메뉴 건너뛰기




Volumn 7, Issue 8, 2017, Pages

Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 85044957397     PISSN: None     EISSN: 21583188     Source Type: Journal    
DOI: 10.1038/TP.2017.164     Document Type: Review
Times cited : (117)

References (99)
  • 2
    • 85013789441 scopus 로고    scopus 로고
    • Building better biomarkers: Brain models in translational neuroimaging
    • Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 2017; 20: 365–377.
    • (2017) Nat Neurosci , vol.20 , pp. 365-377
    • Woo, C.W.1    Chang, L.J.2    Lindquist, M.A.3    Wager, T.D.4
  • 3
    • 84962787673 scopus 로고    scopus 로고
    • Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls
    • Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. NeuroImage. 2017; 145(Pt B): 137–165.
    • (2017) Neuroimage , vol.145 , pp. 137-165
    • Arbabshirani, M.R.1    Plis, S.2    Sui, J.3    Calhoun, V.D.4
  • 4
    • 84879317624 scopus 로고    scopus 로고
    • The relationship between autism spectrum disorders and attention-deficit/hyperactivity disorder: An overview
    • Matson JL, Rieske RD, Williams LW. The relationship between autism spectrum disorders and attention-deficit/hyperactivity disorder: an overview. Res Dev Disabil 2013; 34: 2475–2484.
    • (2013) Res Dev Disabil , vol.34 , pp. 2475-2484
    • Matson, J.L.1    Rieske, R.D.2    Williams, L.W.3
  • 5
    • 85001728300 scopus 로고    scopus 로고
    • Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012
    • Christensen DL, Baio J, Van Naarden Braun K, Bilder D, Charles J, Constantino JN et al. Prevalence and characteristics of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2012. MMWR Surveill Summ 2016; 65: 1–23.
    • (2016) MMWR Surveill Summ , vol.65 , pp. 1-23
    • Christensen, D.L.1    Baio, J.2    van Naarden Braun, K.3    Bilder, D.4    Charles, J.5    Constantino, J.N.6
  • 6
    • 84890546014 scopus 로고    scopus 로고
    • Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011
    • Visser SN, Danielson ML, Bitsko RH, Holbrook JR, Kogan MD, Ghandour RM et al. Trends in the parent-report of health care provider-diagnosed and medicated attention-deficit/hyperactivity disorder: United States, 2003-2011. J Am Acad Child Adoles Psychiatry 2014; 53: 34–46 e2.
    • (2014) J am Acad Child Adoles Psychiatry , vol.53 , pp. 34-46
    • Visser, S.N.1    Danielson, M.L.2    Bitsko, R.H.3    Holbrook, J.R.4    Kogan, M.D.5    Ghandour, R.M.6
  • 8
    • 84924353977 scopus 로고    scopus 로고
    • Reducing age of autism diagnosis: Developmental social neuroscience meets public health challenge
    • (Suppl
    • Klin A, Klaiman C, Jones W. Reducing age of autism diagnosis: developmental social neuroscience meets public health challenge. Rev Neurol 2015; 60(Suppl 1): S3–11.
    • (2015) Rev Neurol , vol.60 , Issue.1 , pp. S3-S11
    • Klin, A.1    Klaiman, C.2    Jones, W.3
  • 9
    • 0033802632 scopus 로고    scopus 로고
    • The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism
    • Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC et al. The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 2000; 30: 205–223.
    • (2000) J Autism Dev Disord , vol.30 , pp. 205-223
    • Lord, C.1    Risi, S.2    Lambrecht, L.3    Cook, E.H.4    Leventhal, B.L.5    Dilavore, P.C.6
  • 10
    • 0027997172 scopus 로고
    • Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible per-vasive developmental disorders
    • Lord C, Rutter M, Le Couteur A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible per-vasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.
    • (1994) J Autism Dev Disord , vol.24 , pp. 659-685
    • Lord, C.1    Rutter, M.2    Le Couteur, A.3
  • 11
    • 85136807727 scopus 로고    scopus 로고
    • 5th edn. American Psychiatric Publishing: Arlington, VA
    • American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders. 5th edn. American Psychiatric Publishing: Arlington, VA, 2013.
    • (2013)
  • 12
    • 84857943542 scopus 로고    scopus 로고
    • A multisite study of the clinical diagnosis of different autism spectrum disorders
    • Lord C, Petkova E, Hus V, Gan W, Lu F, Martin DM et al. A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch Gen Psychiatry 2012; 69: 306–313.
