-
1
-
-
85013910165
-
The challenge of the new tuberculosis drugs
-
Tiberi S, Buchanan R, Caminero JA, et al. The challenge of the new tuberculosis drugs. Presse Med. 2017;46:e41–e51.
-
(2017)
Presse Med
, vol.46
, pp. e41-e51
-
-
Tiberi, S.1
Buchanan, R.2
Caminero, J.A.3
-
2
-
-
84872381586
-
-
Geneva: World Health Organization
-
WHO. Global Tuberculosis Report. Geneva: World Health Organization; 2016.
-
(2016)
Global Tuberculosis Report
-
-
-
5
-
-
84982134914
-
Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism
-
Jamwal SV, Mehrotra P, Singh A, et al. Mycobacterial escape from macrophage phagosomes to the cytoplasm represents an alternate adaptation mechanism. Sci Rep. 2017;6:23089.
-
(2017)
Sci Rep
, vol.6
, pp. 23089
-
-
Jamwal, S.V.1
Mehrotra, P.2
Singh, A.3
-
6
-
-
66549118083
-
Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination
-
Cirillo SLG, Subbian S, Chen B, et al. Protection of Mycobacterium tuberculosis from reactive oxygen species conferred by the mel2 locus impacts persistence and dissemination. Infect Immun. 2009;77:2557–2567.
-
(2009)
Infect Immun
, vol.77
, pp. 2557-2567
-
-
Cirillo, S.L.G.1
Subbian, S.2
Chen, B.3
-
7
-
-
67650150077
-
Acid resistance in Mycobacterium tuberculosis
-
Vandal OH, Nathan CF, Ehrt S., Acid resistance in Mycobacterium tuberculosis. J Bacteriol. 2009;191:4714–4721.
-
(2009)
J Bacteriol
, vol.191
, pp. 4714-4721
-
-
Vandal, O.H.1
Nathan, C.F.2
Ehrt, S.3
-
8
-
-
0033553440
-
A coat protein on phagosomes involved in the intracellular survival of mycobacteria
-
Ferrari G, Langen H, Naito M, et al. A coat protein on phagosomes involved in the intracellular survival of mycobacteria. Cell. 1999;97:435–447.
-
(1999)
Cell
, vol.97
, pp. 435-447
-
-
Ferrari, G.1
Langen, H.2
Naito, M.3
-
9
-
-
84937513662
-
-
Atlanta (GA): Centers for Disease Control and Prevention (CDC), [Internet]., [cited 2017 Jul 22]; Available from
-
CDC. Questions and answers about tuberculosis [Internet]. Atlanta (GA): Centers for Disease Control and Prevention (CDC); 2014 [cited 2017 Jul 22]; Available from: https://www.cdc.gov/tb/publications/faqs/pdfs/qa.pdf
-
(2014)
Questions and answers about tuberculosis
-
-
-
11
-
-
84860199877
-
Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates
-
Balganesh M, Dinesh N, Sharma S, et al. Efflux pumps of Mycobacterium tuberculosis play a significant role in antituberculosis activity of potential drug candidates. Antimicrob Agents Chemother. 2012;56:2643–2651.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, pp. 2643-2651
-
-
Balganesh, M.1
Dinesh, N.2
Sharma, S.3
-
12
-
-
33644900505
-
Role of mycobacterial efflux transporters in drug resistance: an unresolved question
-
Rossi ED, Aínsa JA, Riccardi G., Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev. 2006;30:36–52.
-
(2006)
FEMS Microbiol Rev
, vol.30
, pp. 36-52
-
-
Rossi, E.D.1
Aínsa, J.A.2
Riccardi, G.3
-
13
-
-
84921509602
-
Drug resistance mechanisms in Mycobacterium tuberculosis
-
Palomino JC, Martin A., Drug resistance mechanisms in Mycobacterium tuberculosis. Antibiotics. 2014;3:317–340.
-
(2014)
Antibiotics
, vol.3
, pp. 317-340
-
-
Palomino, J.C.1
Martin, A.2
-
14
-
-
85009982262
-
Classifying new anti-tuberculosis drugs: rationale and future perspectives
-
Tiberi S, Scardigli A, Centis R, et al. Classifying new anti-tuberculosis drugs: rationale and future perspectives. Int J Infect Dis. 2017;56:181–184.
-
(2017)
Int J Infect Dis
, vol.56
, pp. 181-184
-
-
Tiberi, S.1
Scardigli, A.2
Centis, R.3
-
15
-
-
84994691941
-
Multidrug and extensively drug-resistant tuberculosis
-
Maitre T, Aubry A, Jarlier V, et al. Multidrug and extensively drug-resistant tuberculosis. Med Mal Infect. 2017;47:3–10.
-
(2017)
Med Mal Infect
, vol.47
, pp. 3-10
-
-
Maitre, T.1
Aubry, A.2
Jarlier, V.3
-
16
-
-
85041214448
-
Nanotechnology-based approach in tuberculosis treatment
-
Nasiruddin M, Neyaz MK, Das S, et al. Nanotechnology-based approach in tuberculosis treatment. Tuberc Res Treat. 2017;2017:4920209.
