메뉴 건너뛰기




Volumn 17, Issue 1, 2018, Pages

Corynebacterium glutamicum as platform for the production of hydroxybenzoic acids

Author keywords

4 hydroxybenzoate; Corynebacterium glutamicum; Hydroxybenzoic acids; Metabolic engineering; Protocatechuate; Shikimate pathway

Indexed keywords

3 HYDROXYBENZOIC ACID; 4 HYDROXYBENZOIC ACID; ERYTHROSE 4 PHOSPHATE; GLUCOSE; HYDROXYBENZOIC ACID DERIVATIVE; PHOSPHATE; PHOSPHOENOLPYRUVATE; PROTOCATECHUIC ACID; SALICYLIC ACID; UNCLASSIFIED DRUG;

EID: 85046787746     PISSN: None     EISSN: 14752859     Source Type: Journal    
DOI: 10.1186/s12934-018-0923-x     Document Type: Article
Times cited : (65)

References (66)
  • 2
    • 0003838269 scopus 로고    scopus 로고
    • Industrial aromatic chemistry: raw materials˙ processes˙ products
    • New York: Springer Science & Business Media
    • Franck H-G, Stadelhofer JW. Industrial aromatic chemistry: raw materials˙ processes˙ products. New York: Springer Science & Business Media; 2012.
    • (2012)
    • Franck, H.-G.1    Stadelhofer, J.W.2
  • 3
    • 84958969892 scopus 로고    scopus 로고
    • Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli
    • Jiang M, Zhang H. Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli. Curr Opin Biotechnol. 2016;42:1-6.
    • (2016) Curr Opin Biotechnol , vol.42 , pp. 1-6
    • Jiang, M.1    Zhang, H.2
  • 5
    • 84920093205 scopus 로고    scopus 로고
    • The science of flavonoids
    • New York: Springer Science+Business Media
    • Grotewold E. The science of flavonoids. New York: Springer Science+Business Media; 2006.
    • (2006)
    • Grotewold, E.1
  • 6
    • 0018618401 scopus 로고
    • Regulation of chorismate-derived antibiotic production
    • Malik VS. Regulation of chorismate-derived antibiotic production. Adv Appl Microbiol. 1979;25:75-93.
    • (1979) Adv Appl Microbiol , vol.25 , pp. 75-93
    • Malik, V.S.1
  • 7
    • 0029067233 scopus 로고
    • Production of ubiquinone in Escherichia coli by expression of various genes responsible for ubiquinone biosynthesis
    • Zhu X, Yuasa M, Okada K, Suzuki K, Nakagawa T, Kawamukai M, Matsuda H. Production of ubiquinone in Escherichia coli by expression of various genes responsible for ubiquinone biosynthesis. J Ferment Bioeng. 1995;79:493-5.
    • (1995) J Ferment Bioeng , vol.79 , pp. 493-495
    • Zhu, X.1    Yuasa, M.2    Okada, K.3    Suzuki, K.4    Nakagawa, T.5    Kawamukai, M.6    Matsuda, H.7
  • 8
    • 0025737957 scopus 로고
    • p-Aminobenzoate biosynthesis in Escherichia coli. Purification of aminodeoxychorismate lyase and cloning of pabC
    • Green JM, Nichols BP. p-Aminobenzoate biosynthesis in Escherichia coli. Purification of aminodeoxychorismate lyase and cloning of pabC. J Biol Chem. 1991;266:12971-5.
    • (1991) J Biol Chem , vol.266 , pp. 12971-12975
    • Green, J.M.1    Nichols, B.P.2
  • 9
    • 33749033361 scopus 로고    scopus 로고
    • The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase
    • Harrison AJ, Yu M, Gårdenborg T, Middleditch M, Ramsay RJ, Baker EN, Lott JS. The structure of MbtI from Mycobacterium tuberculosis, the first enzyme in the biosynthesis of the siderophore mycobactin, reveals it to be a salicylate synthase. J Bacteriol. 2006;188:6081-91.
