-
2
-
-
84953346435
-
Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels
-
P. Alquier, N. Friel, R. Everitt, and A. Boland. Noisy Monte Carlo: convergence of Markov chains with approximate transition kernels. Statistics and Computing, 26:29-47, 2016.
-
(2016)
Statistics and Computing
, vol.26
, pp. 29-47
-
-
Alquier, P.1
Friel, N.2
Everitt, R.3
Boland, A.4
-
3
-
-
84996774837
-
Patterns of scalable Bayesian inference
-
E. Angelino, M. J. Johnson, and R. P. Adams. Patterns of scalable Bayesian inference. Foundations and Trends® in Machine Learning, 9(2-3):119-247, 2016.
-
(2016)
Foundations and Trends® in Machine Learning
, vol.9
, Issue.2-3
, pp. 119-247
-
-
Angelino, E.1
Johnson, M.J.2
Adams, R.P.3
-
7
-
-
84969498066
-
The fundamental incompatibility of hamiltonian Monte Carlo and data subsampling
-
M. J. Betancourt. The fundamental incompatibility of Hamiltonian Monte Carlo and data subsampling. In International Conference on Machine Learning, 2015.
-
(2015)
International Conference on Machine Learning
-
-
Betancourt, M.J.1
-
10
-
-
84899013244
-
Streaming variational bayes
-
Dec.
-
T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming variational Bayes. In Advances in Neural Information Processing Systems, Dec. 2013.
-
(2013)
Advances in Neural Information Processing Systems
-
-
Broderick, T.1
Boyd, N.2
Wibisono, A.3
Wilson, A.C.4
Jordan, M.I.5
-
11
-
-
84965170281
-
Streaming, distributed variational inference for Bayesian nonparametrics
-
T. Campbell, J. Straub, J. W. Fisher, III, and J. P. How. Streaming, distributed variational inference for Bayesian nonparametrics. In Advances in Neural Information Processing Systems, 2015.
-
(2015)
Advances in Neural Information Processing Systems
-
-
Campbell, T.1
Straub, J.2
Fisher, J.W.3
How, J.P.4
-
14
-
-
84908252765
-
Local case-control sampling: Efficient subsampling in imbalanced data sets
-
Oct.
-
W. Fithian and T. Hastie. Local case-control sampling: Efficient subsampling in imbalanced data sets. The Annals of Statistics, 42(5):1693-1724, Oct. 2014.
-
(2014)
The Annals of Statistics
, vol.42
, Issue.5
, pp. 1693-1724
-
-
Fithian, W.1
Hastie, T.2
-
15
-
-
84954343597
-
-
arXiv.org, Dec.
-
A. Gelman, A. Vehtari, P. Jylänki, T. Sivula, D. Tran, S. Sahai, P. Blomstedt, J. P. Cunningham, D. Schiminovich, and C. Robert. Expectation propagation as a way of life: A framework for Bayesian inference on partitioned data. arXiv.org, Dec. 2014.
-
(2014)
Expectation Propagation as a Way of Life: A Framework for Bayesian Inference on Partitioned Data
-
-
Gelman, A.1
Vehtari, A.2
Jylänki, P.3
Sivula, T.4
Tran, D.5
Sahai, S.6
Blomstedt, P.7
Cunningham, J.P.8
Schiminovich, D.9
Robert, C.10
-
17
-
-
85032947988
-
Distributed Bayesian learning with stochastic natural-gradient expectation propagation and the posterior server
-
L. Hasenclever, S. Webb, T. Lienart, S. Vollmer, B. Lakshminarayanan, C. Blundell, and Y. W. Teh. Distributed Bayesian learning with stochastic natural-gradient expectation propagation and the posterior server. Journal of Machine Learning Research, 18:1-37, 2017.
-
(2017)
Journal of Machine Learning Research
, vol.18
, pp. 1-37
-
-
Hasenclever, L.1
Webb, S.2
Lienart, T.3
Vollmer, S.4
Lakshminarayanan, B.5
Blundell, C.6
Teh, Y.W.7
-
18
-
-
84878919168
-
Stochastic variational inference
-
M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14:1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
27
-
-
0345978970
-
Expectation propagation for approximate Bayesian inference
-
Morgan Kaufmann Publishers Inc, Aug.
-
T. P. Minka. Expectation propagation for approximate Bayesian inference. In Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc, Aug. 2001.
-
(2001)
Uncertainty in Artificial Intelligence
-
-
Minka, T.P.1
-
28
-
-
85027987005
-
Real-time Machine learning: The missing pieces
-
R. Nishihara, P. Moritz, S. Wang, A. Tumanov, W. Paul, J. Schleier-Smith, R. Liaw, M. Niknami, M. I. Jordan, and I. Stoica. Real-time machine learning: The missing pieces. In Workshop on Hot Topics in Operating Systems, 2017.
-
(2017)
Workshop on Hot Topics in Operating Systems
-
-
Nishihara, R.1
Moritz, P.2
Wang, S.3
Tumanov, A.4
Paul, W.5
Schleier-Smith, J.6
Liaw, R.7
Niknami, M.8
Jordan, M.I.9
Stoica, I.10
-
33
-
-
78149297677
-
Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning
-
A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with randomization in learning. In Advances in Neural Information Processing Systems, pages 1313-1320, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 1313-1320
-
-
Rahimi, A.1
Recht, B.2
-
34
-
-
84932199616
-
Bayes and big data: The consensus Monte Carlo algorithm
-
S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George, and R. E. McCulloch. Bayes and big data: The consensus Monte Carlo algorithm. In Bayes 250, 2013.
-
(2013)
Bayes 250
-
-
Scott, S.L.1
Blocker, A.W.2
Bonassi, F.V.3
Chipman, H.A.4
George, E.I.5
McCulloch, R.E.6
-
36
-
-
85014794916
-
Sequential quantiles via hermite series density estimation
-
M. Stephanou, M. Varughese, and I. Macdonald. Sequential quantiles via Hermite series density estimation. Electronic Journal of Statistics, 11(1):570-607, 2017.
-
(2017)
Electronic Journal of Statistics
, vol.11
, Issue.1
, pp. 570-607
-
-
Stephanou, M.1
Varughese, M.2
Macdonald, I.3
-
37
-
-
0004073954
-
-
American Mathematical Society, 4th edition
-
G. Szegö. Orthogonal Polynomials. American Mathematical Society, 4th edition, 1975.
-
(1975)
Orthogonal Polynomials
-
-
Szegö, G.1
-
38
-
-
84962427466
-
Consistency and fluctuations for stochastic gradient langevin dynamics
-
Mar.
-
Y. W. Teh, A. H. Thiery, and S. Vollmer. Consistency and fluctuations for stochastic gradient Langevin dynamics. Journal of Machine Learning Research, 17(7):1-33, Mar. 2016.
-
(2016)
Journal of Machine Learning Research
, vol.17
, Issue.7
, pp. 1-33
-
-
Teh, Y.W.1
Thiery, A.H.2
Vollmer, S.3
-
39
-
-
84950871099
-
Accurate approximations for posterior moments and marginal densities
-
L. Tierney and J. B. Kadane. Accurate approximations for posterior moments and marginal densities. Journal of the American Statistical Association, 81(393):82-86, 1986.
-
(1986)
Journal of the American Statistical Association
, vol.81
, Issue.393
, pp. 82-86
-
-
Tierney, L.1
Kadane, J.B.2
|