-
1
-
-
84919831989
-
An adaptive subsampling approach for MCMC inference in large datasets
-
Bardenet, Remi, Doucet, Arnaud, and Holmes, Chris. An adaptive subsampling approach for MCMC inference in large datasets. In Proceedings of The 31st International Conference on Machine Learning, pp. 405-413, 2014.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning
, pp. 405-413
-
-
Bardenet, R.1
Doucet, A.2
Holmes, C.3
-
2
-
-
84962893190
-
-
ArXiv e-prints 1410.5110
-
Betancourt, Michael, Byrne, Simon, and Girolami, Mark. Optimizing the integrator step size for hamiltonian monte carlo. ArXiv e-prints, 1410.5110, 11 2014a.
-
(2014)
Optimizing the Integrator Step Size for Hamiltonian Monte Carlo
, pp. 11
-
-
Betancourt, M.1
Byrne, S.2
Girolami, M.3
-
3
-
-
84932198458
-
-
ArXiv e-prints 1410.5110
-
Betancourt, Michael, Byrne, Simon, Livingstone, Samuel, and Girolami, Mark. The geometric foundations of Hamiltonian Monte Carlo. ArXiv e-prints, 1410.5110, 10 2014b.
-
(2014)
The Geometric Foundations of Hamiltonian Monte Carlo
, pp. 10
-
-
Betancourt, M.1
Byrne, S.2
Livingstone, S.3
Girolami, M.4
-
4
-
-
84919787787
-
Stochastic gradient hamiltonian monte carlo
-
Chen, Tianqi, Fox, Emily B, and Guestrin, Carlos. Stochastic gradient Hamiltonian Monte Carlo. Proceedings of The 31st International Conference on Machine Learning, 1683-1691, 2014.
-
(2014)
Proceedings of the 31st International Conference on Machine Learning
, pp. 1683-1691
-
-
Chen, T.1
Fox, E.B.2
Guestrin, C.3
-
5
-
-
4243137056
-
Hybrid monte carlo
-
Duane, Simon, Kennedy, A.D., Pendleton, Brian J., and Roweth, Duncan. Hybrid Monte Carlo. Physics Letters B, 195 (2): 216-222, 1987.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
Roweth, D.4
-
7
-
-
0003835647
-
-
Springer, New York
-
Hairer, E., Lubich, C, and Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, New York, 2006.
-
(2006)
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
-
-
Hairer, E.1
Lubich, C.2
Wanner, G.3
-
10
-
-
85057196821
-
MCMC using Hamiltonian dynamics
-
Brooks, Steve, Gelman, Andrew, Jones, Galin L., and Meng, Xiao-Li (eds.) CRC Press, New York
-
Neal, R.M. MCMC using Hamiltonian dynamics. In Brooks, Steve, Gelman, Andrew, Jones, Galin L., and Meng, Xiao-Li (eds.), Handbook of Markov Chain Monte Carlo. CRC Press, New York, 2011.
-
(2011)
Handbook of Markov Chain Monte Carlo
-
-
Neal, R.M.1
-
11
-
-
84918573313
-
-
arXiv e-prints 1311.4780
-
Neiswanger, Willie, Wang, Chong, and Xing, Eric. Asymptotically exact, embarrassingly parallel MCMC. arXiv e-prints, 1311.4780, 2013.
-
(2013)
Asymptotically Exact, Embarrassingly Parallel MCMC
-
-
Neiswanger, W.1
Wang, C.2
Xing, E.3
-
12
-
-
84898540704
-
Split hamiltonian monte carlo
-
Shahbaba, Babak, Lan, Shiwei, Johnson, Wesley O, and Neal, Radford M. Split Hamiltonian Monte Carlo. Statistics and Computing, 24 (3): 339-349, 2014.
-
(2014)
Statistics and Computing
, vol.24
, Issue.3
, pp. 339-349
-
-
Shahbaba, B.1
Lan, S.2
Johnson, W.O.3
Neal, R.M.4
-
13
-
-
84962855547
-
-
ArXiv e-prints 1409.0578.09
-
Teh, Yee Whye, Thiery, Alexandre, and Vollmer, Sebastian. Consistency and fluctuations for stochastic gradient Langevin dynamics. ArXiv e-prints, 1409.0578, 09 2014.
-
(2014)
Consistency and Fluctuations for Stochastic Gradient Langevin Dynamics
-
-
Teh, Y.W.1
Thiery, A.2
Vollmer, S.3
-
14
-
-
84962870797
-
-
ArXiv e-prints 1501.00438.01
-
Vollmer, Sebastian J., Zygalakis, Konstantinos C, , and Teh, Yee Whye. (non-)asymptotic properties of stochastic gradient Langevin dynamics. ArXiv e-prints, 1501.00438, 01 2015.
-
(2015)
Non-asymptotic Properties of Stochastic Gradient Langevin Dynamics
-
-
Vollmer, S.J.1
Zygalakis, K.C.2
Teh Yee, W.3
|