-
(2017)
Tuberc Res Treat
, vol.2017
, pp. 4920209
-
-
Nasiruddin, M.1
Neyaz, M.K.2
Das, S.3
-
17
-
-
84896690289
-
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art
-
Weber S, Zimmer A, Pardeike J., Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: a review of the state of the art. Eur J Pharm Biopharm. 2014;86:7–22.
-
(2014)
Eur J Pharm Biopharm
, vol.86
, pp. 7-22
-
-
Weber, S.1
Zimmer, A.2
Pardeike, J.3
-
18
-
-
84931076834
-
Inhalable nanoparticulate powders for respiratory delivery
-
Muralidharan P, Malapit M, Mallory E, et al. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine. 2015;11:1189–1199.
-
(2015)
Nanomedicine
, vol.11
, pp. 1189-1199
-
-
Muralidharan, P.1
Malapit, M.2
Mallory, E.3
-
19
-
-
84944277448
-
Barrier or carrier? Pulmonary surfactant and drug delivery
-
Hidalgo A, Cruz A, Pérez-Gil J., Barrier or carrier? Pulmonary surfactant and drug delivery. Eur J Pharm Biopharm. 2015;95:117–127.
-
(2015)
Eur J Pharm Biopharm
, vol.95
, pp. 117-127
-
-
Hidalgo, A.1
Cruz, A.2
Pérez-Gil, J.3
-
20
-
-
84969964603
-
Dry powder inhalable formulations for anti-tubercular therapy
-
Parumasivam T, Chang RYK, Abdelghany S, et al. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev. 2016;102:83–101.
-
(2016)
Adv Drug Deliv Rev
, vol.102
, pp. 83-101
-
-
Parumasivam, T.1
Chang, R.Y.K.2
Abdelghany, S.3
-
21
-
-
84992298962
-
The formulation of nanomedicines for treating tuberculosis
-
Costa A, Pinheiro M, Magalhães J, et al. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev. 2016;102:102–115.
-
(2016)
Adv Drug Deliv Rev
, vol.102
, pp. 102-115
-
-
Costa, A.1
Pinheiro, M.2
Magalhães, J.3
-
22
-
-
84908235237
-
Technological and practical challenges of dry powder inhalers and formulations
-
Hoppentocht M, Hagedoorn P, Frijlink HW, et al. Technological and practical challenges of dry powder inhalers and formulations. Adv Drug Deliv Rev. 2014; 75:18–31.
-
(2014)
Adv Drug Deliv Rev
, vol.75
, pp. 18-31
-
-
Hoppentocht, M.1
Hagedoorn, P.2
Frijlink, H.W.3
-
23
-
-
84896697704
-
Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: a critical evaluation
-
Hoppentocht M, Hagedoorn P, Frijlink HW, et al. Developments and strategies for inhaled antibiotic drugs in tuberculosis therapy: a critical evaluation. Eur J Pharm Biopharm. 2014;86:23–30.
-
(2014)
Eur J Pharm Biopharm
, vol.86
, pp. 23-30
-
-
Hoppentocht, M.1
Hagedoorn, P.2
Frijlink, H.W.3
-
24
-
-
85014869076
-
Dry powder inhalation: past, present and future
-
de Boer AH, Hagedoorn P, Hoppentocht M, et al. Dry powder inhalation: past, present and future. Expert Opin Drug Deliv. 2017;14:499–512.
-
(2017)
Expert Opin Drug Deliv
, vol.14
, pp. 499-512
-
-
de Boer, A.H.1
Hagedoorn, P.2
Hoppentocht, M.3
-
25
-
-
85047287318
-
Dry powder inhalers: a focus on advancements in novel drug delivery systems
-
Mehta P., Dry powder inhalers: a focus on advancements in novel drug delivery systems. J Drug Deliv. 2016;2016:1–16.
-
(2016)
J Drug Deliv
, vol.2016
, pp. 1-16
-
-
Mehta, P.1
-
26
-
-
84993940162
-
Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation
-
Doktorovová S, Kovačević AB, Garcia ML, et al. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–252.
-
(2016)
Eur J Pharm Biopharm
, vol.108
, pp. 235-252
-
-
Doktorovová, S.1
Kovačević, A.B.2
Garcia, M.L.3
-
27
-
-
84936996244
-
Comparative assessment of nanomaterial definitions and safety evaluation considerations
-
Boverhof DR, Bramante CM, Butala JH, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015;73: 137–150.
-
(2015)
Regul Toxicol Pharmacol
, vol.73
, pp. 137-150
-
-
Boverhof, D.R.1
Bramante, C.M.2
Butala, J.H.3
-
29
-
-
79960774579
-
Isoniazid proliposome powders for inhalation–preparation, characterization and cell culture studies
-
Rojanarat W, Changsan N, Tawithong E, et al. Isoniazid proliposome powders for inhalation–preparation, characterization and cell culture studies. IJMS. 2011;12:4414–4434.