    • (2006) J Bacteriol , vol.188 , pp. 6081-6091
    • Harrison, A.J.1    Yu, M.2    Gårdenborg, T.3    Middleditch, M.4    Ramsay, R.J.5    Baker, E.N.6    Lott, J.S.7
  • 10
    • 85007236642 scopus 로고    scopus 로고
    • Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass
    • Lee J-H, Wendisch VF. Biotechnological production of aromatic compounds of the extended shikimate pathway from renewable biomass. J Biotechnol. 2017;257:211-21.
    • (2017) J Biotechnol , vol.257 , pp. 211-221
    • Lee, J.-H.1    Wendisch, V.F.2
  • 11
    • 84870834865 scopus 로고    scopus 로고
    • Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae
    • Weber C, Brückner C, Weinreb S, Lehr C, Essl C, Boles E. Biosynthesis of cis, cis-muconic acid and its aromatic precursors, catechol and protocatechuic acid, from renewable feedstocks by Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78:8421-30.
    • (2012) Appl Environ Microbiol , vol.78 , pp. 8421-8430
    • Weber, C.1    Brückner, C.2    Weinreb, S.3    Lehr, C.4    Essl, C.5    Boles, E.6
  • 13
    • 84881028723 scopus 로고    scopus 로고
    • Toward biotechnological production of adipic acid and precursors from biorenewables
    • Polen T, Spelberg M, Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables. J Biotechnol. 2013;167:75-84.
    • (2013) J Biotechnol , vol.167 , pp. 75-84
    • Polen, T.1    Spelberg, M.2    Bott, M.3
  • 14
    • 79952106791 scopus 로고    scopus 로고
    • From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production
    • Becker J, Zelder O, Häfner S, Schröder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab Eng. 2011;13:159-68.
    • (2011) Metab Eng , vol.13 , pp. 159-168
    • Becker, J.1    Zelder, O.2    Häfner, S.3    Schröder, H.4    Wittmann, C.5
  • 15
    • 0038514074 scopus 로고    scopus 로고
    • Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression
    • Koffas MA, Jung GY, Stephanopoulos G. Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng. 2003;5:32-41.
    • (2003) Metab Eng , vol.5 , pp. 32-41
    • Koffas, M.A.1    Jung, G.Y.2    Stephanopoulos, G.3
  • 16
    • 0026588574 scopus 로고
    • Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain
    • Ikeda M, Katsumata R. Metabolic engineering to produce tyrosine or phenylalanine in a tryptophan-producing Corynebacterium glutamicum strain. Appl Environ Microbiol. 1992;58:781-5.
    • (1992) Appl Environ Microbiol , vol.58 , pp. 781-785
    • Ikeda, M.1    Katsumata, R.2
  • 17
    • 0016585019 scopus 로고
    • L-Tryptophan production by analog-resistant mutants derived from a phenylalanine and tyrosine double auxotroph of Corynebacterium glutamicum
    • Hagino H, Nakayama K. L-Tryptophan production by analog-resistant mutants derived from a phenylalanine and tyrosine double auxotroph of Corynebacterium glutamicum. Agric Biol Chem. 1975;39:343-9.
    • (1975) Agric Biol Chem , vol.39 , pp. 343-349
    • Hagino, H.1    Nakayama, K.2
  • 18
    • 0037271033 scopus 로고    scopus 로고
    • Amino acid production processes
    • Faurie R, Thommel J, editors, New York: Springer Science & Business Media
    • Ikeda M. Amino acid production processes. In: Faurie R, Thommel J, editors. Microbial production of l-amino acids. New York: Springer Science & Business Media; 2003. p. 1-35.
    • (2003) Microbial production of l-amino acids , pp. 1-35
    • Ikeda, M.1
  • 19
    • 84984655327 scopus 로고    scopus 로고
    • Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction
    • Kogure T, Kubota T, Suda M, Hiraga K, Inui M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab Eng. 2016;38:204-16.
