메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 1773-1784

Learned D-AMP: Principled! Neural network based compressive image recovery

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER ARCHITECTURE; IMAGE COMPRESSION; ITERATIVE METHODS; MESSAGE PASSING; NETWORK ARCHITECTURE; NEURAL NETWORKS; SIGNAL RECONSTRUCTION;

EID: 85047007715     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (267)

References (49)
  • 1
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Feb.
    • E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 2
    • 85032751965 scopus 로고    scopus 로고
    • Compressive sensing [lecture notes]
    • R. G. Baraniuk, "Compressive sensing [lecture notes]," IEEE Signal Processing Mag., vol. 24, no. 4, pp. 118-121, 2007.
    • (2007) IEEE Signal Processing Mag. , vol.24 , Issue.4 , pp. 118-121
    • Baraniuk, R.G.1
  • 3
    • 62749175137 scopus 로고    scopus 로고
    • CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
    • D. Needell and J. A. Tropp, "CoSaMP: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 301-321, 2009.
    • (2009) Appl. Comput. Harmon. Anal. , vol.26 , Issue.3 , pp. 301-321
    • Needell, D.1    Tropp, J.A.2
  • 4
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • I. Daubechies, M. Defrise, and C. D. Mol, "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Comm. on Pure and Applied Math., vol. 75, pp. 1412-1457, 2004.
    • (2004) Comm. on Pure and Applied Math. , vol.75 , pp. 1412-1457
    • Daubechies, I.1    Defrise, M.2    Mol, C.D.3
  • 5
    • 73149095169 scopus 로고    scopus 로고
    • Message passing algorithms for compressed sensing
    • D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," Proc. Natl. Acad. Sci., vol. 106, no. 45, pp. 18914-18919, 2009.
    • (2009) Proc. Natl. Acad. Sci. , vol.106 , Issue.45 , pp. 18914-18919
    • Donoho, D.L.1    Maleki, A.2    Montanari, A.3
  • 7
    • 84881059377 scopus 로고    scopus 로고
    • User's guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms
    • C. Li, W. Yin, and Y. Zhang, "User's guide for TVAL3: TV minimization by augmented Lagrangian and alternating direction algorithms," Rice CAAM Department report, vol. 20, pp. 46-47, 2009.
    • (2009) Rice CAAM Department Report , vol.20 , pp. 46-47
    • Li, C.1    Yin, W.2    Zhang, Y.3
  • 9
    • 84904317424 scopus 로고    scopus 로고
    • Compressive sensing via nonlocal low-rank regularization
    • W. Dong, G. Shi, X. Li, Y. Ma, and F. Huang, "Compressive sensing via nonlocal low-rank regularization," IEEE Trans. Image Processing, vol. 23, no. 8, pp. 3618-3632, 2014.
    • (2014) IEEE Trans. Image Processing , vol.23 , Issue.8 , pp. 3618-3632
    • Dong, W.1    Shi, G.2    Li, X.3    Ma, Y.4    Huang, F.5
  • 13
    • 84969776710 scopus 로고    scopus 로고
    • A deep learning approach to structured signal recovery
    • Control, and Computing
    • A. Mousavi, A. B. Patel, and R. G. Baraniuk, "A deep learning approach to structured signal recovery," Proc. Allerton Conf. Communication, Control, and Computing, pp. 1336-1343, 2015.
    • (2015) Proc. Allerton Conf. Communication , pp. 1336-1343
    • Mousavi, A.1    Patel, A.B.2    Baraniuk, R.G.3
  • 15
    • 85023744403 scopus 로고    scopus 로고
    • Learning to invert: Signal recovery via deep convolutional networks
    • Speech, and Signal Processing (ICASSP)
    • A. Mousavi and R. G. Baraniuk, "Learning to invert: Signal recovery via deep convolutional networks," Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing (ICASSP), pp. 2272-2276, 2017.
    • (2017) Proc. IEEE Int. Conf. Acoust. , pp. 2272-2276
    • Mousavi, A.1    Baraniuk, R.G.2
  • 17
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion," J. Machine Learning Research, vol. 11, pp. 3371-3408, 2010.
    • (2010) J. Machine Learning Research , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 25
    • 84964680324 scopus 로고    scopus 로고
    • Learning optimal nonlinearities for iterative thresholding algorithms
    • U. S. Kamilov and H. Mansour, "Learning optimal nonlinearities for iterative thresholding algorithms," IEEE Signal Process. Lett., vol. 23, no. 5, pp. 747-751, 2016.