    • (2012) Arch Gen Psychiatry , vol.69 , pp. 306-313
    • Lord, C.1    Petkova, E.2    Hus, V.3    Gan, W.4    Lu, F.5    Martin, D.M.6
  • 13
    • 80055033629 scopus 로고    scopus 로고
    • How do we establish a biological marker for a beha-viorally defined disorder? Autism as a test case
    • Yerys BE, Pennington BF. How do we establish a biological marker for a beha-viorally defined disorder? Autism as a test case. Autism Res 2011; 4: 239–241.
    • (2011) Autism Res , vol.4 , pp. 239-241
    • Yerys, B.E.1    Pennington, B.F.2
  • 14
    • 85016150530 scopus 로고    scopus 로고
    • Early brain development in infants at high risk for autism spectrum disorder
    • Hazlett HC, Gu H, Munsell BC, Kim SH, Styner M, Wolff JJ et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 2017; 542: 348–351.
    • (2017) Nature , vol.542 , pp. 348-351
    • Hazlett, H.C.1    Gu, H.2    Munsell, B.C.3    Kim, S.H.4    Styner, M.5    Wolff, J.J.6
  • 15
    • 84898752877 scopus 로고    scopus 로고
    • The NIMH Research Domain Criteria (RDoC) Project: Precision medicine for psychiatry
    • Insel TR. The NIMH Research Domain Criteria (RDoC) Project: precision medicine for psychiatry. Am J Psychiatry 2014; 171: 395–397.
    • (2014) Am J Psychiatry , vol.171 , pp. 395-397
    • Insel, T.R.1
  • 16
    • 84962195579 scopus 로고    scopus 로고
    • Clashing diagnostic approaches: DSM-ICD versus RDoC
    • Lilienfeld SO, Treadway MT. Clashing diagnostic approaches: DSM-ICD versus RDoC. Ann Rev Clin Psychol 2016; 12: 435–463.
    • (2016) Ann Rev Clin Psychol , vol.12 , pp. 435-463
    • Lilienfeld, S.O.1    Treadway, M.T.2
  • 17
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Knowledge Discov 1998; 2: 121–167.
    • (1998) Data Min Knowledge Discov , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 18
    • 73149109077 scopus 로고    scopus 로고
    • Disease state prediction from resting state functional connectivity
    • Craddock RC, Holtzheimer PE 3rd, Hu XP, Mayberg HS. Disease state prediction from resting state functional connectivity. Magn Reson Med 2009; 62: 1619–1628.
    • (2009) Magn Reson Med , vol.62 , pp. 1619-1628
    • Craddock, R.C.1    Holtzheimer, P.E.2    Hu, X.P.3    Mayberg, H.S.4
  • 19
    • 79955003759 scopus 로고    scopus 로고
    • Decoding fMRI brain states in real-time
    • LaConte SM. Decoding fMRI brain states in real-time. NeuroImage 2011; 56: 440–454.
    • (2011) Neuroimage , vol.56 , pp. 440-454
    • Laconte, S.M.1
  • 20
    • 65549168742 scopus 로고    scopus 로고
    • Machine learning classifiers and fMRI: A tutorial overview
    • Suppl
    • Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: a tutorial overview. NeuroImage. 2009; 45(1 Suppl): S199–S209.
    • (2009) Neuroimage , vol.45 , Issue.1 , pp. S199-S209
    • Pereira, F.1    Mitchell, T.2    Botvinick, M.3
  • 21
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan J. Induction of decision trees. Mach Learn 1986; 1: 81–106.
    • (1986) Mach Learn , vol.1 , pp. 81-106
    • Quinlan, J.1
  • 22
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn 2001; 45: 4–32.
    • (2001) Mach Learn , vol.45 , pp. 4-32
    • Breiman, L.1
  • 23
    • 84867539048 scopus 로고    scopus 로고
    • A few useful things to know about machine learning
    • Domingos P. A few useful things to know about machine learning. Commun ACM 2012; 55: 78.
    • (2012) Commun ACM , vol.55 , pp. 78
    • Domingos, P.1
  • 25
    • 84904726392 scopus 로고    scopus 로고
    • Developmental Disabilities Monitoring Network Surveillance Year Principal Investigators. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010
    • Developmental Disabilities Monitoring Network Surveillance Year Principal Investigators. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ 2014; 63(Suppl 2): 1–21.
    • (2014) MMWR Surveill Summ , vol.63 , pp. 1-21
  • 28
    • 80053952154 scopus 로고    scopus 로고
    • Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism
    • Uddin LQ, Menon V, Young CB, Ryali S, Chen T, Khouzam A et al. Multivariate searchlight classification of structural magnetic resonance imaging in children and adolescents with autism. Biol Psychiatry 2011; 70: 833–841.
    • (2011) Biol Psychiatry , vol.70 , pp. 833-841
    • Uddin, L.Q.1    Menon, V.2    Young, C.B.3    Ryali, S.4    Chen, T.5    Khouzam, A.6
  • 30
    • 84880346529 scopus 로고    scopus 로고
    • Salience network-based classification and prediction of symptom severity in children with autism
    • Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C et al. Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 2013; 70: 869–879.