-
(2011)
IJMS
, vol.12
, pp. 4414-4434
-
-
Rojanarat, W.1
Changsan, N.2
Tawithong, E.3
-
30
-
-
70350784057
-
Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages
-
Changsan N, Nilkaeo A, Pungrassami P, et al. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J Drug Target. 2009;17:751–762.
-
(2009)
J Drug Target
, vol.17
, pp. 751-762
-
-
Changsan, N.1
Nilkaeo, A.2
Pungrassami, P.3
-
31
-
-
84944884845
-
A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis
-
Patil JS, Devi VK, Devi K, et al. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India. 2015;32: 331–338.
-
(2015)
Lung India
, vol.32
, pp. 331-338
-
-
Patil, J.S.1
Devi, V.K.2
Devi, K.3
-
32
-
-
84895925406
-
Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach
-
Patil-Gadhe A, Pokharkar V., Single step spray drying method to develop proliposomes for inhalation: a systematic study based on quality by design approach. Pulm Pharmacol Ther. 2014;27:197–207.
-
(2014)
Pulm Pharmacol Ther
, vol.27
, pp. 197-207
-
-
Patil-Gadhe, A.1
Pokharkar, V.2
-
33
-
-
84929076528
-
Rifapentine-proliposomes for inhalation: in vitro and in vivo toxicity
-
Pokharkar V, Patil-Gadhe A, Kyadarkunte A, et al. Rifapentine-proliposomes for inhalation: in vitro and in vivo toxicity. Toxicol Int. 2014;21:275–282.
-
(2014)
Toxicol Int
, vol.21
, pp. 275-282
-
-
Pokharkar, V.1
Patil-Gadhe, A.2
Kyadarkunte, A.3
-
34
-
-
84867567038
-
Inhaled pyrazinamide proliposome for targeting alveolar macrophages
-
Rojanarat W, Nakpheng T, Thawithong E, et al. Inhaled pyrazinamide proliposome for targeting alveolar macrophages. Drug Deliv. 2012;19:334–345.
-
(2012)
Drug Deliv
, vol.19
, pp. 334-345
-
-
Rojanarat, W.1
Nakpheng, T.2
Thawithong, E.3
-
35
-
-
84964529898
-
Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis
-
Eedara BB, Tucker IG, Das SC., Phospholipid-based pyrazinamide spray-dried inhalable powders for treating tuberculosis. Int J Pharm. 2016;506:174–183.
-
(2016)
Int J Pharm
, vol.506
, pp. 174-183
-
-
Eedara, B.B.1
Tucker, I.G.2
Das, S.C.3
-
36
-
-
85168354522
-
Levofloxacin-proliposomes: opportunities for use in lung tuberculosis
-
Rojanarat W, Nakpheng T, Thawithong E, et al. Levofloxacin-proliposomes: opportunities for use in lung tuberculosis. Pharmaceutics. 2012;4:385–412.
-
(2012)
Pharmaceutics
, vol.4
, pp. 385-412
-
-
Rojanarat, W.1
Nakpheng, T.2
Thawithong, E.3
-
37
-
-
23144466480
-
Liposomal amikacin dry powder inhaler: effect of fines on in vitro performance
-
Shah SP, Misra A., Liposomal amikacin dry powder inhaler: effect of fines on in vitro performance. AAPS PharmSciTech. 2004;5:107–113.
-
(2004)
AAPS PharmSciTech
, vol.5
, pp. 107-113
-
-
Shah, S.P.1
Misra, A.2
-
38
-
-
84903276420
-
Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin
-
Manca ML, Valenti D, Sales OD, et al. Fabrication of polyelectrolyte multilayered vesicles as inhalable dry powder for lung administration of rifampicin. Int J Pharm. 2014;472: 102–109.
-
(2014)
Int J Pharm
, vol.472
, pp. 102-109
-
-
Manca, M.L.1
Valenti, D.2
Sales, O.D.3
-
39
-
-
80053415669
-
Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid
-
Pourshahab PS, Gilani K, Moazeni E, et al. Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. J Microencapsul. 2011;28:605–613.
-
(2011)
J Microencapsul
, vol.28
, pp. 605-613
-
-
Pourshahab, P.S.1
Gilani, K.2
Moazeni, E.3
-
40
-
-
85016317620
-
Rifampicin loaded chitosan nanoparticle dry powder presents: an improved therapeutic approach for alveolar tuberculosis
-
Rawal T, Parmar R, Tyagi RK, et al. Rifampicin loaded chitosan nanoparticle dry powder presents: an improved therapeutic approach for alveolar tuberculosis. Colloids Surf B Biointerfaces. 2017;154:321–330.
