-
1
-
-
33645712892
-
Compressed sensing
-
D. L. Donoho, "Compressed sensing," Information Theory, IEEE Transactions on, vol. 52, no. 4, pp. 1289-1306, 2006.
-
(2006)
Information Theory, IEEE Transactions on
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
-
3
-
-
84878104490
-
Compressive sampling
-
Madrid, Spain
-
E. J. Candès, "Compressive sampling," in Proceedings of the International Congress of Mathematicians, vol. 3. Madrid, Spain, 2006, pp. 1433-1452.
-
(2006)
Proceedings of the International Congress of Mathematicians
, vol.3
, pp. 1433-1452
-
-
Candès, E.J.1
-
4
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
5
-
-
33645688413
-
-
D. Baron, M. B. Wakin, M. F. Duarte, S. Sarvotham, and R. G. Baraniuk, "Distributed compressed sensing. "
-
Distributed Compressed Sensing
-
-
Baron, D.1
Wakin, M.B.2
Duarte, M.F.3
Sarvotham, S.4
Baraniuk, R.G.5
-
6
-
-
33947416035
-
Near-optimal signal recovery from random projections: Universal encoding strategies
-
E. J. Candès and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies" Information Theory, IEEE Transactions on, vol. 52, no. 12, pp. 5406-5425, 2006.
-
(2006)
Information Theory, IEEE Transactions on
, vol.52
, Issue.12
, pp. 5406-5425
-
-
Candès, E.J.1
Tao, T.2
-
7
-
-
73149095169
-
Message-passing algorithms for compressed sensing
-
D. L. Donoho, A. Maleki, and A. Montanari, "Message-passing algorithms for compressed sensing," Proceedings of the National Academy of Sciences, vol. 106, no. 45, pp. 18 914-18 919, 2009.
-
(2009)
Proceedings of the National Academy of Sciences
, vol.106
, Issue.45
, pp. 18914-18919
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
8
-
-
62749175137
-
Cosamp: Iterative signal recovery from incomplete and inaccurate samples
-
D. Needell and J. A. Tropp, "Cosamp: Iterative signal recovery from incomplete and inaccurate samples," Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301-321, 2009.
-
(2009)
Applied and Computational Harmonic Analysis
, vol.26
, Issue.3
, pp. 301-321
-
-
Needell, D.1
Tropp, J.A.2
-
9
-
-
69949164527
-
Iterative hard thresholding for compressed sensing
-
T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing," Applied and Computational Harmonic Analysis, vol. 27, no. 3, pp. 265-274, 2009.
-
(2009)
Applied and Computational Harmonic Analysis
, vol.27
, Issue.3
, pp. 265-274
-
-
Blumensath, T.1
Davies, M.E.2
-
10
-
-
85014561619
-
A fast iterative shrinkage-thresholding algorithm for linear inverse problems
-
A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.
-
(2009)
SIAM Journal on Imaging Sciences
, vol.2
, Issue.1
, pp. 183-202
-
-
Beck, A.1
Teboulle, M.2
-
11
-
-
42649140570
-
The restricted isometry property and its implications for compressed sensing
-
E. J. Candès, "The restricted isometry property and its implications for compressed sensing," Comptes Rendus Mathematique, vol. 346, no. 9, pp. 589-592, 2008.
-
(2008)
Comptes Rendus Mathematique
, vol.346
, Issue.9
, pp. 589-592
-
-
Candès, E.J.1
-
12
-
-
84902972079
-
Near-optimal adaptive compressed sensing
-
M. L. Malloy and R. D. Nowak, "Near-optimal adaptive compressed sensing," Information Theory, IEEE Transactions on, vol. 60, no. 7, pp. 4001-4012, 2014.
-
(2014)
Information Theory, IEEE Transactions on
, vol.60
, Issue.7
, pp. 4001-4012
-
-
Malloy, M.L.1
Nowak, R.D.2
-
13
-
-
63649090713
-
Adaptive sensing for sparse signal recovery
-
J. Haupt, R. Nowak, and R. Castro, "Adaptive sensing for sparse signal recovery," in Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th, 2009, pp. 702-707.
-
(2009)
Digital Signal Processing Workshop and 5th IEEE Signal Processing Education Workshop, 2009. DSP/SPE 2009. IEEE 13th
, pp. 702-707
-
-
Haupt, J.1
Nowak, R.2
Castro, R.3
-
14
-
-
84868218048
-
Sequentially designed compressed sensing
-
J. Haupt, R. Baraniuk, R. Castro, and R. Nowak, "Sequentially designed compressed sensing," in Proc. IEEE Work. Stat. Signal Processing, 2012, pp. 401-404.
-
(2012)
Proc. IEEE Work. Stat. Signal Processing
, pp. 401-404
-
-
Haupt, J.1
Baraniuk, R.2
Castro, R.3
Nowak, R.4
-
15
-
-
77953830942
-
Compressive distilled sensing: Sparse recovery using adaptivity in compressive measurements
-
J. D. Haupt, R. G. Baraniuk, R. M. Castro, and R. D. Nowak, "Compressive distilled sensing: Sparse recovery using adaptivity in compressive measurements," in Proc. Asilomar Conf. Signals, Systems, and Computers, 2009, pp. 1551-1555.
-
(2009)
Proc. Asilomar Conf. Signals, Systems, and Computers
, pp. 1551-1555
-
-
Haupt, J.D.1
Baraniuk, R.G.2
Castro, R.M.3
Nowak, R.D.4
-
17
-
-
33747727601
-
Wavelet-based statistical signal processing using hidden markov models
-
M. S. Crouse, R. D. Nowak, and R. G. Baraniuk, "Wavelet-based statistical signal processing using hidden markov models," Signal Processing, IEEE Transactions on, vol. 46, no. 4, pp. 886-902, 1998.