    • (2016) Metab Eng , vol.38 , pp. 204-216
    • Kogure, T.1    Kubota, T.2    Suda, M.3    Hiraga, K.4    Inui, M.5
  • 20
    • 84995467722 scopus 로고    scopus 로고
    • Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct
    • Kubota T, Watanabe A, Suda M, Kogure T, Hiraga K, Inui M. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab Eng. 2016;38:322-30.
    • (2016) Metab Eng , vol.38 , pp. 322-330
    • Kubota, T.1    Watanabe, A.2    Suda, M.3    Kogure, T.4    Hiraga, K.5    Inui, M.6
  • 21
    • 84861998791 scopus 로고    scopus 로고
    • Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium?
    • Shen X-H, Zhou N-Y, Liu S-J. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol. 2012;95:77-89.
    • (2012) Appl Microbiol Biotechnol , vol.95 , pp. 77-89
    • Shen, X.-H.1    Zhou, N.-Y.2    Liu, S.-J.3
  • 23
    • 84964816641 scopus 로고    scopus 로고
    • Characterization of a unique pathway for 4-cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum
    • Du L, Ma L, Qi F, Zheng X, Jiang C, Li A, Wan X, Liu S-J, Li S. Characterization of a unique pathway for 4-cresol catabolism initiated by phosphorylation in Corynebacterium glutamicum. J Biol Chem. 2016;291:6583-94.
    • (2016) J Biol Chem , vol.291 , pp. 6583-6594
    • Du, L.1    Ma, L.2    Qi, F.3    Zheng, X.4    Jiang, C.5    Li, A.6    Wan, X.7    Liu, S.-J.8    Li, S.9
  • 25
    • 24044500645 scopus 로고    scopus 로고
    • Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum
    • Shen X, Liu S. Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum. Sci China Ser C. 2005;48:241-9.
    • (2005) Sci China Ser C , vol.48 , pp. 241-249
    • Shen, X.1    Liu, S.2
  • 26
    • 84880224426 scopus 로고    scopus 로고
    • Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum
    • Liu Y-B, Long M-X, Yin Y-J, Si M-R, Zhang L, Lu Z-Q, Wang Y, Shen X-H. Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum. Arch Microbiol. 2013;195:419-29.
    • (2013) Arch Microbiol , vol.195 , pp. 419-429
    • Liu, Y.-B.1    Long, M.-X.2    Yin, Y.-J.3    Si, M.-R.4    Zhang, L.5    Lu, Z.-Q.6    Wang, Y.7    Shen, X.-H.8
  • 27
    • 84975506761 scopus 로고    scopus 로고
    • Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones
    • Kallscheuer N, Vogt M, Stenzel A, Gätgens J, Bott M, Marienhagen J. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones. Metab Eng. 2016;38:47-55.
    • (2016) Metab Eng , vol.38 , pp. 47-55
    • Kallscheuer, N.1    Vogt, M.2    Stenzel, A.3    Gätgens, J.4    Bott, M.5    Marienhagen, J.6
  • 28
    • 0027164654 scopus 로고
    • Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon
    • Keilhauer C, Eggeling L, Sahm H. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J Bacteriol. 1993;175:5595-603.
    • (1993) J Bacteriol , vol.175 , pp. 5595-5603
    • Keilhauer, C.1    Eggeling, L.2    Sahm, H.3
  • 29
    • 84873799110 scopus 로고
    • Studies on Lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli1
    • Bertani G. Studies on Lysogenesis I: the mode of phage liberation by lysogenic Escherichia coli1. J Bacteriol. 1951;62:293.
    • (1951) J Bacteriol , vol.62 , pp. 293
    • Bertani, G.1
  • 30
    • 84881668323 scopus 로고    scopus 로고
    • Molecular cloning, vol
    • 1-3. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press
    • Sambrook J, Russell D. Molecular cloning, vol. 1-3. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2001.
    • (2001)
    • Sambrook, J.1    Russell, D.2
  • 31
    • 85057684864 scopus 로고    scopus 로고
    • Handbook of Corynebacterium glutamicum
    • Boca Raton: CRC Press
    • Eggeling L, Bott M. Handbook of Corynebacterium glutamicum. Boca Raton: CRC Press; 2005.