-
(2017)
Colloids Surf B Biointerfaces
, vol.154
, pp. 321-330
-
-
Rawal, T.1
Parmar, R.2
Tyagi, R.K.3
-
41
-
-
84906958890
-
Preparation of microparticles containing rifampicin as dry powder formulation: in vitro studies on aerosol performance
-
Kundawala AJ, Patel VA, Patel HV, et al. Preparation of microparticles containing rifampicin as dry powder formulation: in vitro studies on aerosol performance. Am J PharmTech Res. 2012;2:470–483.
-
(2012)
Am J PharmTech Res
, vol.2
, pp. 470-483
-
-
Kundawala, A.J.1
Patel, V.A.2
Patel, H.V.3
-
42
-
-
84964757871
-
Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin
-
Pai RV, Jain RR, Bannalikar AS, et al. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J Aerosol Med Pulm D. 2016;29:179–195.
-
(2016)
J Aerosol Med Pulm D
, vol.29
, pp. 179-195
-
-
Pai, R.V.1
Jain, R.R.2
Bannalikar, A.S.3
-
43
-
-
84872801215
-
Treating tuberculosis with Chitosan microparticles loaded with rifampicin as respirable powder for pulmonary delivery
-
Kundawala AJ, Patel VA, Patel HV, et al. Treating tuberculosis with Chitosan microparticles loaded with rifampicin as respirable powder for pulmonary delivery. Ind J Nov Drug Deliver 2012;4:57–65.
-
(2012)
Ind J Nov Drug Deliver
, vol.4
, pp. 57-65
-
-
Kundawala, A.J.1
Patel, V.A.2
Patel, H.V.3
-
44
-
-
84906961812
-
Preparation, in vitro characterization, and in vivo pharmacokinetic evaluation of respirable porous microparticles containing rifampicin
-
Kundawala A, Patel V, Patel H, et al. Preparation, in vitro characterization, and in vivo pharmacokinetic evaluation of respirable porous microparticles containing rifampicin. Sci Pharm. 2014;82:665–682.
-
(2014)
Sci Pharm
, vol.82
, pp. 665-682
-
-
Kundawala, A.1
Patel, V.2
Patel, H.3
-
45
-
-
84857639619
-
Therapeutic aerosol bioengineering of targeted, inhalable microparticle formulations to treat Mycobacterium tuberculosis (MTb)
-
Lawlor C, O’Sullivan MP, Rice B, et al. Therapeutic aerosol bioengineering of targeted, inhalable microparticle formulations to treat Mycobacterium tuberculosis (MTb). J Mater Sci Mater Med. 2012;23:89–98.
-
(2012)
J Mater Sci Mater Med
, vol.23
, pp. 89-98
-
-
Lawlor, C.1
O’Sullivan, M.P.2
Rice, B.3
-
46
-
-
84963690649
-
Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: preparation and in vitro aerosol characterization
-
Parumasivam T, Leung SSY, Quan DH, et al. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: preparation and in vitro aerosol characterization. Eur J Pharm Sci. 2016;88:1–11.
-
(2016)
Eur J Pharm Sci
, vol.88
, pp. 1-11
-
-
Parumasivam, T.1
Leung, S.S.Y.2
Quan, D.H.3
-
47
-
-
84870872519
-
Isoniazid loaded chitosan microspheres for pulmonary delivery: preparation and characterization
-
Kundawala AJ, Patel V, Patel HV, et al. Isoniazid loaded chitosan microspheres for pulmonary delivery: preparation and characterization. Pharm Sin. 2011;2:88–97.
-
(2011)
Pharm Sin
, vol.2
, pp. 88-97
-
-
Kundawala, A.J.1
Patel, V.2
Patel, H.V.3
-
48
-
-
79959750261
-
Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery
-
Doan TVP, Couet W, Olivier JC., Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm. 2011; 414:112–117.
-
(2011)
Int J Pharm
, vol.414
, pp. 112-117
-
-
Doan, T.V.P.1
Couet, W.2
Olivier, J.C.3
-
49
-
-
70350324932
-
Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization
-
Doan TVP, Olivier JC., Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization. Int J Pharm. 2009;382:61–66.
-
(2009)
Int J Pharm
, vol.382
, pp. 61-66
-
-
Doan, T.V.P.1
Olivier, J.C.2
-
50
-
-
61649118970
-
One-step preparation of rifampicin/poly (lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis
-
Ohashi K, Kabasawa T, Ozeki T, et al. One-step preparation of rifampicin/poly (lactic-co-glycolic acid) nanoparticle-containing mannitol microspheres using a four-fluid nozzle spray drier for inhalation therapy of tuberculosis. J Control Release. 2009;135:19–24.
-
(2009)
J Control Release
, vol.135
, pp. 19-24
-
-
Ohashi, K.1
Kabasawa, T.2
Ozeki, T.3
-
51
-
-
53849138679
-
Slow release formulations of inhaled rifampin
-
Coowanitwong I, Arya V, Kulvanich P, et al. Slow release formulations of inhaled rifampin. AAPS J. 2008;10:342–348.