    • (2013) JAMA Psychiatry , vol.70 , pp. 869-879
    • Uddin, L.Q.1    Supekar, K.2    Lynch, C.J.3    Khouzam, A.4    Phillips, J.5    Feinstein, C.6
  • 31
    • 84902142587 scopus 로고    scopus 로고
    • Diagnosis of autism spectrum disorders using regional and interregional morphological features
    • Wee CY, Wang L, Shi F, Yap PT, Shen D. Diagnosis of autism spectrum disorders using regional and interregional morphological features. Hum Brain Map 2014; 35: 3414–3430.
    • (2014) Hum Brain Map , vol.35 , pp. 3414-3430
    • Wee, C.Y.1    Wang, L.2    Shi, F.3    Yap, P.T.4    Shen, D.5
  • 32
    • 84903388522 scopus 로고    scopus 로고
    • Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning
    • Zhou Y, Yu F, Duong T. Multiparametric MRI characterization and prediction in autism spectrum disorder using graph theory and machine learning. PLoS ONE 2014; 9: e90405.
    • (2014) Plos ONE , vol.9
    • Zhou, Y.1    Yu, F.2    Duong, T.3
  • 33
    • 84930643969 scopus 로고    scopus 로고
    • Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism
    • Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA et al. Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. NeuroImage Clin 2015; 8: 238–245.
    • (2015) Neuroimage Clin , vol.8 , pp. 238-245
    • Chen, C.P.1    Keown, C.L.2    Jahedi, A.3    Nair, A.4    Pflieger, M.E.5    Bailey, B.A.6
  • 35
    • 84963743094 scopus 로고    scopus 로고
    • Divide and conquer: Sub-grouping of ASD improves ASD detection based on brain morphometry
    • Katuwal GJ, Baum SA, Cahill ND, Michael AM. Divide and conquer: sub-grouping of ASD improves ASD detection based on brain morphometry. PLoS ONE 2016; 11: e0153331.
    • (2016) Plos ONE , vol.11
    • Katuwal, G.J.1    Baum, S.A.2    Cahill, N.D.3    Michael, A.M.4
  • 36
    • 77956214538 scopus 로고    scopus 로고
    • Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
    • Ecker C, Marquand A, Mourao-Miranda J, Johnston P, Daly EM, Brammer MJ et al. Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010; 30: 10612–10623.
    • (2010) J Neurosci , vol.30 , pp. 10612-10623
    • Ecker, C.1    Marquand, A.2    Mourao-Miranda, J.3    Johnston, P.4    Daly, E.M.5    Brammer, M.J.6
  • 38
    • 84901284227 scopus 로고    scopus 로고
    • The autism brain imaging data exchange: Towards a large-scale evaluation of the intrinsic brain architecture in autism
    • Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 2014; 19: 659–667.
    • (2014) Mol Psychiatry , vol.19 , pp. 659-667
    • Di Martino, A.1    Yan, C.G.2    Li, Q.3    Denio, E.4    Castellanos, F.X.5    Alaerts, K.6
  • 39
    • 83055179657 scopus 로고    scopus 로고
    • Typical and atypical development of functional human brain networks: Insights from resting-state FMRI
    • Uddin LQ, Supekar K, Menon V. Typical and atypical development of functional human brain networks: insights from resting-state FMRI. Front Syst Neurosci 2010; 4: 21.
    • (2010) Front Syst Neurosci , vol.4 , pp. 21
    • Uddin, L.Q.1    Supekar, K.2    Menon, V.3
  • 40
    • 0029166541 scopus 로고
    • Functional connectivity in the motor cortex of resting human brain using echo-planar MRI
    • Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 1995; 34: 537–541.
    • (1995) Magn Reson Med , vol.34 , pp. 537-541
    • Biswal, B.1    Yetkin, F.Z.2    Haughton, V.M.3    Hyde, J.S.4
  • 41
    • 70349316479 scopus 로고    scopus 로고
    • The fMRI success rate of children and adolescents: Typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders
    • Yerys BE, Jankowski KF, Shook D, Rosenberger LR, Barnes KA, Berl MM et al. The fMRI success rate of children and adolescents: typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Hum Brain Map 2009; 30: 3426–3435.
    • (2009) Hum Brain Map , vol.30 , pp. 3426-3435
    • Yerys, B.E.1    Jankowski, K.F.2    Shook, D.3    Rosenberger, L.R.4    Barnes, K.A.5    Berl, M.M.6
  • 42
    • 74049156284 scopus 로고    scopus 로고
    • Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization
    • Van Dijk KR, Hedden T, Venkataraman A, Evans KC, Lazar SW, Buckner RL. Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. J Neurophysiol 2009; 103: 297–321.
