, Wendisch VF, Wiechert W, Bott M, et al. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of d-xylose containing substrates. J Biotechnol. 2014;192(Part A):156-60. https://doi.org/10.1016/j.jbiotec.2014.09.026.
-
(2014)
J Biotechnol
, vol.192
, pp. 156-160
-
-
Radek, A.1
Krumbach, K.2
Gätgens, J.3
Wendisch, V.F.4
Wiechert, W.5
Bott, M.6
-
31
-
-
84975830542
-
Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains
-
Radek A, Müller M-F, Gätgens J, Eggeling L, Krumbach K, Marienhagen J, et al. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains. J Biotechnol. 2016;231:160-6. https://doi.org/10.1016/j.jbiotec.2016.06.009.
-
(2016)
J Biotechnol
, vol.231
, pp. 160-166
-
-
Radek, A.1
Müller, M.-F.2
Gätgens, J.3
Eggeling, L.4
Krumbach, K.5
Marienhagen, J.6
-
32
-
-
85019835431
-
Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization
-
Radek A, Tenhaef N, Müller MF, Brüsseler C, Wiechert W, Marienhagen J, et al. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization. Bioresour Technol. 2017;245:1377-85. https://doi.org/10.1016/j.biortech.2017.05.055.
-
(2017)
Bioresour Technol
, vol.245
, pp. 1377-1385
-
-
Radek, A.1
Tenhaef, N.2
Müller, M.F.3
Brüsseler, C.4
Wiechert, W.5
Marienhagen, J.6
-
33
-
-
82355173361
-
Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum
-
Gopinath V, Meiswinkel TM, Wendisch VF, Nampoothiri KM. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2011;92:985-96. https://doi.org/10.1007/s00253-011-3478-x.
-
(2011)
Appl Microbiol Biotechnol
, vol.92
, pp. 985-996
-
-
Gopinath, V.1
Meiswinkel, T.M.2
Wendisch, V.F.3
Nampoothiri, K.M.4
-
34
-
-
73349135662
-
Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars
-
Sasaki M, Jojima T, Kawaguchi H, Inui M, Yukawa H. Engineering of pentose transport in Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars. Appl Microbiol Biotechnol. 2009;85:105-15. https://doi.org/10.1007/s00253-009-2065-x.
-
(2009)
Appl Microbiol Biotechnol
, vol.85
, pp. 105-115
-
-
Sasaki, M.1
Jojima, T.2
Kawaguchi, H.3
Inui, M.4
Yukawa, H.5
-
35
-
-
84984655327
-
Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction
-
Kogure T, Kubota T, Suda M, Hiraga K, Inui M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng. 2016;38:204-16. https://doi.org/10.1016/j.ymben.2016.08.005.
-
(2016)
Metab Eng
, vol.38
, pp. 204-216
-
-
Kogure, T.1
Kubota, T.2
Suda, M.3
Hiraga, K.4
Inui, M.5
-
36
-
-
79958283261
-
Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases
-
Lindner SN, Seibold GM, Henrich A, Krämer R, Wendisch VF. Phosphotransferase system-independent glucose utilization in Corynebacterium glutamicum by inositol permeases and glucokinases. Appl Environ Microbiol. 2011;77:3571-81. https://doi.org/10.1128/aem.02713-10.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 3571-3581
-
-
Lindner, S.N.1
Seibold, G.M.2
Henrich, A.3
Krämer, R.4
Wendisch, V.F.5
-
37
-
-
0004136246
-
Molecular cloning: a laboratory manual
-
3rd ed. New York: Cold Spring Harbor Laboratory Press
-
Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press; 2001.
-
(2001)
-
-
Sambrook, J.1
Russell, D.W.2
-
38
-
-
4644247295
-
Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions
-
Inui M, Murakami S, Okino S, Kawaguchi H, Vertès AA, Yukawa H. Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol. 2004;7:182-96. https://doi.org/10.1159/000079827.
-
(2004)
J Mol Microbiol Biotechnol
, vol.7
, pp. 182-196
-
-
Inui, M.1
Murakami, S.2
Okino, S.3
Kawaguchi, H.4
Vertès, A.A.5
Yukawa, H.6
-
39
-
-
0027289448
-
Presence of mrr- and mcr-like restriction systems in coryneform bacteria
-
Vertès AA, Inui M, Kobayashi M, Kurusu Y, Yukawa H. Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol. 1993;144:181-5. https://doi.org/10.1016/0923-2508(93)90043-2.
-
(1993)
Res Microbiol
, vol.144
, pp. 181-185
-
-
Vertès, A.A.1
Inui, M.2
Kobayashi, M.3
Kurusu, Y.4
Yukawa, H.5
-
40
-
-
36248965184
-
Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence
-
Tateno T, Fukuda H, Kondo A. Direct production of l-lysine from raw corn starch by Corynebacterium glutamicum secreting Streptococcus bovis α-amylase using cspB promoter and signal sequence. Appl Microbiol Biotechnol. 2007;77:533-41. https://doi.org/10.1007/s00253-007-1191-6.