-
(2008)
AAPS J
, vol.10
, pp. 342-348
-
-
Coowanitwong, I.1
Arya, V.2
Kulvanich, P.3
-
52
-
-
0033795452
-
Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization
-
O'hara P, Hickey AJ., Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res. 2000;17:955–961.
-
(2000)
Pharm Res
, vol.17
, pp. 955-961
-
-
O'hara, P.1
Hickey, A.J.2
-
53
-
-
84865799323
-
Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophage targeting
-
Diab R, Brillault J, Bardy A, et al. Formulation and in vitro characterization of inhalable polyvinyl alcohol-free rifampicin-loaded PLGA microspheres prepared with sucrose palmitate as stabilizer: efficiency for ex vivo alveolar macrophage targeting. Int J Pharm. 2012;436:833–839.
-
(2012)
Int J Pharm
, vol.436
, pp. 833-839
-
-
Diab, R.1
Brillault, J.2
Bardy, A.3
-
54
-
-
84937849581
-
Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy
-
Gaspar MC, Sousa JJS, Pais AACC, et al. Optimization of levofloxacin-loaded crosslinked chitosan microspheres for inhaled aerosol therapy. Eur J Pharm Biopharm. 2015;96: 65–75.
-
(2015)
Eur J Pharm Biopharm
, vol.96
, pp. 65-75
-
-
Gaspar, M.C.1
Sousa, J.J.S.2
Pais, A.A.C.C.3
-
55
-
-
37849015123
-
Chitosan microspheres for intrapulmonary administration of moxifloxacin: interaction with biomembrane models and in vitro permeation studies
-
Ventura CA, Tommasini S, Crupi E, et al. Chitosan microspheres for intrapulmonary administration of moxifloxacin: interaction with biomembrane models and in vitro permeation studies. Eur J Pharm Biopharm. 2008;68:235–244.
-
(2008)
Eur J Pharm Biopharm
, vol.68
, pp. 235-244
-
-
Ventura, C.A.1
Tommasini, S.2
Crupi, E.3
-
56
-
-
57149143764
-
Application of a four-fluid nozzle spray drier to prepare inhalable rifampicin-containing mannitolmicroparticles
-
Mizoe T, Ozeki T, Okada H., Application of a four-fluid nozzle spray drier to prepare inhalable rifampicin-containing mannitolmicroparticles. AAPS PharmSciTech. 2008;9:755–761.
-
(2008)
AAPS PharmSciTech
, vol.9
, pp. 755-761
-
-
Mizoe, T.1
Ozeki, T.2
Okada, H.3
-
57
-
-
67650093219
-
Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery
-
Sung JC, Padilla DJ, Garcia-Contreras L, et al. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009; 26:1847–1855.
-
(2009)
Pharm Res
, vol.26
, pp. 1847-1855
-
-
Sung, J.C.1
Padilla, D.J.2
Garcia-Contreras, L.3
-
58
-
-
80052808930
-
Optimizing aerosolization efficiency of dry-powder aggregates of thermally-sensitive polymeric nanoparticles produced by spray-freeze-drying
-
Kho K, Hadinoto K., Optimizing aerosolization efficiency of dry-powder aggregates of thermally-sensitive polymeric nanoparticles produced by spray-freeze-drying. Powder Technol. 2011;214:169–176.
-
(2011)
Powder Technol
, vol.214
, pp. 169-176
-
-
Kho, K.1
Hadinoto, K.2
-
59
-
-
84864697452
-
Preparation of sustained release rifampicin microparticles for inhalation
-
Son YJ, McConville JT., Preparation of sustained release rifampicin microparticles for inhalation. J Pharm Pharmacol. 2012;64:1291–1302.
-
(2012)
J Pharm Pharmacol
, vol.64
, pp. 1291-1302
-
-
Son, Y.J.1
McConville, J.T.2
-
60
-
-
84881578909
-
Dry powder cationic lipopolymericnanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage
-
Vadakkan MV, Annapoorna K, Sivakumar KC, et al. Dry powder cationic lipopolymericnanomicelle inhalation for targeted delivery of antitubercular drug to alveolar macrophage. Int J Nanomedicine. 2013;8:2871–2885.
-
(2013)
Int J Nanomedicine
, vol.8
, pp. 2871-2885
-
-
Vadakkan, M.V.1
Annapoorna, K.2
Sivakumar, K.C.3
-
61
-
-
50949094945
-
The effect of vehicles on spray drying of rifampicin inhalable microparticles: in vitro and in vivo evaluation
-
Darbandi MA, Rouholamini N, Gilani K, et al. The effect of vehicles on spray drying of rifampicin inhalable microparticles: in vitro and in vivo evaluation. DARU. 2008;16: 128–135.
-
(2008)
DARU
, vol.16
, pp. 128-135
-
-
Darbandi, M.A.1
Rouholamini, N.2
Gilani, K.3
-
62
-
-
84884553984
-
Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery
-
Duan J, Vogt FG, Li X, et al. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery. Int J Nanomedicine. 2013;8:3489–3505.
