메뉴 건너뛰기




Volumn 2017-December, Issue , 2017, Pages 3612-3622

PASS-GLM: Polynomial approximate sufficient statistics for scalable Bayesian GLM inference

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; HIERARCHICAL SYSTEMS; MAXIMUM LIKELIHOOD; STOCHASTIC SYSTEMS; UNCERTAINTY ANALYSIS;

EID: 85047005558     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (41)
  • 2
    • 84953346435 scopus 로고    scopus 로고
    • Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels
    • P. Alquier, N. Friel, R. Everitt, and A. Boland. Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels. Statistics and Computing, 26:29-47, 2016.
    • (2016) Statistics and Computing , vol.26 , pp. 29-47
    • Alquier, P.1    Friel, N.2    Everitt, R.3    Boland, A.4
  • 7
    • 84969498066 scopus 로고    scopus 로고
    • The fundamental incompatibility of hamiltonian Monte Carlo and data subsampling
    • M. J. Betancourt. The fundamental incompatibility of Hamiltonian Monte Carlo and data subsampling. In International Conference on Machine Learning, 2015.
    • (2015) International Conference on Machine Learning
    • Betancourt, M.J.1
  • 14
    • 84908252765 scopus 로고    scopus 로고
    • Local case-control sampling: Efficient subsampling in imbalanced data sets
    • Oct.
    • W. Fithian and T. Hastie. Local case-control sampling: Efficient subsampling in imbalanced data sets. The Annals of Statistics, 42(5):1693-1724, Oct. 2014.
    • (2014) The Annals of Statistics , vol.42 , Issue.5 , pp. 1693-1724
    • Fithian, W.1    Hastie, T.2
  • 27
    • 0345978970 scopus 로고    scopus 로고
    • Expectation propagation for approximate Bayesian inference
    • Morgan Kaufmann Publishers Inc, Aug.
    • T. P. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc, Aug. 2001.
    • (2001) Uncertainty in Artificial Intelligence
    • Minka, T.P.1
  • 33
    • 78149297677 scopus 로고    scopus 로고
    • Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
    • A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Advances in Neural Information Processing Systems, pages 1313-1320, 2009.
    • (2009) Advances in Neural Information Processing Systems , pp. 1313-1320
    • Rahimi, A.1    Recht, B.2
  • 37
    • 0004073954 scopus 로고
    • American Mathematical Society, 4th edition
    • G. Szegö. Orthogonal Polynomials. American Mathematical Society, 4th edition, 1975.
    • (1975) Orthogonal Polynomials
    • Szegö, G.1
  • 38
    • 84962427466 scopus 로고    scopus 로고
    • Consistency and fluctuations for stochastic gradient langevin dynamics
    • Mar.
    • Y. W. Teh, A. H. Thiery, and S. Vollmer. Consistency and fluctuations for stochastic gradient Langevin dynamics. Journal of Machine Learning Research, 17(7):1-33, Mar. 2016.
    • (2016) Journal of Machine Learning Research , vol.17 , Issue.7 , pp. 1-33
    • Teh, Y.W.1    Thiery, A.H.2    Vollmer, S.3
  • 39
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • L. Tierney and J. B. Kadane. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393):82-86, 1986.
    • (1986) Journal of the American Statistical Association , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.