    • (2009) J Neurophysiol , vol.103 , pp. 297-321
    • van Dijk, K.R.1    Hedden, T.2    Venkataraman, A.3    Evans, K.C.4    Lazar, S.W.5    Buckner, R.L.6
  • 43
    • 85009236692 scopus 로고    scopus 로고
    • Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example
    • Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D, Thirion B et al. Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. NeuroImage 2017; 147: 736–745.
    • (2017) Neuroimage , vol.147 , pp. 736-745
    • Abraham, A.1    Milham, M.P.2    Di Martino, A.3    Craddock, R.C.4    Samaras, D.5    Thirion, B.6
  • 45
  • 46
    • 84872254483 scopus 로고    scopus 로고
    • The ADHD-200 Consortium: A model to advance the translational potential of neuroimaging in clinical neuroscience
    • The ADHD-200 Consortium. The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci 2012; 6: 62.
    • (2012) Front Syst Neurosci , vol.6 , pp. 62
  • 47
    • 84864968008 scopus 로고    scopus 로고
    • Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging
    • Eloyan A, Muschelli J, Nebel MB, Liu H, Han F, Zhao T et al. Automated diagnoses of attention deficit hyperactive disorder using magnetic resonance imaging. Front Syst Neurosci 2012; 6: 61.
    • (2012) Front Syst Neurosci , vol.6 , pp. 61
    • Eloyan, A.1    Muschelli, J.2    Nebel, M.B.3    Liu, H.4    Han, F.5    Zhao, T.6
  • 48
    • 84867122690 scopus 로고    scopus 로고
    • ADHD-200 Global Competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements
    • Brown MR, Sidhu GS, Greiner R, Asgarian N, Bastani M, Silverstone PH et al. ADHD-200 Global Competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front Syst Neurosci 2012; 6: 69.
    • (2012) Front Syst Neurosci , vol.6 , pp. 69
    • Brown, M.R.1    Sidhu, G.S.2    Greiner, R.3    Asgarian, N.4    Bastani, M.5    Silverstone, P.H.6
  • 49
    • 85007278805 scopus 로고    scopus 로고
    • Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism
    • Ghiassian S, Greiner R, Jin P, Brown MR. Using functional or structural magnetic resonance images and personal characteristic data to identify ADHD and autism. PLoS ONE 2016; 11: e0166934.
    • (2016) Plos ONE , vol.11
    • Ghiassian, S.1    Greiner, R.2    Jin, P.3    Brown, M.R.4
  • 50
    • 84908384066 scopus 로고    scopus 로고
    • Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD
    • Anderson A, Douglas PK, Kerr WT, Haynes VS, Yuille AL, Xie J et al. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD. NeuroImage 2014; 102(Pt 1): 207–219.
    • (2014) Neuroimage , vol.102 , pp. 207-219
    • Anderson, A.1    Douglas, P.K.2    Kerr, W.T.3    Haynes, V.S.4    Yuille, A.L.5    Xie, J.6
  • 51
    • 84870041182 scopus 로고    scopus 로고
    • Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual sub-jects
    • Bohland JW, Saperstein S, Pereira F, Rapin J, Grady L. Network, anatomical, and non-imaging measures for the prediction of ADHD diagnosis in individual sub-jects. Front Syst Neurosci 2012; 6: 78.
    • (2012) Front Syst Neurosci , vol.6 , pp. 78
    • Bohland, J.W.1    Saperstein, S.2    Pereira, F.3    Rapin, J.4    Grady, L.5
  • 53
    • 84865999895 scopus 로고    scopus 로고
    • Classification of ADHD children through multimodal magnetic resonance imaging
    • Dai D, Wang J, Hua J, He H. Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci 2012; 6: 63.
    • (2012) Front Syst Neurosci , vol.6 , pp. 63
    • Dai, D.1    Wang, J.2    Hua, J.3    He, H.4
  • 54
    • 84877826499 scopus 로고    scopus 로고
    • Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging
    • Lim L, Marquand A, Cubillo AA, Smith AB, Chantiluke K, Simmons A et al. Disorder-specific predictive classification of adolescents with attention deficit hyperactivity disorder (ADHD) relative to autism using structural magnetic resonance imaging. PLoS ONE 2013; 8: e63660.
    • (2013) Plos ONE , vol.8
    • Lim, L.1    Marquand, A.2    Cubillo, A.A.3    Smith, A.B.4    Chantiluke, K.5    Simmons, A.6
  • 55
    • 84894284759 scopus 로고    scopus 로고
    • Extreme learning machine-based classification of ADHD using brain structural MRI data
    • Peng X, Lin P, Zhang T, Wang J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS ONE 2013; 8: e79476.
