-
2
-
-
84969135721
-
k-means++: The advantages of careful seeding
-
Society for Industrial and Applied Mathematics
-
D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful seeding. In Symposium on Discrete Algorithms, pages 1027-1035. Society for Industrial and Applied Mathematics, 2007.
-
(2007)
Symposium on Discrete Algorithms
, pp. 1027-1035
-
-
Arthur, D.1
Vassilvitskii, S.2
-
5
-
-
84969498066
-
The fundamental incompatibility of hamiltonian Monte Carlo and data subsampling
-
M. J. Betancourt. The Fundamental Incompatibility of Hamiltonian Monte Carlo and Data Subsampling. In International Conference on Machine Learning, 2015.
-
(2015)
International Conference on Machine Learning
-
-
Betancourt, M.J.1
-
6
-
-
84899013244
-
Streaming variational bayes
-
Dec.
-
T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan. Streaming Variational Bayes. In Advances in Neural Information Processing Systems, Dec. 2013.
-
(2013)
Advances in Neural Information Processing Systems
-
-
Broderick, T.1
Boyd, N.2
Wibisono, A.3
Wilson, A.C.4
Jordan, M.I.5
-
7
-
-
84965170281
-
Streaming, distributed variational inference for Bayesian nonparametrics
-
T. Campbell, J. Straub, J. W. Fisher, III, and J. P. How. Streaming, Distributed Variational Inference for Bayesian Nonparametrics. In Advances in Neural Information Processing Systems, 2015.
-
(2015)
Advances in Neural Information Processing Systems
-
-
Campbell, T.1
Straub, J.2
Fisher, J.W.3
How, J.P.4
-
11
-
-
84876035763
-
Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering
-
SIAM
-
D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-means, pca and projective clustering. In Symposium on Discrete Algorithms, pages 1434-1453. SIAM, 2013.
-
(2013)
Symposium on Discrete Algorithms
, pp. 1434-1453
-
-
Feldman, D.1
Schmidt, M.2
Sohler, C.3
-
12
-
-
84865371361
-
A weakly informative default prior distribution for logistic and other regression models
-
Dec.
-
A. Gelman, A. Jakulin, M. G. Pittau, and Y.-S. Su. A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2(4): 1360-1383, Dec. 2008.
-
(2008)
The Annals of Applied Statistics
, vol.2
, Issue.4
, pp. 1360-1383
-
-
Gelman, A.1
Jakulin, A.2
Pittau, M.G.3
Su, Y.-S.4
-
16
-
-
84878919168
-
Stochastic variational inference
-
M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14: 1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
20
-
-
85132364916
-
Exponential convergence of langevin distributions and their discrete approximations
-
Nov.
-
G. O. Roberts and R. L. Tweedie. Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli, 2(4): 341-363, Nov. 1996.
-
(1996)
Bernoulli
, vol.2
, Issue.4
, pp. 341-363
-
-
Roberts, G.O.1
Tweedie, R.L.2
-
21
-
-
84932199616
-
Bayes and big data: The consensus Monte Carlo algorithm
-
S. L. Scott, A. W. Blocker, F. V. Bonassi, H. A. Chipman, E. I. George, and R. E. McCulloch. Bayes and big data: The consensus Monte Carlo algorithm. In Bayes 250, 2013.
-
(2013)
Bayes 250
-
-
Scott, S.L.1
Blocker, A.W.2
Bonassi, F.V.3
Chipman, H.A.4
George, E.I.5
McCulloch, R.E.6
-
23
-
-
84962427466
-
Consistency and fluctuations for stochastic gradient langevin dynamics
-
Mar.
-
Y. W. Teh, A. H. Thiery, and S. Vollmer. Consistency and fluctuations for stochastic gradient Langevin dynamics. Journal of Machine Learning Research, 17(7): 1-33, Mar. 2016.
-
(2016)
Journal of Machine Learning Research
, vol.17
, Issue.7
, pp. 1-33
-
-
Teh, Y.W.1
Thiery, A.H.2
Vollmer, S.3
|