메뉴 건너뛰기




Volumn 10, Issue 1, 2016, Pages 33-40

Multi-task feature selection via supervised canonical graph matching for diagnosis of autism spectrum disorder

Author keywords

Diagnosis of autism spectrum disorder; Magnetic resonance imaging (MRI); Multi task feature selection

Indexed keywords

ARTICLE; AUTISM; CHILD; COMPARATIVE STUDY; CORRELATION ANALYSIS; FEMALE; GRAY MATTER; HUMAN; INTELLIGENCE QUOTIENT; MAJOR CLINICAL STUDY; MALE; NUCLEAR MAGNETIC RESONANCE IMAGING; PRIORITY JOURNAL; SOCIAL ADAPTATION; WHITE MATTER; AUTISM SPECTRUM DISORDER; BRAIN; COMPUTER ASSISTED DIAGNOSIS; DIAGNOSTIC IMAGING; INFORMATION PROCESSING; PROCEDURES; RECEIVER OPERATING CHARACTERISTIC; SUPPORT VECTOR MACHINE; VALIDATION STUDY;

EID: 84959885318     PISSN: 19317557     EISSN: 19317565     Source Type: Journal    
DOI: 10.1007/s11682-015-9360-1     Document Type: Article
Times cited : (17)

References (28)
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., & Vapnik V. (1995). Support-vector networks. Machine Learning, 20, 273–297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 9
    • 33846921789 scopus 로고    scopus 로고
    • Autism spectrum disorders: developmental disconnection syndromes
    • COI: 1:CAS:528:DC%2BD2sXhvVOqtLo%3D, PID: 17275283
    • Geschwind D. H., & Levitt P. (2007). Autism spectrum disorders: developmental disconnection syndromes. Current Opinion in Neurobiology, 17, 103–111.
    • (2007) Current Opinion in Neurobiology , vol.17 , pp. 103-111
    • Geschwind, D.H.1    Levitt, P.2
  • 11
    • 10044285992 scopus 로고    scopus 로고
    • Canonical correlation analysis: An overview with application to learning methods
    • PID: 15516276
    • Hardoon D., Szedmak S., & Shawe-Taylor J. (2004). Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16, 2639–2664.
    • (2004) Neural Computation , vol.16 , pp. 2639-2664
    • Hardoon, D.1    Szedmak, S.2    Shawe-Taylor, J.3
  • 13
    • 84894622323 scopus 로고    scopus 로고
    • Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer’s disease. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 (pp. 275–283)
    • Jie B., Zhang D., Cheng B., & Shen D. (2013). Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer’s disease. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013 (pp. 275–283). Springer.
    • (2013) Springer
    • Jie, B.1    Zhang, D.2    Cheng, B.3    Shen, D.4
  • 14
    • 38049026697 scopus 로고    scopus 로고
    • Multi-view regression via canonical correlation analysis. Learning Theory (pp. 82–96)
    • Kakade S. M., & Foster D. P. (2007). Multi-view regression via canonical correlation analysis. Learning Theory (pp. 82–96). Springer.
    • (2007) Springer
    • Kakade, S.M.1    Foster, D.P.2
  • 15
    • 0024397465 scopus 로고
    • Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter
    • COI: 1:STN:280:DyaL1MzgvFeksg%3D%3D, PID: 2745775
    • Lim K. O., & Pfefferbaum A. (1989). Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. Journal of Computer Assisted Tomography, 13, 588–593.
    • (1989) Journal of Computer Assisted Tomography , vol.13 , pp. 588-593
    • Lim, K.O.1    Pfefferbaum, A.2
  • 16
    • 84885160193 scopus 로고    scopus 로고
    • Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification
    • PID: 24045077
    • Liu F., Wee C.-Y., Chen H., & Shen D. (2014). Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s disease and mild cognitive impairment identification. NeuroImage, 84, 466–475.
    • (2014) NeuroImage , vol.84 , pp. 466-475
    • Liu, F.1    Wee, C.-Y.2    Chen, H.3    Shen, D.4
  • 17
    • 80053145416 scopus 로고    scopus 로고