-
(2007)
Appl Microbiol Biotechnol
, vol.77
, pp. 533-541
-
-
Tateno, T.1
Fukuda, H.2
Kondo, A.3
-
41
-
-
84959099339
-
FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum
-
Tsuge Y, Kudou M, Kawaguchi H, Ishii J, Hasunuma T, Kondo A. FudC, a protein primarily responsible for furfural detoxification in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2016;100:2685-92. https://doi.org/10.1007/s00253-015-7115-y.
-
(2016)
Appl Microbiol Biotechnol
, vol.100
, pp. 2685-2692
-
-
Tsuge, Y.1
Kudou, M.2
Kawaguchi, H.3
Ishii, J.4
Hasunuma, T.5
Kondo, A.6
-
42
-
-
77952985821
-
Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites
-
Buescher JM, Moco S, Sauer U, Zamboni N. Ultrahigh performance liquid chromatography-tandem mass spectrometry method for fast and robust quantification of anionic and aromatic metabolites. Anal Chem. 2010;82:4403-12. https://doi.org/10.1021/ac100101d.
-
(2010)
Anal Chem
, vol.82
, pp. 4403-4412
-
-
Buescher, J.M.1
Moco, S.2
Sauer, U.3
Zamboni, N.4
-
43
-
-
84859919753
-
Widely targeted metabolic profiling analysis of yeast central metabolites
-
Kato H, Izumi Y, Hasunuma T, Matsuda F, Kondo A. Widely targeted metabolic profiling analysis of yeast central metabolites. J Biosci Bioeng. 2012;113:665-73. https://doi.org/10.1016/j.jbiosc.2011.12.013.
-
(2012)
J Biosci Bioeng
, vol.113
, pp. 665-673
-
-
Kato, H.1
Izumi, Y.2
Hasunuma, T.3
Matsuda, F.4
Kondo, A.5
-
44
-
-
84864031732
-
Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum
-
de Jonge LP, Douma RD, Heijnen JJ, van Gulik WM. Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum. Metabolomics. 2012;8:727-35. https://doi.org/10.1007/s11306-011-0367-3.
-
(2012)
Metabolomics
, vol.8
, pp. 727-735
-
-
Jonge, L.P.1
Douma, R.D.2
Heijnen, J.J.3
Gulik, W.M.4
-
45
-
-
78650995732
-
Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae
-
Hasunuma T, Sanda T, Yamada R, Yoshimura K, Ishii J, Kondo A. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Microb Cell Fact. 2011;10:2. https://doi.org/10.1186/1475-2859-10-2.
-
(2011)
Microb Cell Fact
, vol.10
, pp. 2
-
-
Hasunuma, T.1
Sanda, T.2
Yamada, R.3
Yoshimura, K.4
Ishii, J.5
Kondo, A.6
-
46
-
-
84864087634
-
Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions
-
Yamamoto S, Gunji W, Suzuki H, Toda H, Suda M, Jojima T, et al. Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol. 2012;78:4447-57. https://doi.org/10.1128/aem.07998-11.
-
(2012)
Appl Environ Microbiol
, vol.78
, pp. 4447-4457
-
-
Yamamoto, S.1
Gunji, W.2
Suzuki, H.3
Toda, H.4
Suda, M.5
Jojima, T.6
-
47
-
-
85010223628
-
Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant
-
Hasegawa S, Tanaka Y, Suda M, Jojima T, Inui M. Enhanced glucose consumption and organic acid production by engineered Corynebacterium glutamicum based on analysis of a pfkB1 deletion mutant. Appl Environ Microbiol. 2017;83:e02638-16. https://doi.org/10.1128/aem.02638-16.
-
(2017)
Appl Environ Microbiol
, vol.83
-
-
Hasegawa, S.1
Tanaka, Y.2
Suda, M.3
Jojima, T.4
Inui, M.5
-
48
-
-
84990175418
-
Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: blueprint for robustness to bioreactor inhomogeneities
-
Limberg MH, Schulte J, Aryani T, Mahr R, Baumgart M, Bott M, et al. Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: blueprint for robustness to bioreactor inhomogeneities. Biotechnol Bioeng. 2017;114:560-75. https://doi.org/10.1002/bit.26184.
-
(2017)
Biotechnol Bioeng
, vol.114
, pp. 560-575
-
-
Limberg, M.H.1
Schulte, J.2
Aryani, T.3
Mahr, R.4
Baumgart, M.5
Bott, M.6
-
49
-
-
84885847338
-
Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation
-
Matsuoka Y, Shimizu K. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. J Biotechnol. 2013;168:155-73. https://doi.org/10.1016/j.jbiotec.2013.06.023.
-
(2013)
J Biotechnol
, vol.168
, pp. 155-173
-
-
Matsuoka, Y.1
Shimizu, K.2
-
50
-
-
84905123934
-
Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum
-
Wang C, Cai H, Zhou Z, Zhang K, Chen Z, Chen Y, et al. Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum. J Ind Microbiol Biotechnol. 2014;41:1249-58. https://doi.org/10.1007/s10295-014-1455-y.