-
(2013)
Int J Nanomedicine
, vol.8
, pp. 3489-3505
-
-
Duan, J.1
Vogt, F.G.2
Li, X.3
-
63
-
-
84873722026
-
Synergistic combination dry powders for inhaled antimicrobial therapy: formulation, characterization and in vitro evaluation
-
Lee SH, Teo J, Heng D, et al. Synergistic combination dry powders for inhaled antimicrobial therapy: formulation, characterization and in vitro evaluation. Eur J Pharm Biopharm. 2013;83:275–284.
-
(2013)
Eur J Pharm Biopharm
, vol.83
, pp. 275-284
-
-
Lee, S.H.1
Teo, J.2
Heng, D.3
-
64
-
-
85020237840
-
Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis
-
Momin MAM, Sinha S, Tucker IG, et al. Dry powder formulation of kanamycin with enhanced aerosolization efficiency for drug-resistant tuberculosis. Int J Pharm. 2017;528: 107–117.
-
(2017)
Int J Pharm
, vol.528
, pp. 107-117
-
-
Momin, M.A.M.1
Sinha, S.2
Tucker, I.G.3
-
65
-
-
84859783424
-
Inhalable antibiotics manufactured through use of near-critical or supercritical fluids
-
Manion JR, Cape SP, McAdams DH, et al. Inhalable antibiotics manufactured through use of near-critical or supercritical fluids. Aerosol Sci Technol. 2012;46:403–410.
-
(2012)
Aerosol Sci Technol
, vol.46
, pp. 403-410
-
-
Manion, J.R.1
Cape, S.P.2
McAdams, D.H.3
-
66
-
-
84899787031
-
Capreomycin inhalable powders prepared with an innovative spray-drying technique
-
Schoubben A, Giovagnoli S, Tiralti MC, et al. Capreomycin inhalable powders prepared with an innovative spray-drying technique. Int J Pharm. 2014;469:132–139.
-
(2014)
Int J Pharm
, vol.469
, pp. 132-139
-
-
Schoubben, A.1
Giovagnoli, S.2
Tiralti, M.C.3
-
67
-
-
43349083052
-
Preparation and in vivo evaluation of a dry powder for inhalation of capreomycin
-
Fiegel J, Garcia-Contreras L, Thomas M, et al. Preparation and in vivo evaluation of a dry powder for inhalation of capreomycin. Pharm Res. 2008;25:805–811.
-
(2008)
Pharm Res
, vol.25
, pp. 805-811
-
-
Fiegel, J.1
Garcia-Contreras, L.2
Thomas, M.3
-
68
-
-
85002670682
-
Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs
-
Garcia-Contreras L, Padilla-Carlin DJ, Sung J, et al. Pharmacokinetics of ethionamide delivered in spray-dried microparticles to the lungs of guinea pigs. J Pharm Sci. 2017;106:331–337.
-
(2017)
J Pharm Sci
, vol.106
, pp. 331-337
-
-
Garcia-Contreras, L.1
Padilla-Carlin, D.J.2
Sung, J.3
-
69
-
-
84872859798
-
Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice
-
Verma RK, Germishuizen WA, Motheo MP, et al. Inhaled microparticles containing clofazimine are efficacious in treatment of experimental tuberculosis in mice. Antimicrob Agents Chemother. 2013;57:1050–1052.
-
(2013)
Antimicrob Agents Chemother
, vol.57
, pp. 1050-1052
-
-
Verma, R.K.1
Germishuizen, W.A.2
Motheo, M.P.3
-
70
-
-
84864645030
-
Preparation and characterisation of novel spray-dried nano-structured para-aminosalicylic acid particulates for pulmonary delivery: impact of ammonium carbonate on morphology, chemical composition and solid state
-
Gad S, Tajber L, Corrigan OI, et al. Preparation and characterisation of novel spray-dried nano-structured para-aminosalicylic acid particulates for pulmonary delivery: impact of ammonium carbonate on morphology, chemical composition and solid state. J Pharm Pharmacol. 2012;64: 1264–1274.
-
(2012)
J Pharm Pharmacol
, vol.64
, pp. 1264-1274
-
-
Gad, S.1
Tajber, L.2
Corrigan, O.I.3
-
71
-
-
10744225450
-
Direct lung delivery of para-aminosalicylic acid by aerosol particles
-
Tsapis N, Bennett D, O’Driscoll K, et al. Direct lung delivery of para-aminosalicylic acid by aerosol particles. Tuberculosis (Edinb). 2003;83:379–385.
-
(2003)
Tuberculosis (Edinb)
, vol.83
, pp. 379-385
-
-
Tsapis, N.1
Bennett, D.2
O’Driscoll, K.3
-
72
-
-
83055163360
-
Stability aspects of liposomes
-
Yadav A, Murthy MS, Shete AS, et al. Stability aspects of liposomes. IJPER. 2011;45:402–413.