    • (2005)
    • Eggeling, L.1    Bott, M.2
  • 33
    • 0028289983 scopus 로고
    • Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum
    • Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene. 1994;145:69-73.
    • (1994) Gene , vol.145 , pp. 69-73
    • Schäfer, A.1    Tauch, A.2    Jäger, W.3    Kalinowski, J.4    Thierbach, G.5    Pühler, A.6
  • 34
    • 0035041240 scopus 로고    scopus 로고
    • Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1
    • Niebisch A, Bott M. Molecular analysis of the cytochrome bc1-aa3 branch of the Corynebacterium glutamicum respiratory chain containing an unusual diheme cytochrome c1. Arch Microbiol. 2001;175:282-94.
    • (2001) Arch Microbiol , vol.175 , pp. 282-294
    • Niebisch, A.1    Bott, M.2
  • 35
    • 66249138103 scopus 로고    scopus 로고
    • Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum
    • Teramoto H, Inui M, Yukawa H. Regulation of expression of genes involved in quinate and shikimate utilization in Corynebacterium glutamicum. Appl Environ Microbiol. 2009;75:3461-8.
    • (2009) Appl Environ Microbiol , vol.75 , pp. 3461-3468
    • Teramoto, H.1    Inui, M.2    Yukawa, H.3
  • 36
    • 0042337135 scopus 로고    scopus 로고
    • Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin
    • Pelludat C, Brem D, Heesemann J. Irp9, encoded by the high-pathogenicity island of Yersinia enterocolitica, is able to convert chorismate into salicylate, the precursor of the siderophore yersiniabactin. J Bacteriol. 2003;185:5648-53.
    • (2003) J Bacteriol , vol.185 , pp. 5648-5653
    • Pelludat, C.1    Brem, D.2    Heesemann, J.3
  • 38
    • 0028258205 scopus 로고
    • Formation of 4-hydroxybenzoate in Escherichia coli: characterization of the ubiC gene and its encoded enzyme chorismate pyruvate-lyase
    • Siebert M, Severin K, Heide L. Formation of 4-hydroxybenzoate in Escherichia coli: characterization of the ubiC gene and its encoded enzyme chorismate pyruvate-lyase. Microbiology. 1994;140:897-904.
    • (1994) Microbiology , vol.140 , pp. 897-904
    • Siebert, M.1    Severin, K.2    Heide, L.3
  • 39
    • 22144441744 scopus 로고    scopus 로고
    • Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum
    • Shen X-H, Jiang C-Y, Huang Y, Liu Z-P, Liu S-J. Functional identification of novel genes involved in the glutathione-independent gentisate pathway in Corynebacterium glutamicum. Appl Environ Microbiol. 2005;71:3442-52.
    • (2005) Appl Environ Microbiol , vol.71 , pp. 3442-3452
    • Shen, X.-H.1    Jiang, C.-Y.2    Huang, Y.3    Liu, Z.-P.4    Liu, S.-J.5
  • 40
    • 84892364098 scopus 로고    scopus 로고
    • Interaction between DAHP synthase and chorismate mutase endows new regulation on DAHP synthase activity in Corynebacterium glutamicum
    • Li P-P, Li D-F, Liu D, Liu Y-M, Liu C, Liu S-J. Interaction between DAHP synthase and chorismate mutase endows new regulation on DAHP synthase activity in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 2013;97:10373-80.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 10373-10380
    • Li, P.-P.1    Li, D.-F.2    Liu, D.3    Liu, Y.-M.4    Liu, C.5    Liu, S.-J.6
  • 41
    • 0019382235 scopus 로고
    • Structure and regulation of aroH, the structural gene for the tryptophan-repressible 3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthetase of Escherichia coli
    • Zurawski G, Gunsalus R, Brown K, Yanofsky C. Structure and regulation of aroH, the structural gene for the tryptophan-repressible 3-deoxy-d-arabino-heptulosonic acid-7-phosphate synthetase of Escherichia coli. J Mol Biol. 1981;145:47-73.