    • (2016) IEEE Signal Process. Lett. , vol.23 , Issue.5 , pp. 747-751
    • Kamilov, U.S.1    Mansour, H.2
  • 30
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-d transform-domain collaborative filtering
    • Aug.
    • K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, "Image denoising by sparse 3-d transform-domain collaborative filtering," IEEE Trans. Image Processing, vol. 16, no. 8, pp. 2080-2095, Aug. 2007.
    • (2007) IEEE Trans. Image Processing , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 32
    • 84919754597 scopus 로고    scopus 로고
    • What regularized auto-encoders learn from the data-generating distribution
    • G. Alain and Y. Bengio, "What regularized auto-encoders learn from the data-generating distribution," J. Machine Learning Research, vol. 15, no. 1, pp. 3563-3593, 2014.
    • (2014) J. Machine Learning Research , vol.15 , Issue.1 , pp. 3563-3593
    • Alain, G.1    Bengio, Y.2
  • 34
    • 84996241537 scopus 로고
    • Solution of 'Solvable model of a spin glass'
    • D. J. Thouless, P. W. Anderson, and R. G. Palmer, "Solution of 'Solvable model of a spin glass'," Philos. Mag., vol. 35, no. 3, pp. 593-601, 1977.
    • (1977) Philos. Mag. , vol.35 , Issue.3 , pp. 593-601
    • Thouless, D.J.1    Anderson, P.W.2    Palmer, R.G.3
  • 37
    • 50549090016 scopus 로고    scopus 로고
    • Monte-Carlo sure: A black-box optimization of regularization parameters for general denoising algorithms
    • S. Ramani, T. Blu, and M. Unser, "Monte-Carlo sure: A black-box optimization of regularization parameters for general denoising algorithms," IEEE Trans. Image Processing, pp. 1540-1554, 2008.
    • (2008) IEEE Trans. Image Processing , pp. 1540-1554
    • Ramani, S.1    Blu, T.2    Unser, M.3
  • 38
    • 84866679588 scopus 로고    scopus 로고
    • Image denoising: Can plain neural networks compete with BM3D?
    • and Pattern Recognition
    • H. C. Burger, C. J. Schuler, and S. Harmeling, "Image denoising: Can plain neural networks compete with BM3D?" Proc. IEEE Int. Conf. Comp. Vision, and Pattern Recognition, pp. 2392-2399, 2012.
    • (2012) Proc. IEEE Int. Conf. Comp. Vision , pp. 2392-2399
    • Burger, H.C.1    Schuler, C.J.2    Harmeling, S.3
  • 42
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • and Pattern Recognition
    • K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE Int. Conf. Comp. Vision, and Pattern Recognition, pp. 770-778, 2016.
    • (2016) Proc. IEEE Int. Conf. Comp. Vision , pp. 770-778
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 43
    • 0027274189 scopus 로고
    • Neural network constructive algorithms: Trading generalization for learning efficiency?
    • F. J. Śmieja, "Neural network constructive algorithms: Trading generalization for learning efficiency?" Circuits, Systems, and Signal Processing, vol. 12, no. 2, pp. 331-374, 1993.
    • (1993) Circuits, Systems, and Signal Processing , vol.12 , Issue.2 , pp. 331-374
    • Śmieja, F.J.1
  • 44
    • 79251496987 scopus 로고    scopus 로고
    • The dynamics of message passing on dense graphs, with applications to compressed sensing
    • M. Bayati and A. Montanari, "The dynamics of message passing on dense graphs, with applications to compressed sensing," IEEE Trans. Inform. Theory, vol. 57, no. 2, pp. 764-785, 2011.
    • (2011) IEEE Trans. Inform. Theory , vol.57 , Issue.2 , pp. 764-785
    • Bayati, M.1    Montanari, A.2
  • 46
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • July
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics," Proc. Int. Conf. Computer Vision, vol. 2, pp. 416-423, July 2001.
    • (2001) Proc. Int. Conf. Computer Vision , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 49
    • 84920061457 scopus 로고    scopus 로고
    • Phase retrieval from coded diffraction patterns
    • E. J. Candes, X. Li, and M. Soltanolkotabi, "Phase retrieval from coded diffraction patterns," Appl. Comput. Harmon. Anal., vol. 39, no. 2, pp. 277-299, 2015.
    • (2015) Appl. Comput. Harmon. Anal. , vol.39 , Issue.2 , pp. 277-299
    • Candes, E.J.1    Li, X.2    Soltanolkotabi, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.