-
(2011)
IJPER
, vol.45
, pp. 402-413
-
-
Yadav, A.1
Murthy, M.S.2
Shete, A.S.3
-
73
-
-
85058195141
-
-
Moscow: Infectex-Maxwell Biotech Group, [Internet].,; [cited 2018 Feb 02]; [about 1 screens]. Available from
-
Infectex-Maxwell Biotech Group. Infectex successfully completes phase 1 clinical study of Q203 for treatment of tuberculosis [Internet]. Moscow: Infectex-Maxwell Biotech Group; [cited 2018 Feb 02]; [about 1 screens]. Available from: http://infectex.ru/en/%D0%B1%D0%B5%D0%B7-%D1%80%D1%83%D0%B1%D1%80%D0%B8%D0%BA%D0% B8-en/infectex-successfully-completes-phase-1-clinical-study-of-q203-for-treatment-of-tuberculosis/
-
Infectex successfully completes phase 1 clinical study of Q203 for treatment of tuberculosis
-
-
-
74
-
-
85058189839
-
-
Moscow: Infectex-Maxwell Biotech Group, [Internet].,; [cited 2018 Feb 02]; [about 1 screens]. Available from
-
Infectex-Maxwell Biotech Group. Infectex announces positive phase 2b-3 clinical trial results of SQ109 for the treatment of multidrug-resistant pulmonary tuberculosis [Internet]. Moscow: Infectex-Maxwell Biotech Group; [cited 2018 Feb 02]; [about 1 screens]. Available from: http://infectex.ru/en/%D0%B1%D0%B5%D0%B7-%D1%80%D1%83% D0%B1%D1%80%D0%B8%D0%BA%D0%B8-en/infectex-announces-positive-phase-2b-3-clinical-trial-results-of-sq109-for-the-treatment-of-multidrug-resistant-pulmonary-tuberculosis/
-
Infectex announces positive phase 2b-3 clinical trial results of SQ109 for the treatment of multidrug-resistant pulmonary tuberculosis
-
-
-
75
-
-
85029933701
-
Drug delivery for tuberculosis: is inhaled therapy the key to success?
-
Traini D, Paul MY., Drug delivery for tuberculosis: is inhaled therapy the key to success? Ther Deliv. 2017;8:819–821.
-
(2017)
Ther Deliv
, vol.8
, pp. 819-821
-
-
Traini, D.1
Paul, M.Y.2
-
76
-
-
84913573933
-
-
Cambridge (MA): RESIST-TB: Research Excellence to Stop TB Resistance, [Internet].,; [cited 2018 Feb 02]; [about 2 screens]. Available from
-
DR-TB clinical trials progress report [Internet]. Cambridge (MA): RESIST-TB: Research Excellence to Stop TB Resistance; [cited 2018 Feb 02]; [about 2 screens]. Available from: http://www.resisttb.org/?page_id=1602
-
DR-TB clinical trials progress report
-
-
-
79
-
-
0034235053
-
Latest advances in the development of dry powder inhalers
-
Ashurst I, Malton A, Prime D, et al. Latest advances in the development of dry powder inhalers. Pharm Sci Technol Today. 2000;3:246–256.
-
(2000)
Pharm Sci Technol Today
, vol.3
, pp. 246-256
-
-
Ashurst, I.1
Malton, A.2
Prime, D.3
-
80
-
-
0942300372
-
Nanoparticles: health impacts?
-
Warheit DB., Nanoparticles: health impacts? Mater Today. 2004;7:32–35.
-
(2004)
Mater Today
, vol.7
, pp. 32-35
-
-
Warheit, D.B.1
-
81
-
-
79851516126
-
2 nanoparticles toward human lung epithelial cells
-
2 nanoparticles toward human lung epithelial cells. Sci Total Environ. 2011;409:1219–1228.
-
(2011)
Sci Total Environ
, vol.409
, pp. 1219-1228
-
-
Hsiao, I.L.1
Huang, Y.J.2
-
82
-
-
65649127246
-
Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount
-
Hussain S, Boland S, Baeza-Squiban A, et al. Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology. 2009;260:142–149.
-
(2009)
Toxicology
, vol.260
, pp. 142-149
-
-
Hussain, S.1
Boland, S.2
Baeza-Squiban, A.3
-
83
-
-
84911468187
-
An insight into silver nanoparticles bioavailability in rats
-
Jiménez-Lamana J, Laborda F, Bolea E, et al. An insight into silver nanoparticles bioavailability in rats. Metallomics. 2014;6:2242–2249.
-
(2014)
Metallomics
, vol.6
, pp. 2242-2249
-
-
Jiménez-Lamana, J.1
Laborda, F.2
Bolea, E.3
-
84
-
-
84885849579
-
Dry powder antibiotic aerosol product development: inhaled therapy for tuberculosis
-
Hickey AJ, Misra A, Fourie PB., Dry powder antibiotic aerosol product development: inhaled therapy for tuberculosis. J Pharm Sci. 2013;102:3900–3907.