    • (1981) J Mol Biol , vol.145 , pp. 47-73
    • Zurawski, G.1    Gunsalus, R.2    Brown, K.3    Yanofsky, C.4
  • 42
    • 34147131102 scopus 로고    scopus 로고
    • The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum
    • Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Pühler A, Tauch A. The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol. 2007;189:2720-33.
    • (2007) J Bacteriol , vol.189 , pp. 2720-2733
    • Brune, I.1    Jochmann, N.2    Brinkrolf, K.3    Hüser, A.T.4    Gerstmeir, R.5    Eikmanns, B.J.6    Kalinowski, J.7    Pühler, A.8    Tauch, A.9
  • 43
    • 84898058592 scopus 로고    scopus 로고
    • Construction and application of novel feedback-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for l-phenylalanine synthesis
    • Zhang C, Kang Z, Zhang J, Du G, Chen J, Yu X. Construction and application of novel feedback-resistant 3-deoxy-D-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for l-phenylalanine synthesis. FEMS Microbiol Lett. 2014;353:11-8.
    • (2014) FEMS Microbiol Lett , vol.353 , pp. 11-18
    • Zhang, C.1    Kang, Z.2    Zhang, J.3    Du, G.4    Chen, J.5    Yu, X.6
  • 44
    • 84952989453 scopus 로고    scopus 로고
    • Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli
    • Okai N, Miyoshi T, Takeshima Y, Kuwahara H, Ogino C, Kondo A. Production of protocatechuic acid by Corynebacterium glutamicum expressing chorismate-pyruvate lyase from Escherichia coli. Appl Microbiol Biotechnol. 2016;100:135-45.
    • (2016) Appl Microbiol Biotechnol , vol.100 , pp. 135-145
    • Okai, N.1    Miyoshi, T.2    Takeshima, Y.3    Kuwahara, H.4    Ogino, C.5    Kondo, A.6
  • 45
    • 0025935870 scopus 로고
    • Phosphotransferase-dependent glucose transport in Corynebacterium glutamicum
    • Malin G, Bourd G. Phosphotransferase-dependent glucose transport in Corynebacterium glutamicum. J Appl Microbiol. 1991;71:517-23.
    • (1991) J Appl Microbiol , vol.71 , pp. 517-523
    • Malin, G.1    Bourd, G.2
  • 46
    • 80054997820 scopus 로고    scopus 로고
    • Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum
    • Lindner SN, Seibold GM, Krämer R, Wendisch VF. Impact of a new glucose utilization pathway in amino acid-producing Corynebacterium glutamicum. Bioeng Bugs. 2011;2:291-5.
    • (2011) Bioeng Bugs. , vol.2 , pp. 291-295
    • Lindner, S.N.1    Seibold, G.M.2    Krämer, R.3    Wendisch, V.F.4
  • 47
    • 84883267268 scopus 로고    scopus 로고
    • Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum
    • Klaffl S, Brocker M, Kalinowski J, Eikmanns BJ, Bott M. Complex regulation of the phosphoenolpyruvate carboxykinase gene pck and characterization of its GntR-type regulator IolR as a repressor of myo-inositol utilization genes in Corynebacterium glutamicum. J Bacteriol. 2013;195:4283-96.
    • (2013) J Bacteriol , vol.195 , pp. 4283-4296
    • Klaffl, S.1    Brocker, M.2    Kalinowski, J.3    Eikmanns, B.J.4    Bott, M.5
  • 48
    • 85033385407 scopus 로고    scopus 로고
    • The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum
    • Brüsseler C, Radek A, Tenhaef N, Krumbach K, Noack S, Marienhagen J. The myo-inositol/proton symporter IolT1 contributes to D-xylose uptake in Corynebacterium glutamicum. Bioresour Technol. 2018;249:953-61.
