메뉴 건너뛰기




Volumn , Issue , 2016, Pages 4087-4095

Coresets for scalable Bayesian logistic regression

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; HIERARCHICAL SYSTEMS; ITERATIVE METHODS; REGRESSION ANALYSIS;

EID: 85019259132     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (228)

References (24)
  • 2
    • 84969135721 scopus 로고    scopus 로고
    • k-means++: The advantages of careful seeding
    • Society for Industrial and Applied Mathematics
    • D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Symposium on Discrete Algorithms, pages 1027-1035. Society for Industrial and Applied Mathematics, 2007.
    • (2007) Symposium on Discrete Algorithms , pp. 1027-1035
    • Arthur, D.1    Vassilvitskii, S.2
  • 5
    • 84969498066 scopus 로고    scopus 로고
    • The fundamental incompatibility of hamiltonian Monte Carlo and data subsampling
    • M. J. Betancourt. The Fundamental Incompatibility of Hamiltonian Monte Carlo and Data Subsampling. In International Conference on Machine Learning, 2015.
    • (2015) International Conference on Machine Learning
    • Betancourt, M.J.1
  • 11
    • 84876035763 scopus 로고    scopus 로고
    • Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering
    • SIAM
    • D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In Symposium on Discrete Algorithms, pages 1434-1453. SIAM, 2013.
    • (2013) Symposium on Discrete Algorithms , pp. 1434-1453
    • Feldman, D.1    Schmidt, M.2    Sohler, C.3
  • 12
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Dec.
    • A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4): 1360-1383, Dec. 2008.
    • (2008) The Annals of Applied Statistics , vol.2 , Issue.4 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 14
    • 0038563932 scopus 로고    scopus 로고
    • An adaptive metropolis algorithm
    • H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli, pages 223-242, 2001.
    • (2001) Bernoulli , pp. 223-242
    • Haario, H.1    Saksman, E.2    Tamminen, J.3
  • 20
    • 85132364916 scopus 로고    scopus 로고
    • Exponential convergence of langevin distributions and their discrete approximations
    • Nov.
    • G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, 2(4): 341-363, Nov. 1996.
    • (1996) Bernoulli , vol.2 , Issue.4 , pp. 341-363
    • Roberts, G.O.1    Tweedie, R.L.2
  • 23
    • 84962427466 scopus 로고    scopus 로고
    • Consistency and fluctuations for stochastic gradient langevin dynamics
    • Mar.
    • Y. W. Teh, A. H. Thiery, and S. Vollmer. Consistency and fluctuations for stochastic gradient Langevin dynamics. Journal of Machine Learning Research, 17(7): 1-33, Mar. 2016.
    • (2016) Journal of Machine Learning Research , vol.17 , Issue.7 , pp. 1-33
    • Teh, Y.W.1    Thiery, A.H.2    Vollmer, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.