-
(2013)
J Pharm Sci
, vol.102
, pp. 3900-3907
-
-
Hickey, A.J.1
Misra, A.2
Fourie, P.B.3
-
86
-
-
84983573851
-
Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application
-
Naseri N, Valizadeh H, ZakeriMilani P., Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015;5:305–313.
-
(2015)
Adv Pharm Bull
, vol.5
, pp. 305-313
-
-
Naseri, N.1
Valizadeh, H.2
ZakeriMilani, P.3
-
87
-
-
84864243269
-
Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs?
-
Das S, Ng WK, Tan RBH., Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012; 47:139–151.
-
(2012)
Eur J Pharm Sci
, vol.47
, pp. 139-151
-
-
Das, S.1
Ng, W.K.2
Tan, R.B.H.3
-
88
-
-
84975141177
-
Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design
-
Kaur P, Garg T, Rath G, et al. Development, optimization and evaluation of surfactant-based pulmonary nanolipid carrier system of paclitaxel for the management of drug resistance lung cancer using Box-Behnken design. Drug Deliv. 2016;23:1912–1925.
-
(2016)
Drug Deliv
, vol.23
, pp. 1912-1925
-
-
Kaur, P.1
Garg, T.2
Rath, G.3
-
89
-
-
84957895194
-
Spray drying of fenofibrate loaded nanostructured lipid carriers
-
Xia D, Shrestha N, van de Streek J, et al. Spray drying of fenofibrate loaded nanostructured lipid carriers. Asian J Pharm Sci. 2016;11:507–515.
-
(2016)
Asian J Pharm Sci
, vol.11
, pp. 507-515
-
-
Xia, D.1
Shrestha, N.2
van de Streek, J.3
-
90
-
-
84921515442
-
Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies
-
Jyoti K, Kaur K, Pandey RS, et al. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: in vitro and in vivo studies. J Colloid Interf Sci. 2015;445:219–230.
-
(2015)
J Colloid Interf Sci
, vol.445
, pp. 219-230
-
-
Jyoti, K.1
Kaur, K.2
Pandey, R.S.3
-
91
-
-
84934268314
-
Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro–in vivo aerosol performance
-
Patil-Gadhe A, Kyadarkunte A, Patole M, et al. Montelukast-loaded nanostructured lipid carriers: part II pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur J Pharm Biopharm. 2014;88:169–177.
-
(2014)
Eur J Pharm Biopharm
, vol.88
, pp. 169-177
-
-
Patil-Gadhe, A.1
Kyadarkunte, A.2
Patole, M.3
-
92
-
-
84958177750
-
Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: optimization by factorial design
-
Patil-Gadhe A, Pokharkar V., Pulmonary targeting potential of rosuvastatin loaded nanostructured lipid carrier: optimization by factorial design. Int J Pharm. 2016;501:199–210.
-
(2016)
Int J Pharm
, vol.501
, pp. 199-210
-
-
Patil-Gadhe, A.1
Pokharkar, V.2
-
93
-
-
84991030397
-
Stability study of sodium colistimethate-loaded lipid nanoparticles
-
Moreno-Sastre M, Pastor M, Esquisabel A, et al. Stability study of sodium colistimethate-loaded lipid nanoparticles. J Microencapsul. 2016;33:636–645.
-
(2016)
J Microencapsul
, vol.33
, pp. 636-645
-
-
Moreno-Sastre, M.1
Pastor, M.2
Esquisabel, A.3
-
94
-
-
84983285068
-
Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis
-
Pinheiro M, Ribeiro R, Vieira A, et al. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther. 2016;10:2467–2475.
-
(2016)
Drug Des Devel Ther
, vol.10
, pp. 2467-2475
-
-
Pinheiro, M.1
Ribeiro, R.2
Vieira, A.3
-
95
-
-
84939961391
-
Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery
-
Song X, Lin Q, Guo L, et al. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharm Res. 2015;32:1741–1751.
-
(2015)
Pharm Res
, vol.32
, pp. 1741-1751
-
-
Song, X.1
Lin, Q.2
Guo, L.3
-
96
-
-
85016114001
-
Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis
-
Sato MR, Oshiro Junior JA, Machado RTA, et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther. 2017;11:909–921.
-
(2017)
Drug Des Devel Ther
, vol.11
, pp. 909-921
-
-
Sato, M.R.1
Oshiro Junior, J.A.2
Machado, R.T.A.3
-
97
-
-
0037006906
-
The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages
-
Jones BG, Dickinson PA, Gumbleton M, et al. The inhibition of phagocytosis of respirable microspheres by alveolar and peritoneal macrophages. Int J Pharm. 2002;236:65–79.
-
(2002)
Int J Pharm
, vol.236
, pp. 65-79
-
-
Jones, B.G.1
Dickinson, P.A.2
Gumbleton, M.3
-
98
-
-
84920485832
-
Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome
-
Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm. 2014;89:163–174.
-
(2014)
Eur J Pharm Biopharm
, vol.89
, pp. 163-174
-
-
Patel, B.1
Gupta, N.2
Ahsan, F.3
|