메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 5103-5111

Zero-shot classification with discriminative semantic representation learning

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER VISION; FACTORIZATION; LEARNING SYSTEMS; MATRIX ALGEBRA; PATTERN RECOGNITION; VECTOR SPACES;

EID: 85044291656     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.542     Document Type: Conference Paper
Times cited : (126)

References (35)
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 84925431011 scopus 로고    scopus 로고
    • How to transfer? Zeroshot object recognition via hierarchical transfer of semantic attributes
    • Z. Al-Halah and R. Stiefelhagen. How to transfer? zeroshot object recognition via hierarchical transfer of semantic attributes. In WACV, 2015.
    • (2015) WACV
    • Al-Halah, Z.1    Stiefelhagen, R.2
  • 4
    • 84986274021 scopus 로고    scopus 로고
    • Synthesized classifiers for zero-shot learning
    • S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized classifiers for zero-shot learning. In CVPR, 2016.
    • (2016) CVPR
    • Changpinyo, S.1    Chao, W.-L.2    Gong, B.3    Sha, F.4
  • 5
    • 85044307316 scopus 로고    scopus 로고
    • Exploring semantic interclass relationships (sir) for zero-shot action recognition
    • M. L. Chuang Gan, Y. Yang, Y. Zhuang, and A. G. Hauptmann. Exploring semantic interclass relationships (sir) for zero-shot action recognition. In AAAI, 2015.
    • (2015) AAAI
    • Chuang Gan, M.L.1    Yang, Y.2    Zhuang, Y.3    Hauptmann, A.G.4
  • 8
    • 84919924897 scopus 로고    scopus 로고
    • Efficient label propagation
    • Y. Fujiwara and G. Irie. Efficient label propagation. In ICML, 2014.
    • (2014) ICML
    • Fujiwara, Y.1    Irie, G.2
  • 9
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In ICCV, 2011.
    • (2011) ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 11
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • P. Hoyer. Non-negative matrix factorization with sparseness constraints. JMLR, 5:1457-1469, 2004.
    • (2004) JMLR , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 12
    • 84937837455 scopus 로고    scopus 로고
    • A unified semantic embedding: Relating taxonomies and attributes
    • S. J. Hwang and L. Sigal. A unified semantic embedding: Relating taxonomies and attributes. In NIPS, 2014.
    • (2014) NIPS
    • Hwang, S.J.1    Sigal, L.2
  • 14
    • 84973901436 scopus 로고    scopus 로고
    • Unsupervised domain adaptation for zero-shot learning
    • E. Kodirov, T. Xiang, Z. Fu, and S. Gong. Unsupervised domain adaptation for zero-shot learning. In ICCV, 2015.
    • (2015) ICCV
    • Kodirov, E.1    Xiang, T.2    Fu, Z.3    Gong, S.4
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 17
    • 84894522762 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. PAMI, 36(3):453-465, 2014.
    • (2014) PAMI , vol.36 , Issue.3 , pp. 453-465
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 18
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zeroshot convolutional neural networks using textual descriptions
    • J. Lei Ba, K. Swersky, S. Fidler, et al. Predicting deep zeroshot convolutional neural networks using textual descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Lei Ba, J.1    Swersky, K.2    Fidler, S.3
  • 19
    • 80052915325 scopus 로고    scopus 로고
    • Recognizing human actions by attributes
    • J. Liu, B. Kuipers, and S. Savarese. Recognizing human actions by attributes. In CVPR, 2011.
    • (2011) CVPR
    • Liu, J.1    Kuipers, B.2    Savarese, S.3
  • 21
    • 84887392643 scopus 로고    scopus 로고
    • Subspace interpolation via dictionary learning for unsupervised domain adaptation
    • J. Ni, Q. Qiu, and R. Chellappa. Subspace interpolation via dictionary learning for unsupervised domain adaptation. In CVPR, 2013.
    • (2013) CVPR
    • Ni, J.1    Qiu, Q.2    Chellappa, R.3
  • 24
    • 84866637964 scopus 로고    scopus 로고
    • Sun attribute database: Discovering, annotating, and recognizing scene attributes
    • G. Patterson and J. Hays. Sun attribute database: Discovering, annotating, and recognizing scene attributes. In CVPR, 2012.
    • (2012) CVPR
    • Patterson, G.1    Hays, J.2
  • 25
    • 77955989949 scopus 로고    scopus 로고
    • What helps where-and why? Semantic relatedness for knowledge transfer
    • M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and B. Schiele. What helps where-and why? semantic relatedness for knowledge transfer. In CVPR, 2010.
    • (2010) CVPR
    • Rohrbach, M.1    Stark, M.2    Szarvas, G.3    Gurevych, I.4    Schiele, B.5
  • 26
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.2
  • 29
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, 2013.
    • (2013) NIPS
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.4
  • 31
    • 77953177673 scopus 로고    scopus 로고
    • Joint learning of visual attributes, object classes and visual saliency
    • G. Wang and D. Forsyth. Joint learning of visual attributes, object classes and visual saliency. In ICCV, 2009.
    • (2009) ICCV
    • Wang, G.1    Forsyth, D.2
  • 32
    • 84911434661 scopus 로고    scopus 로고
    • Zero-shot event detection using multi-modal fusion of weakly supervised concepts
    • S. Wu, S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan. Zero-shot event detection using multi-modal fusion of weakly supervised concepts. In CVPR, 2014.
    • (2014) CVPR
    • Wu, S.1    Bondugula, S.2    Luisier, F.3    Zhuang, X.4    Natarajan, P.5
  • 33
    • 84899020527 scopus 로고    scopus 로고
    • A novel two-step method for cross language representation learning
    • M. Xiao and Y. Guo. A novel two-step method for cross language representation learning. In NIPS, 2013.
    • (2013) NIPS
    • Xiao, M.1    Guo, Y.2
  • 34
    • 84973910934 scopus 로고    scopus 로고
    • Zero-shot learning via semantic similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Saligrama, V.2
  • 35
    • 84986292720 scopus 로고    scopus 로고
    • Zero-shot learning via joint latent similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via joint latent similarity embedding. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, Z.1    Saligrama, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.