    • (2013) Plos ONE , vol.8
    • Peng, X.1    Lin, P.2    Zhang, T.3    Wang, J.4
  • 56
    • 84906516292 scopus 로고    scopus 로고
    • Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification
    • Johnston BA, Mwangi B, Matthews K, Coghill D, Konrad K, Steele JD. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Hum Brain Map 2014; 35: 5179–5189.
    • (2014) Hum Brain Map , vol.35 , pp. 5179-5189
    • Johnston, B.A.1    Mwangi, B.2    Matthews, K.3    Coghill, D.4    Konrad, K.5    Steele, J.D.6
  • 57
    • 84960086387 scopus 로고    scopus 로고
    • Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data
    • Deshpande G, Wang P, Rangaprakash D, Wilamowski B. Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans Cybernet 2015; 45: 2668–2679.
    • (2015) IEEE Trans Cybernet , vol.45 , pp. 2668-2679
    • Deshpande, G.1    Wang, P.2    Rangaprakash, D.3    Wilamowski, B.4
  • 58
    • 84983401426 scopus 로고    scopus 로고
    • Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: Structural MRI study
    • Qureshi MN, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS ONE 2016; 11: e0160697.
    • (2016) Plos ONE , vol.11
    • Qureshi, M.N.1    Min, B.2    Jo, H.J.3    Lee, B.4
  • 59
    • 85117915632 scopus 로고    scopus 로고
    • Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI
    • Qureshi MNI, Oh J, Min B, Jo HJ, Lee B. Multi-modal, multi-measure, and multi-class discrimination of ADHD with hierarchical feature extraction and extreme learning machine using structural and functional brain MRI. Front Hum Neurosci 2017; 11: 157.
    • (2017) Front Hum Neurosci , vol.11 , pp. 157
    • Qureshi, M.N.I.1    Oh, J.2    Min, B.3    Jo, H.J.4    Lee, B.5
  • 60
    • 84865007497 scopus 로고    scopus 로고
    • Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques
    • Cheng W, Ji X, Zhang J, Feng J. Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Front Syst Neurosci 2012; 6: 58.
    • (2012) Front Syst Neurosci , vol.6 , pp. 58
    • Cheng, W.1    Ji, X.2    Zhang, J.3    Feng, J.4
  • 61
    • 38949129350 scopus 로고    scopus 로고
    • Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder
    • Zhu CZ, Zang YF, Cao QJ, Yan CG, He Y, Jiang TZ et al. Fisher discriminative analysis of resting-state brain function for attention-deficit/hyperactivity disorder. NeuroImage 2008; 40: 110–120.
    • (2008) Neuroimage , vol.40 , pp. 110-120
    • Zhu, C.Z.1    Zang, Y.F.2    Cao, Q.J.3    Yan, C.G.4    He, Y.5    Jiang, T.Z.6
  • 62
    • 84899753355 scopus 로고    scopus 로고
    • The co-occurrence of autism and attention deficit hyperactivity disorder in children-what do we know?
    • Leitner Y. The co-occurrence of autism and attention deficit hyperactivity disorder in children-what do we know? Front Hum Neurosci 2014; 8: 268.
    • (2014) Front Hum Neurosci , vol.8 , pp. 268
    • Leitner, Y.1
  • 63
    • 56549097085 scopus 로고    scopus 로고
    • Psychiatric disorders in children with autism spectrum disorders: Prevalence, comorbidity, and associated factors in a population-derived sample
    • Simonoff E, Pickles A, Charman T, Chandler S, Loucas T, Baird G. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry 2008; 47: 921–929.
    • (2008) J am Acad Child Adolesc Psychiatry , vol.47 , pp. 921-929
    • Simonoff, E.1    Pickles, A.2    Charman, T.3    Chandler, S.4    Loucas, T.5    Baird, G.6
  • 64
    • 84867899358 scopus 로고    scopus 로고
    • Are autism spectrum disorder and attention-deficit/hyper-activity disorder different manifestations of one overarching disorder? Cognitive and symptom evidence from a clinical and population-based sample
    • van der Meer JM, Oerlemans AM, van Steijn DJ, Lappenschaar MG, de Sonneville LM, Buitelaar JK et al. Are autism spectrum disorder and attention-deficit/hyper-activity disorder different manifestations of one overarching disorder? Cognitive and symptom evidence from a clinical and population-based sample. J Am Acad Child Adolesc Psychiatry 2012; 51: 1160–72 e3.