-
(2014)
J Ind Microbiol Biotechnol
, vol.41
, pp. 1249-1258
-
-
Wang, C.1
Cai, H.2
Zhou, Z.3
Zhang, K.4
Chen, Z.5
Chen, Y.6
-
51
-
-
84867322381
-
Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation
-
Escalante A, Salinas Cervantes A, Gosset G, Bolívar F. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol. 2012;94:1483-94. https://doi.org/10.1007/s00253-012-4101-5.
-
(2012)
Appl Microbiol Biotechnol
, vol.94
, pp. 1483-1494
-
-
Escalante, A.1
Salinas Cervantes, A.2
Gosset, G.3
Bolívar, F.4
-
52
-
-
84894231008
-
A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent
-
McCloskey D, Gangoiti JA, King ZA, Naviaux RK, Barshop BA, Palsson BO, et al. A model-driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K-12 MG1655 that is biochemically and thermodynamically consistent. Biotechnol Bioeng. 2014;111:803-15. https://doi.org/10.1002/bit.25133.
-
(2014)
Biotechnol Bioeng
, vol.111
, pp. 803-815
-
-
McCloskey, D.1
Gangoiti, J.A.2
King, Z.A.3
Naviaux, R.K.4
Barshop, B.A.5
Palsson, B.O.6
-
53
-
-
0036007984
-
Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose
-
Gonzalez R, Tao H, Shanmugam KT, York SW, Ingram LO. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol Prog. 2002;18:6-20. https://doi.org/10.1021/bp010121i.
-
(2002)
Biotechnol Prog
, vol.18
, pp. 6-20
-
-
Gonzalez, R.1
Tao, H.2
Shanmugam, K.T.3
York, S.W.4
Ingram, L.O.5
-
54
-
-
0035039153
-
Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation
-
Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram LO, Preston JF, et al. Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol. 2001;183:2979-88. https://doi.org/10.1128/jb.183.10.2979-2988.2001.
-
(2001)
J Bacteriol
, vol.183
, pp. 2979-2988
-
-
Tao, H.1
Gonzalez, R.2
Martinez, A.3
Rodriguez, M.4
Ingram, L.O.5
Preston, J.F.6
-
55
-
-
84924678364
-
Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase
-
Reddy GK, Lindner SN, Wendisch VF. Metabolic engineering of an ATP-neutral Embden-Meyerhof-Parnas pathway in Corynebacterium glutamicum: growth restoration by an adaptive point mutation in NADH dehydrogenase. Appl Environ Microbiol. 2015;81:1996-2005. https://doi.org/10.1128/aem.03116-14.
-
(2015)
Appl Environ Microbiol
, vol.81
, pp. 1996-2005
-
-
Reddy, G.K.1
Lindner, S.N.2
Wendisch, V.F.3
-
56
-
-
85021879314
-
The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: new evidences from the central carbon metabolism of Corynebacterium glutamicum
-
Noack S, Voges R, Gätgens J, Wiechert W. The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: new evidences from the central carbon metabolism of Corynebacterium glutamicum. J Biotechnol. 2017;258:13-24. https://doi.org/10.1016/j.jbiotec.2017.06.407.
-
(2017)
J Biotechnol
, vol.258
, pp. 13-24
-
-
Noack, S.1
Voges, R.2
Gätgens, J.3
Wiechert, W.4
-
58
-
-
85008255923
-
Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum
-
Schulte J, Baumgart M, Bott M. Identification of the cAMP phosphodiesterase CpdA as novel key player in cAMP-dependent regulation in Corynebacterium glutamicum. Mol Microbiol. 2017;103:534-52. https://doi.org/10.1111/mmi.13574.
-
(2017)
Mol Microbiol
, vol.103
, pp. 534-552
-
-
Schulte, J.1
Baumgart, M.2
Bott, M.3
-
59
-
-
84893405383
-
Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum
-
Chen Z, Bommareddy RR, Frank D, Rappert S, Zeng AP. Deregulation of feedback inhibition of phosphoenolpyruvate carboxylase for improved lysine production in Corynebacterium glutamicum. Appl Environ Microbiol. 2014;80:1388-93. https://doi.org/10.1128/aem.03535-13.
-
(2014)
Appl Environ Microbiol
, vol.80
, pp. 1388-1393
-
-
Chen, Z.1
Bommareddy, R.R.2
Frank, D.3
Rappert, S.4
Zeng, A.P.5
-
60
-
-
84862689750
-
Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity
-
van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. 2012;109:2070-81. https://doi.org/10.1002/bit.24486.
-
(2012)
Biotechnol Bioeng
, vol.109
, pp. 2070-2081
-
-
Ooyen, J.1
Noack, S.2
Bott, M.3
Reth, A.4
Eggeling, L.5
-
61
-
-
0036188941
-
Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation
-
Underwood SA, Buszko ML, Shanmugam KT, Ingram LO. Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol. 2002;68:1071-81. https://doi.org/10.1128/aem.68.3.1071-1081.2002.
-
(2002)
Appl Environ Microbiol
, vol.68
, pp. 1071-1081
-
-
Underwood, S.A.1
Buszko, M.L.2
Shanmugam, K.T.3
Ingram, L.O.4
|