    • (2018) Bioresour Technol , vol.249 , pp. 953-961
    • Brüsseler, C.1    Radek, A.2    Tenhaef, N.3    Krumbach, K.4    Noack, S.5    Marienhagen, J.6
  • 49
    • 0028031441 scopus 로고
    • Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase
    • Eikmanns BJ, Thum-Schmitz N, Eggeling L, Lüdtke K-U, Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology. 1994;140:1817-28.
    • (1994) Microbiology , vol.140 , pp. 1817-1828
    • Eikmanns, B.J.1    Thum-Schmitz, N.2    Eggeling, L.3    Lüdtke, K.-U.4    Sahm, H.5
  • 50
    • 84862689750 scopus 로고    scopus 로고
    • Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity
    • van Ooyen J, Noack S, Bott M, Reth A, Eggeling L. Improved l-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity. Biotechnol Bioeng. 2012;109:2070-81.
    • (2012) Biotechnol Bioeng , vol.109 , pp. 2070-2081
    • Ooyen, J.1    Noack, S.2    Bott, M.3    Reth, A.4    Eggeling, L.5
  • 52
    • 0032986593 scopus 로고    scopus 로고
    • Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum
    • Ikeda M, Okamoto K, Katsumata R. Cloning of the transketolase gene and the effect of its dosage on aromatic amino acid production in Corynebacterium glutamicum. Appl Microbiol Biotechnol. 1999;51:201-6.
    • (1999) Appl Microbiol Biotechnol , vol.51 , pp. 201-206
    • Ikeda, M.1    Okamoto, K.2    Katsumata, R.3
  • 53
    • 0016585427 scopus 로고
    • Regulatory properties of anthranilate synthetase from Corynebacterium glutamicum
    • Hagino H, Nakayama K. Regulatory properties of anthranilate synthetase from Corynebacterium glutamicum. Agric Biol Chem. 1975;39:323-30.
    • (1975) Agric Biol Chem , vol.39 , pp. 323-330
    • Hagino, H.1    Nakayama, K.2
  • 54
    • 0015809927 scopus 로고
    • L-Tyrosine production by analog-resistant mutants derived from a phenylalanine auxotroph of Corynebacterium glutamicum
    • Hagino H, Nakayama K. L-Tyrosine production by analog-resistant mutants derived from a phenylalanine auxotroph of Corynebacterium glutamicum. Agric Biol Chem. 1973;37:2013-23.
    • (1973) Agric Biol Chem , vol.37 , pp. 2013-2023
    • Hagino, H.1    Nakayama, K.2
  • 55
    • 0015966248 scopus 로고
    • L-Phenylalanine production by analog-resistant mutants of Corynebacterium glutamicum
    • Hagino H, Nakayama K. L-Phenylalanine production by analog-resistant mutants of Corynebacterium glutamicum. Agric Biol Chem. 1974;38:157-61.
    • (1974) Agric Biol Chem , vol.38 , pp. 157-161
    • Hagino, H.1    Nakayama, K.2
  • 56
    • 85046731105 scopus 로고    scopus 로고
    • Transport, degradation and assimilation of aromatic compounds and their regulation in Corynebacterium glutamicum
    • Burkovski A, editor, Poole: Caister Academic Press
    • Shen X-H, Li T, Xu Y, Zhou N-Y, Liu S-J. Transport, degradation and assimilation of aromatic compounds and their regulation in Corynebacterium glutamicum. In: Burkovski A, editor. Corynebacterium glutamicum-from systems biology to biotechnological applications. Poole: Caister Academic Press; 2015. p. 83-110.
    • (2015) Corynebacterium glutamicum-from systems biology to biotechnological applications , pp. 83-110
    • Shen, X.-H.1    Li, T.2    Xu, Y.3    Zhou, N.-Y.4    Liu, S.-J.5
  • 57
    • 84908273805 scopus 로고    scopus 로고
    • Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli
    • Pugh S, McKenna R, Osman M, Thompson B, Nielsen DR. Rational engineering of a novel pathway for producing the aromatic compounds p-hydroxybenzoate, protocatechuate, and catechol in Escherichia coli. Process Biochem. 2014;49(11):1843-50.