    • (2012) J am Acad Child Adolesc Psychiatry , vol.51 , pp. 1160-1172
    • van der Meer, J.M.1    Oerlemans, A.M.2    van Steijn, D.J.3    Lappenschaar, M.G.4    de Sonneville, L.M.5    Buitelaar, J.K.6
  • 65
    • 41849124886 scopus 로고    scopus 로고
    • Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample
    • Ronald A, Simonoff E, Kuntsi J, Asherson P, Plomin R. Evidence for overlapping genetic influences on autistic and ADHD behaviours in a community twin sample. J Child Psychol Psychiatry 2008; 49: 535–542.
    • (2008) J Child Psychol Psychiatry , vol.49 , pp. 535-542
    • Ronald, A.1    Simonoff, E.2    Kuntsi, J.3    Asherson, P.4    Plomin, R.5
  • 66
    • 85019409319 scopus 로고    scopus 로고
    • Crowdsourced validation of a machine-learning classification system for autism and ADHD
    • Duda M, Haber N, Daniels J, Wall DP. Crowdsourced validation of a machine-learning classification system for autism and ADHD. Transl Psychiatry 2017; 7: e1133.
    • (2017) Transl Psychiatry , vol.7 , pp. e1133
    • Duda, M.1    Haber, N.2    Daniels, J.3    Wall, D.P.4
  • 67
    • 80053003849 scopus 로고    scopus 로고
    • In search of biomarkers for autism: Scientific, social and ethical challenges
    • Walsh P, Elsabbagh M, Bolton P, Singh I. In search of biomarkers for autism: scientific, social and ethical challenges. Nat Rev Neurosci 2011; 12: 603–612.
    • (2011) Nat Rev Neurosci , vol.12 , pp. 603-612
    • Walsh, P.1    Elsabbagh, M.2    Bolton, P.3    Singh, I.4
  • 68
    • 84861660149 scopus 로고    scopus 로고
    • Differences in white matter fiber tract development present from 6 to 24 months in infants with autism
    • Wolff JJ, Gu H, Gerig G, Elison JT, Styner M, Gouttard S et al. Differences in white matter fiber tract development present from 6 to 24 months in infants with autism. Am J Psychiatry 2012; 169: 589–600.
    • (2012) Am J Psychiatry , vol.169 , pp. 589-600
    • Wolff, J.J.1    Gu, H.2    Gerig, G.3    Elison, J.T.4    Styner, M.5    Gouttard, S.6
  • 69
    • 84945254843 scopus 로고    scopus 로고
    • Neuroimaging-based biomarker discovery and validation
    • Woo CW, Wager TD. Neuroimaging-based biomarker discovery and validation. Pain 2015; 156: 1379–1381.
    • (2015) Pain , vol.156 , pp. 1379-1381
    • Woo, C.W.1    Wager, T.D.2
  • 70
    • 84869789432 scopus 로고    scopus 로고
    • Differential deactivation during mentalizing and classification of autism based on default mode network connectivity
    • Murdaugh DL, Shinkareva SV, Deshpande HR, Wang J, Pennick MR, Kana RK. Differential deactivation during mentalizing and classification of autism based on default mode network connectivity. PLoS ONE 2012; 7: e50064.
    • (2012) Plos ONE , vol.7
    • Murdaugh, D.L.1    Shinkareva, S.V.2    Deshpande, H.R.3    Wang, J.4    Pennick, M.R.5    Kana, R.K.6
  • 72
    • 79960371705 scopus 로고    scopus 로고
    • A novel functional brain imaging endophenotype of autism: The neural response to facial expression of emotion
    • Spencer MD, Holt RJ, Chura LR, Suckling J, Calder AJ, Bullmore ET et al. A novel functional brain imaging endophenotype of autism: the neural response to facial expression of emotion. Transl Psychiatry 2011; 1: e19.
    • (2011) Transl Psychiatry , vol.1 , pp. e19
    • Spencer, M.D.1    Holt, R.J.2    Chura, L.R.3    Suckling, J.4    Calder, A.J.5    Bullmore, E.T.6
  • 74
    • 84921627174 scopus 로고    scopus 로고
    • Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
    • Plitt M, Barnes KA, Martin A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. NeuroImage Clin 2015; 7: 359–366.
    • (2015) Neuroimage Clin , vol.7 , pp. 359-366
    • Plitt, M.1    Barnes, K.A.2    Martin, A.3
  • 75
    • 79952314339 scopus 로고    scopus 로고
    • Early functional brain development in autism and the promise of sleep fMRI
    • Pierce K. Early functional brain development in autism and the promise of sleep fMRI. Brain Res 2011; 1380: 162–174.
    • (2011) Brain Res , vol.1380 , pp. 162-174
    • Pierce, K.1
  • 77
    • 34248569902 scopus 로고    scopus 로고
    • Quantitative temporal lobe differences: Autism distinguished from controls using classification and regression tree analysis
    • Neeley ES, Bigler ED, Krasny L, Ozonoff S, McMahon W, Lainhart JE. Quantitative temporal lobe differences: autism distinguished from controls using classification and regression tree analysis. Brain Dev 2007; 29: 389–399.