-
(1998)
Signal Processing, IEEE Transactions on
, vol.46
, Issue.4
, pp. 886-902
-
-
Crouse, M.S.1
Nowak, R.D.2
Baraniuk, R.G.3
-
19
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
M. Aharon, M. Elad, and A. Bruckstein, "K-svd: An algorithm for designing overcomplete dictionaries for sparse representation," Signal Processing, IEEE Transactions on, vol. 54, no. 11, pp. 4311-4322, 2006.
-
(2006)
Signal Processing, IEEE Transactions on
, vol.54
, Issue.11
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
20
-
-
84866679588
-
Image denoising: Can plain neural networks compete with BM3D
-
H. C. Burger, C. J. Schuler, and S. Harmeling, "Image denoising: Can plain neural networks compete with BM3D" in Proc. IEEE Int. Conf. Comp. Vision, and Pattern Recognition (CVPR), 2012, pp. 2392-2399.
-
(2012)
Proc. IEEE Int. Conf. Comp. Vision, and Pattern Recognition (CVPR)
, pp. 2392-2399
-
-
Burger, H.C.1
Schuler, C.J.2
Harmeling, S.3
-
21
-
-
84898798806
-
Restoring an image taken through a window covered with dirt or rain
-
D. Eigen, D. Krishnan, and R. Fergus, "Restoring an image taken through a window covered with dirt or rain," in Proc. IEEE Int. Conf. Comp. Vision (ICCV), 2013, pp. 633-640.
-
(2013)
Proc. IEEE Int. Conf. Comp. Vision (ICCV)
, pp. 633-640
-
-
Eigen, D.1
Krishnan, D.2
Fergus, R.3
-
22
-
-
84906484697
-
Learning a deep convolutional network for image super-resolution
-
Springer
-
C. Dong, C. C. Loy, K. He, and X. Tang, "Learning a deep convolutional network for image super-resolution," in Proc. European Conf. Comp. Vision (ECCV). Springer, 2014, pp. 184-199.
-
(2014)
Proc. European Conf. Comp. Vision (ECCV)
, pp. 184-199
-
-
Dong, C.1
Loy, C.C.2
He, K.3
Tang, X.4
-
23
-
-
84921817164
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Cognitive Modeling, vol. 5, p. 3, 1988.
-
(1988)
Cognitive Modeling
, vol.5
, pp. 3
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
24
-
-
84864073449
-
Greedy layerwise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layerwise training of deep networks," Proc. Adv. in Neural Processing Systems (NIPS), vol. 19, pp. 153-160, 2007.
-
(2007)
Proc. Adv. in Neural Processing Systems (NIPS)
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
25
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computation, vol. 14, no. 8, pp. 1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
26
-
-
35148893484
-
A tutorial on energy-based learning
-
Y. LeCun, S. Chopra, R. Hadsell, M. Ranzato, and F. Huang, "A tutorial on energy-based learning," Predicting Structured Data, vol. 1, p. 0, 2006.
-
(2006)
Predicting Structured Data
, vol.1
, pp. 0
-
-
LeCun, Y.1
Chopra, S.2
Hadsell, R.3
Ranzato, M.4
Huang, F.5
-
28
-
-
84929192782
-
The potential energy of an autoencoder
-
H. Kamyshanska and R. Memisevic, "The potential energy of an autoencoder," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 37, no. 6, pp. 1261-1273.
-
Pattern Analysis and Machine Intelligence, IEEE Transactions on
, vol.37
, Issue.6
, pp. 1261-1273
-
-
Kamyshanska, H.1
Memisevic, R.2
-
29
-
-
0000938157
-
Learning continuous attractors in recurrent networks
-
H. S. Seung, "Learning continuous attractors in recurrent networks. " in Proc. Adv. in Neural Processing Systems (NIPS), vol. 97, 1997, pp. 654-660.
-
(1997)
Proc. Adv. in Neural Processing Systems (NIPS)
, vol.97
, pp. 654-660
-
-
Seung, H.S.1
-
30
-
-
79959575293
-
A connection between score matching and denoising autoencoders
-
P. Vincent, "A connection between score matching and denoising autoencoders," Neural Computation, vol. 23, no. 7, pp. 1661-1674, 2011.
-
(2011)
Neural Computation
, vol.23
, Issue.7
, pp. 1661-1674
-
-
Vincent, P.1
-
31
-
-
84945944033
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, "Imagenet large scale visual recognition challenge," International Journal of Computer Vision, pp. 1-42, 2014.
-
(2014)
International Journal of Computer Vision
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
33
-
-
84857819132
-
Theano: A cpu and GPU math expression compiler
-
Austin, TX
-
J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio, "Theano: a cpu and gpu math expression compiler," in Proceedings of the Python for Scientific Computing Conference (SciPy), vol. 4. Austin, TX, 2010, p. 3.
-
(2010)
Proceedings of the Python for Scientific Computing Conference (SciPy)
, vol.4
, pp. 3
-
-
Bergstra, J.1
Breuleux, O.2
Bastien, F.3
Lamblin, P.4
Pascanu, R.5
Desjardins, G.6
Turian, J.7
Warde-Farley, D.8
Bengio, Y.9
-
35
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
February
-
E. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, vol. 52, no. 2, pp. 489-509, February 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candès, E.1
Romberg, J.2
Tao, T.3
|