    • Multi-task feature learning via efficient l 2, 1-norm minimization. Proceedings of the Twenty-Fifth conference on uncertainty in artificial intelligence (pp. 339–348)
    • Liu J., Ji S., & Ye J. (2009). Multi-task feature learning via efficient l 2, 1-norm minimization. Proceedings of the Twenty-Fifth conference on uncertainty in artificial intelligence (pp. 339–348). AUAI Press.
    • (2009) AUAI Press
    • Liu, J.1    Ji, S.2    Ye, J.3
  • 18
    • 0036880516 scopus 로고    scopus 로고
    • HAMMER: hierarchical attribute matching mechanism for elastic registration
    • PID: 12575879
    • Shen D., & Davatzikos C. (2002). HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21, 1421–1439.
    • (2002) IEEE Transactions on Medical Imaging , vol.21 , pp. 1421-1439
    • Shen, D.1    Davatzikos, C.2
  • 20
    • 82255185706 scopus 로고    scopus 로고
    • Robust deformable-surface-based skull-stripping for large-scale studies. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 (pp. 635–642)
    • Wang Y., Nie J., Yap P.-T., Shi F., Guo L., & Shen D. (2011). Robust deformable-surface-based skull-stripping for large-scale studies. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011 (pp. 635–642). Springer.
    • (2011) Springer
    • Wang, Y.1    Nie, J.2    Yap, P.-T.3    Shi, F.4    Guo, L.5    Shen, D.6
  • 21
    • 84896048486 scopus 로고    scopus 로고
    • Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification
    • PID: 23468090
    • Wee C.-Y., Yap P.-T., Zhang D., Wang L., & Shen D. (2014a). Group-constrained sparse fMRI connectivity modeling for mild cognitive impairment identification. Brain Structure and Function, 219, 641–656.
    • (2014) Brain Structure and Function , vol.219 , pp. 641-656
    • Wee, C.-Y.1    Yap, P.-T.2    Zhang, D.3    Wang, L.4    Shen, D.5
  • 22
    • 84902142587 scopus 로고    scopus 로고
    • Diagnosis of autism spectrum disorders using regional and interregional morphological features
    • PID: 25050428
    • Wee C. Y., Wang L., Shi F., Yap P. T., & Shen D. (2014b). Diagnosis of autism spectrum disorders using regional and interregional morphological features. Human Brain Mapping, 35, 3414–3430.
    • (2014) Human Brain Mapping , vol.35 , pp. 3414-3430
    • Wee, C.Y.1    Wang, L.2    Shi, F.3    Yap, P.T.4    Shen, D.5
  • 23
    • 0018740511 scopus 로고
    • Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification
    • COI: 1:STN:280:DyaE1M7nt1ygug%3D%3D, PID: 155684
    • Wing L., & Gould J. (1979). Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. Journal of Autism and Developmental Disorders, 9, 11–29.
    • (1979) Journal of Autism and Developmental Disorders , vol.9 , pp. 11-29
    • Wing, L.1    Gould, J.2
  • 25
    • 83055184373 scopus 로고    scopus 로고
    • Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease
    • PID: 21992749
    • Zhang D., Shen D., & Alzheimer’s disease Neuroimaging, I. (2012a). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease. NeuroImage, 59, 895–907.
    • (2012) NeuroImage , vol.59 , pp. 895-907
    • Zhang, D.1    Shen, D.2    Alzheimer’s disease Neuroimaging,, I.3
  • 26
    • 84863351725 scopus 로고    scopus 로고
    • Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers
    • COI: 1:CAS:528:DC%2BC38Xlt1Chu7c%3D, PID: 22457741
    • Zhang D., Shen D., & Alzheimer's Disease Neuroimaging I. (2012b). Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PloS One, 7, e33182.
    • (2012) PloS One , vol.7
    • Zhang, D.1    Shen, D.2    Alzheimer's Disease Neuroimaging, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.