    • (2007) Brain Dev , vol.29 , pp. 389-399
    • Neeley, E.S.1    Bigler, E.D.2    Krasny, L.3    Ozonoff, S.4    McMahon, W.5    Lainhart, J.E.6
  • 78
    • 58849098790 scopus 로고    scopus 로고
    • Cortical surface thickness as a classifier: Boosting for autism classification
    • Singh V, Mukherjee L, Chung MK. Cortical surface thickness as a classifier: boosting for autism classification. Med Image Comput Comput Assist Interv 2008; 11(Pt 1): 999–1007.
    • (2008) Med Image Comput Comput Assist Interv , vol.11 , pp. 999-1007
    • Singh, V.1    Mukherjee, L.2    Chung, M.K.3
  • 79
    • 77956214538 scopus 로고    scopus 로고
    • Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach
    • Ecker C, Marquand A, Mourao-Miranda J, Johnston P, Daly EM, Brammer MJ et al. Describing the brain in autism in five dimensions—magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J Neurosci 2010a; 30: 10612–10623.
    • (2010) J Neurosci , vol.30 , pp. 10612-10623
    • Ecker, C.1    Marquand, A.2    Mourao-Miranda, J.3    Johnston, P.4    Daly, E.M.5    Brammer, M.J.6
  • 80
    • 70349964707 scopus 로고    scopus 로고
    • Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach
    • Ecker C, Rocha-Rego V, Johnston P, Mourao-Miranda J, Marquand A, Daly EM et al. Investigating the predictive value of whole-brain structural MR scans in autism: a pattern classification approach. Neuroimage 2010b; 49: 44–56.
    • (2010) Neuroimage , vol.49 , pp. 44-56
    • Ecker, C.1    Rocha-Rego, V.2    Johnston, P.3    Mourao-Miranda, J.4    Marquand, A.5    Daly, E.M.6
  • 81
    • 77952298475 scopus 로고    scopus 로고
    • Predictive models of autism spectrum disorder based on brain regional cortical thickness
    • Jiao Y, Chen R, Ke X, Chu K, Lu Z, Herskovits EH. Predictive models of autism spectrum disorder based on brain regional cortical thickness. Neuroimage 2010; 50: 589–599.
    • (2010) Neuroimage , vol.50 , pp. 589-599
    • Jiao, Y.1    Chen, R.2    Ke, X.3    Chu, K.4    Lu, Z.5    Herskovits, E.H.6
  • 82
    • 83055181241 scopus 로고    scopus 로고
    • Female children with autism spectrum disorder: An insight from mass-univariate and pattern classification analyses
    • Calderoni S, Retico A, Biagi L, Tancredi R, Muratori F, Tosetti M. Female children with autism spectrum disorder: an insight from mass-univariate and pattern classification analyses. Neuroimage 2012; 59: 1013–1022.
    • (2012) Neuroimage , vol.59 , pp. 1013-1022
    • Calderoni, S.1    Retico, A.2    Biagi, L.3    Tancredi, R.4    Muratori, F.5    Tosetti, M.6
  • 85
    • 84874438332 scopus 로고    scopus 로고
    • Inter-regional cortical thickness correlations are associated with autistic symptoms: A machine-learning approach
    • Sato JR, Hoexter MQ, Oliveira PP Jr, Brammer MJ, AIMS MRC Consortium, Murphy D, Ecker C. Inter-regional cortical thickness correlations are associated with autistic symptoms: a machine-learning approach. J Psychiatr Res 2013; 47: 453–459.
    • (2013) J Psychiatr Res , vol.47 , pp. 453-459
    • Sato, J.R.1    Hoexter, M.Q.2    Oliveira, P.P.3    Brammer, M.J.4    Murphy, D.5    Ecker, C.6
  • 86
    • 84921627174 scopus 로고    scopus 로고
    • Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards
    • Plitt M, Barnes KA, Martin A. Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. Neuroimage Clin 2014; 7: 359–366.
    • (2014) Neuroimage Clin , vol.7 , pp. 359-366
    • Plitt, M.1    Barnes, K.A.2    Martin, A.3
  • 88
    • 84944512339 scopus 로고    scopus 로고
    • Gray matter alterations in young children with autism spectrum disorders: Comparing mor-phometry at the voxel and regional level
    • Gori I, Giuliano A, Muratori F, Saviozzi I, Oliva P, Tancredi R et al. Gray matter alterations in young children with autism spectrum disorders: comparing mor-phometry at the voxel and regional level. J Neuroimaging 2015; 25: 866–874.
