-
1
-
-
33645712892
-
Compressed sensing
-
D. L. Donoho, "Compressed sensing," IEEE Trans. Inform. Theory, Vol. 52, no. 4, pp. 1289-1306, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.4
, pp. 1289-1306
-
-
Donoho, D.L.1
-
3
-
-
84878104490
-
Compressive sampling
-
Madrid, Spain
-
E. J. Candès, "Compressive sampling," in Proceedings of the International Congress of Mathematicians. Madrid, Spain, 2006, vol. 3, pp. 1433-1452.
-
(2006)
Proceedings of the International Congress of Mathematicians
, vol.3
, pp. 1433-1452
-
-
Candès, E.J.1
-
4
-
-
33947416035
-
Near-optimal signal recovery from random projections: Universal encoding strategies?
-
E. J. Candès and T. Tao, "Near-optimal signal recovery from random projections: Universal encoding strategies?," IEEE Trans. Inform. Theory, Vol. 52, no. 12, pp. 5406-5425, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.12
, pp. 5406-5425
-
-
Candès, E.J.1
Tao, T.2
-
5
-
-
73149095169
-
Messagepassing algorithms for compressed sensing
-
D. L. Donoho, A. Maleki, and A. Montanari, "Messagepassing algorithms for compressed sensing," Proc. Natl. Acad. Sci., Vol. 106, no. 45, pp. 18914-18919, 2009.
-
(2009)
Proc. Natl. Acad. Sci.
, vol.106
, Issue.45
, pp. 18914-18919
-
-
Donoho, D.L.1
Maleki, A.2
Montanari, A.3
-
6
-
-
62749175137
-
Cosamp: Iterative signal recovery from incomplete and inaccurate samples
-
D. Needell and J. A. Tropp, "Cosamp: Iterative signal recovery from incomplete and inaccurate samples," Appl. Comput. Harmon. Anal., Vol. 26, no. 3, pp. 301-321, 2009.
-
(2009)
Appl. Comput. Harmon. Anal.
, vol.26
, Issue.3
, pp. 301-321
-
-
Needell, D.1
Tropp, J.A.2
-
8
-
-
77951100868
-
Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization
-
J. M. Duarte-Carvajalino and G. Sapiro, "Learning to sense sparse signals: Simultaneous sensing matrix and sparsifying dictionary optimization," Tech. Rep., DTIC Document, 2008.
-
(2008)
Tech. Rep., DTIC Document
-
-
Duarte-Carvajalino, J.M.1
Sapiro, G.2
-
9
-
-
33750383209
-
K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
-
M. Aharon, M. Elad, and A. Bruckstein, "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation," IEEE Trans. Signal Processing, Vol. 54, no. 11, pp. 4311-4322, 2006.
-
(2006)
IEEE Trans. Signal Processing
, vol.54
, Issue.11
, pp. 4311-4322
-
-
Aharon, M.1
Elad, M.2
Bruckstein, A.3
-
10
-
-
84983567835
-
From denoising to compressed sensing
-
C. A. Metzler, A. Maleki, and R. G. Baraniuk, "From denoising to compressed sensing," IEEE Trans. Inform. Theory, Vol. 62, no. 9, pp. 5117-5144, 2016.
-
(2016)
IEEE Trans. Inform. Theory
, vol.62
, Issue.9
, pp. 5117-5144
-
-
Metzler, C.A.1
Maleki, A.2
Baraniuk, R.G.3
-
11
-
-
84969776710
-
A deep learning approach to structured signal recovery
-
IEEE
-
A. Mousavi, A. B. Patel, and R. G. Baraniuk, "A deep learning approach to structured signal recovery," in Proc. Allerton Conf. Communication, Control, and Computing. IEEE, 2015, pp. 1336-1343.
-
(2015)
Proc. Allerton Conf. Communication, Control, and Computing
, pp. 1336-1343
-
-
Mousavi, A.1
Patel, A.B.2
Baraniuk, R.G.3
-
12
-
-
84986249771
-
Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements
-
K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, and A. Ashok, "Reconnet: Non-iterative reconstruction of images from compressively sensed random measurements," Proc. IEEE Int. Conf. Comp. Vision, and Pattern Recognition, 2016.
-
(2016)
Proc. IEEE Int. Conf. Comp. Vision, and Pattern Recognition
-
-
Kulkarni, K.1
Lohit, S.2
Turaga, P.3
Kerviche, R.4
Ashok, A.5
-
14
-
-
84921817164
-
Learning representations by back-propagating errors
-
D. E. Rumelhart, G E Hinton, and R. J. Williams, "Learning representations by back-propagating errors," Cognitive Modeling, Vol. 5, pp. 3, 1988.
-
(1988)
Cognitive Modeling
, vol.5
, pp. 3
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
15
-
-
84945944033
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein, "Imagenet large scale visual recognition challenge," Int. J. Computer Vision, pp. 1-42, 2014.
-
(2014)
Int. J. Computer Vision
, pp. 1-42
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
16
-
-
31744440684
-
Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
-
E. J. Candès, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Inform. Theory, Vol. 52, no. 2, pp. 489-509, 2006.
-
(2006)
IEEE Trans. Inform. Theory
, vol.52
, Issue.2
, pp. 489-509
-
-
Candès, E.J.1
Romberg, J.2
Tao, T.3
-
18
-
-
84864478971
-
The pros and cons of compressive sensing for wideband signal acquisition: Noise folding versus dynamic range
-
M. A. Davenport, J. N Laska, J. R Treichler, and R. G Baraniuk, "The pros and cons of compressive sensing for wideband signal acquisition: Noise folding versus dynamic range," IEEE Trans. Signal Processing, Vol. 60, no. 9, pp. 4628-4642, 2012.
-
(2012)
IEEE Trans. Signal Processing
, vol.60
, Issue.9
, pp. 4628-4642
-
-
Davenport, M.A.1
Laska, J.N.2
Treichler, J.R.3
Baraniuk, R.G.4
|