    • (2014) Process Biochem , vol.49 , Issue.11 , pp. 1843-1850
    • Pugh, S.1    McKenna, R.2    Osman, M.3    Thompson, B.4    Nielsen, D.R.5
  • 58
    • 14844303301 scopus 로고    scopus 로고
    • Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis
    • Li W, Xie D, Frost JW. Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis. J Am Chem Soc. 2005;127(9):2874-82.
    • (2005) J Am Chem Soc , vol.127 , Issue.9 , pp. 2874-2882
    • Li, W.1    Xie, D.2    Frost, J.W.3
  • 60
    • 84896139366 scopus 로고    scopus 로고
    • Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli
    • Lin Y, Sun X, Yuan Q, Yan Y. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab Eng. 2014;23:62-9.
    • (2014) Metab Eng , vol.23 , pp. 62-69
    • Lin, Y.1    Sun, X.2    Yuan, Q.3    Yan, Y.4
  • 61
    • 84949661523 scopus 로고    scopus 로고
    • Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives
    • Noda S, Shirai T, Oyama S, Kondo A. Metabolic design of a platform Escherichia coli strain producing various chorismate derivatives. Metab Eng. 2016;33:119-29.
    • (2016) Metab Eng , vol.33 , pp. 119-129
    • Noda, S.1    Shirai, T.2    Oyama, S.3    Kondo, A.4
  • 62
    • 85042665219 scopus 로고    scopus 로고
    • Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using metabolically engineered Corynebacterium glutamicum
    • Kitade Y, Hashimoto R, Suda M, Hiraga K, Inui M. Production of 4-hydroxybenzoic acid by an aerobic growth-arrested bioprocess using metabolically engineered Corynebacterium glutamicum. Appl Environ Microbiol. 2018. https://doi.org/10.1128/AEM.02587-17.
    • (2018) Appl Environ Microbiol
    • Kitade, Y.1    Hashimoto, R.2    Suda, M.3    Hiraga, K.4    Inui, M.5
  • 63
    • 84899793078 scopus 로고    scopus 로고
    • An overview of sample preparation for the determination of parabens in cosmetics
    • Cabaleiro N, De La Calle I, Bendicho C, Lavilla I. An overview of sample preparation for the determination of parabens in cosmetics. Trends Anal Chem. 2014;57:34-46.
    • (2014) Trends Anal Chem , vol.57 , pp. 34-46
    • Cabaleiro, N.1    Calle, I.2    Bendicho, C.3    Lavilla, I.4
  • 64
    • 85017657564 scopus 로고    scopus 로고
    • A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism
    • Kallscheuer N, Vogt M, Marienhagen J. A novel synthetic pathway enables microbial production of polyphenols independent from the endogenous aromatic amino acid metabolism. ACS Synth Biol. 2016;6:410-5.
    • (2016) ACS Synth Biol. , vol.6 , pp. 410-415
    • Kallscheuer, N.1    Vogt, M.2    Marienhagen, J.3
  • 65
    • 84923516258 scopus 로고    scopus 로고
    • A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level
    • Kortmann M, Kuhl V, Klaffl S, Bott M. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level. Microb Biotechnol. 2015;8:253-65.
    • (2015) Microb Biotechnol , vol.8 , pp. 253-265
    • Kortmann, M.1    Kuhl, V.2    Klaffl, S.3    Bott, M.4
  • 66
    • 34447529329 scopus 로고    scopus 로고
    • The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis
    • Gande R, Dover LG, Krumbach K, Besra GS, Sahm H, Oikawa T, Eggeling L. The two carboxylases of Corynebacterium glutamicum essential for fatty acid and mycolic acid synthesis. J Bacteriol. 2007;189:5257-64.
    • (2007) J Bacteriol , vol.189 , pp. 5257-5264
    • Gande, R.1    Dover, L.G.2    Krumbach, K.3    Besra, G.S.4    Sahm, H.5    Oikawa, T.6    Eggeling, L.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.