    • (2015) J Neuroimaging , vol.25 , pp. 866-874
    • Gori, I.1    Giuliano, A.2    Muratori, F.3    Saviozzi, I.4    Oliva, P.5    Tancredi, R.6
  • 89
    • 84907652029 scopus 로고    scopus 로고
    • Resting state functional magnetic resonance imaging and neural network classified autism and control
    • Iidaka T. Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 2015; 63: 55–67.
    • (2015) Cortex , vol.63 , pp. 55-67
    • Iidaka, T.1
  • 90
    • 84925064462 scopus 로고    scopus 로고
    • Multimodal neuroi-maging based classification of autism spectrum disorder using anatomical, neu-rochemical, and white matter correlates
    • Libero LE, DeRamus TP, Lahti AC, Deshpande G, Kana RK. Multimodal neuroi-maging based classification of autism spectrum disorder using anatomical, neu-rochemical, and white matter correlates. Cortex 2015; 66: 46–59.
    • (2015) Cortex , vol.66 , pp. 46-59
    • Libero, L.E.1    Deramus, T.P.2    Lahti, A.C.3    Deshpande, G.4    Kana, R.K.5
  • 92
    • 84940460632 scopus 로고    scopus 로고
    • Accurate detection of autism spectrum disorder from structural MRI using extended metacognitive radial basis function network
    • Subbaraju V, Sundaram S, Narasimham S, Suresh MB. Accurate detection of autism spectrum disorder from structural MRI using extended metacognitive radial basis function network. Exp Syst Appl 2015; 42: 8775–8790.
    • (2015) Exp Syst Appl , vol.42 , pp. 8775-8790
    • Subbaraju, V.1    Sundaram, S.2    Narasimham, S.3    Suresh, M.B.4
  • 93
    • 85009236692 scopus 로고    scopus 로고
    • Deriving reproducible biomarkers from multi-site resting-state data: An autism-based example
    • Abraham A, Milham MP, Di Martino A, Craddock RC, Samaras D, Thirion B et al. Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. Neuroimage 2017; 147: 736–745.
    • (2017) Neuroimage , vol.147 , pp. 736-745
    • Abraham, A.1    Milham, M.P.2    Di Martino, A.3    Craddock, R.C.4    Samaras, D.5    Thirion, B.6
  • 94
    • 84959885318 scopus 로고    scopus 로고
    • Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder
    • Wang L, Wee CY, Tang X, Yap PT, Shen D. Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder. Brain Imaging Behav 2016; 10: 33–40.
    • (2016) Brain Imaging Behav , vol.10 , pp. 33-40
    • Wang, L.1    Wee, C.Y.2    Tang, X.3    Yap, P.T.4    Shen, D.5
  • 95
    • 84869082812 scopus 로고    scopus 로고
    • Automatic brain caudate nuclei segmentation and classification in diagnostic of attention-deficit/ hyperactivity disorder
    • Igual L, Soliva JC, Escalera S, Gimeno R, Vilarroya O, Radeva P. Automatic brain caudate nuclei segmentation and classification in diagnostic of attention-deficit/ hyperactivity disorder. Comput Med Imaging Graph 2012; 36: 591–600.
    • (2012) Comput Med Imaging Graph , vol.36 , pp. 591-600
    • Igual, L.1    Soliva, J.C.2    Escalera, S.3    Gimeno, R.4    Vilarroya, O.5    Radeva, P.6
  • 96
    • 84865979899 scopus 로고    scopus 로고
    • Evaluation of pattern recognition and feature extraction methods in ADHD prediction
    • Sato JR, Hoexter MQ, Fujita A, Rohde LA. Evaluation of pattern recognition and feature extraction methods in ADHD prediction. Front Syst Neurosci 2012; 6: 68.
    • (2012) Front Syst Neurosci , vol.6 , pp. 68
    • Sato, J.R.1    Hoexter, M.Q.2    Fujita, A.3    Rohde, L.A.4
  • 97
    • 84867707087 scopus 로고    scopus 로고
    • Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD
    • Sidhu GS, Asgarian N, Greiner R, Brown MR. Kernel principal component analysis for dimensionality reduction in fMRI-based diagnosis of ADHD. Front Syst Neurosci 2012; 6: 74.
    • (2012) Front Syst Neurosci , vol.6 , pp. 74
    • Sidhu, G.S.1    Asgarian, N.2    Greiner, R.3    Brown, M.R.4
  • 98
    • 84881141563 scopus 로고    scopus 로고
    • Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder
    • Wang X, Jiao Y, Tang T, Wang H, Lu Z. Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. Eur J Radiol 2013; 82: 1552–1557.
    • (2013) Eur J Radiol , vol.82 , pp. 1552-1557
    • Wang, X.1    Jiao, Y.2    Tang, T.3    Wang, H.4    Lu, Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.