-
1
-
-
84958264664
-
-
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016
-
(2016)
Tensorflow: Large-scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
Devin, M.10
-
2
-
-
84986334053
-
Dynamic image networks for action recognition
-
H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould. Dynamic image networks for action recognition. In IEEE International Conference on Computer Vision and Pattern Recognition CVPR, 2016
-
(2016)
IEEE IEEE International Conference on Computer Vision and Pattern Recognition CVPR
-
-
Bilen, H.1
Fernando, B.2
Gavves, E.3
Vedaldi, A.4
Gould, S.5
-
5
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, and T. Darrell. Long-term recurrent convolutional networks for visual recognition and description. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2625-2634, 2015
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2625-2634
-
-
Donahue, J.1
Anne Hendricks, L.2
Guadarrama, S.3
Rohrbach, M.4
Venugopalan, S.5
Saenko, K.6
Darrell, T.7
-
9
-
-
84959223985
-
Modeling video evolution for action recognition
-
B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars. Modeling video evolution for action recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5378-5387, 2015
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 5378-5387
-
-
Fernando, B.1
Gavves, E.2
Oramas, J.M.3
Ghodrati, A.4
Tuytelaars, T.5
-
10
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580-587, 2014
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
12
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on, 2016
-
(2016)
Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
84870183903
-
-
S. Ji, W. Xu, M. Yang, and K. Yu pattern analysis and machine intelligence, 35(1):221- 231, 2013. 2, 3
-
(2013)
Pattern Analysis and Machine Intelligence
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
15
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pages 1725-1732, 2014
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
16
-
-
85041916330
-
-
arXiv preprint
-
W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The kinetics human action video dataset. arXiv preprint, 2017
-
(2017)
The Kinetics Human Action Video Dataset
-
-
Kay, W.1
Carreira, J.2
Simonyan, K.3
Zhang, B.4
Hillier, C.5
Vijayanarasimhan, S.6
Viola, F.7
Green, T.8
Back, T.9
Natsev, P.10
Suleyman, M.11
Zisserman, A.12
-
17
-
-
84874540254
-
Human focused action localization in video
-
A. Kläser, M. Marszalek, C. Schmid, and A. Zisserman. Human focused action localization in video. In International Workshop on Sign, Gesture, Activity, ECCV 2010, 2010
-
(2010)
International Workshop on Sign, Gesture, Activity, ECCV 2010
-
-
Kläser, A.1
Marszalek, M.2
Schmid, C.3
Zisserman, A.4
-
18
-
-
84856682691
-
HMDB: A large video database for human motion recognition
-
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video database for human motion recognition. In Proceedings of the International Conference on Computer Vision (ICCV), 2011
-
(2011)
Proceedings of the International Conference on Computer Vision ICCV
-
-
Kuehne, H.1
Jhuang, H.2
Garrote, E.3
Poggio, T.4
Serre, T.5
-
19
-
-
51949083365
-
Learning realistic human actions from movies
-
IEEE
-
I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions from movies. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1-8. IEEE, 2008
-
(2008)
Computer Vision and Pattern Recognition, 2008. CVPR 2008 IEEE Conference on
, pp. 1-8
-
-
Laptev, I.1
Marszalek, M.2
Schmid, C.3
Rozenfeld, B.4
-
20
-
-
85006028843
-
-
Z. Li, E. Gavves, M. Jain, and C. G. Snoek. VideoLSTM convolves, attends and flows for action recognition. arXiv preprint arXiv:1607.01794, 2016
-
(2016)
VideoLSTM Convolves, Attends and Flows for Action Recognition
-
-
Li, Z.1
Gavves, E.2
Jain, M.3
Snoek, C.G.4
-
21
-
-
45049084813
-
Unsupervised learning of human action categories using spatial-temporal words
-
J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised learning of human action categories using spatial-temporal words. International journal of computer vision, 79(3):299-318, 2008
-
(2008)
International Journal of Computer Vision
, vol.79
, Issue.3
, pp. 299-318
-
-
Niebles, J.C.1
Wang, H.2
Fei-Fei, L.3
-
22
-
-
84990036931
-
Multi-region two-stream R-CNN for action detection
-
Springer
-
X. Peng and C. Schmid. Multi-region two-stream R-CNN for action detection. In European Conference on Computer Vision, pages 744-759. Springer, 2016
-
(2016)
European Conference on Computer Vision
, pp. 744-759
-
-
Peng, X.1
Schmid, C.2
-
23
-
-
84960980241
-
Faster r-cnn: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91-99, 2015
-
(2015)
Advances in Neural Information Processing Systems
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
24
-
-
85041898314
-
Deep learning for detecting multiple space-time action tubes in videos
-
S. Saha, G. Singh, M. Sapienza, P. H. Torr, and F. Cuzzolin. Deep learning for detecting multiple space-time action tubes in videos. British Machine Vision Conference (BMVC) 2016, 2016
-
(2016)
British Machine Vision Conference (BMVC) 2016
-
-
Saha, S.1
Singh, G.2
Sapienza, M.3
Torr, P.H.4
Cuzzolin, F.5
-
26
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
28
-
-
78149336740
-
Convolutional learning of spatio-temporal features
-
Springer
-
G.W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolutional learning of spatio-temporal features. In European conference on computer vision, pages 140-153. Springer, 2010
-
(2010)
European Conference on Computer Vision
, pp. 140-153
-
-
Taylor, G.W.1
Fergus, R.2
LeCun, Y.3
Bregler, C.4
-
29
-
-
84973865953
-
Learning spatiotemporal features with 3d convolutional networks
-
IEEE
-
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spatiotemporal features with 3d convolutional networks. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 4489-4497. IEEE, 2015
-
(2015)
2015 IEEE International Conference on Computer Vision (ICCV)
, pp. 4489-4497
-
-
Tran, D.1
Bourdev, L.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
32
-
-
85019099168
-
Temporal segment networks: Towards good practices for deep action recognition
-
L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Temporal segment networks: towards good practices for deep action recognition. In European Conference on Computer Vision, 2016
-
(2016)
European Conference on Computer Vision
-
-
Wang, L.1
Xiong, Y.2
Wang, Z.3
Qiao, Y.4
Lin, D.5
Tang, X.6
Van Gool, L.7
-
34
-
-
84959228762
-
Beyond short snippets: Deep networks for video classification
-
J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and G. Toderici. Beyond short snippets: Deep networks for video classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 4694-4702, 2015
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 4694-4702
-
-
Yue-Hei Ng, J.1
Hausknecht, M.2
Vijayanarasimhan, S.3
Vinyals, O.4
Monga, R.5
Toderici, G.6
-
35
-
-
38349007037
-
A duality based approach for realtime TV-L1 optical flow
-
C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime TV-L1 optical flow. Pattern Recognition, pages 214-223, 2007
-
(2007)
Pattern Recognition
, pp. 214-223
-
-
Zach, C.1
Pock, T.2
Bischof, H.3
|