-
1
-
-
85018918773
-
Learning feed-forward one-shot learners
-
L. Bertinetto, J. F. Henriques, J. Valmadre, P. H. S. Torr, and A. Vedaldi. Learning feed-forward one-shot learners. In NIPS 2016, pages 523-531, 2016.
-
(2016)
NIPS 2016
, pp. 523-531
-
-
Bertinetto, L.1
Henriques, J.F.2
Valmadre, J.3
Torr, P.H.S.4
Vedaldi, A.5
-
2
-
-
84986305898
-
Staple: Complementary learners for real-time tracking
-
L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. S. Torr. Staple: Complementary learners for real-time tracking. In CVPR 2016, pages 1401-1409, 2016.
-
(2016)
CVPR 2016
, pp. 1401-1409
-
-
Bertinetto, L.1
Valmadre, J.2
Golodetz, S.3
Miksik, O.4
Torr, P.H.S.5
-
3
-
-
84996921146
-
Fully-convolutional Siamese networks for object tracking
-
L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S. Torr. Fully-convolutional Siamese networks for object tracking. In ECCV 2016 Workshops, pages 850-865, 2016.
-
(2016)
ECCV 2016 Workshops
, pp. 850-865
-
-
Bertinetto, L.1
Valmadre, J.2
Henriques, J.F.3
Vedaldi, A.4
Torr, P.H.S.5
-
7
-
-
84986282546
-
Convolutional features for correlation filter based visual tracking
-
M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Convolutional features for correlation filter based visual tracking. In ICCV 2015 Workshops, pages 58-66, 2015.
-
(2015)
ICCV 2015 Workshops
, pp. 58-66
-
-
Danelljan, M.1
Hager, G.2
Shahbaz Khan, F.3
Felsberg, M.4
-
8
-
-
84973922861
-
Learning spatially regularized correlation filters for visual tracking
-
M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg. Learning spatially regularized correlation filters for visual tracking. In ICCV 2015, pages 4310-4318, 2015.
-
(2015)
ICCV 2015
, pp. 4310-4318
-
-
Danelljan, M.1
Hager, G.2
Shahbaz Khan, F.3
Felsberg, M.4
-
9
-
-
84990050461
-
Beyond correlation filters: Learning continuous convolution operators for visual tracking
-
M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Beyond correlation filters: Learning continuous convolution operators for visual tracking. In ECCV 2016, pages 472-488, 2016.
-
(2016)
ECCV 2016
, pp. 472-488
-
-
Danelljan, M.1
Robinson, A.2
Khan, F.S.3
Felsberg, M.4
-
11
-
-
85044331771
-
-
arXiv preprint arXiv
-
S. Gould, B. Fernando, A. Cherian, P. Anderson, R. S. Cruz, and E. Guo. On differentiating parameterized argmin and argmax problems with application to bi-level optimization. arXiv preprint arXiv:1607.05447, 2016.
-
(2016)
On Differentiating Parameterized Argmin and Argmax Problems with Application to Bi-level Optimization
-
-
Gould, S.1
Fernando, B.2
Cherian, A.3
Anderson, P.4
Cruz, R.S.5
Guo, E.6
-
12
-
-
84990068889
-
Learning to track at 100 fps with deep regression networks
-
Springer
-
D. Held, S. Thrun, and S. Savarese. Learning to track at 100 fps with deep regression networks. In ECCV 2016, pages 749-765. Springer, 2016.
-
(2016)
ECCV rfpy1 2016
, pp. 749-765
-
-
Held, D.1
Thrun, S.2
Savarese, S.3
-
13
-
-
84922907906
-
Highspeed tracking with kernelized correlation filters
-
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. IEEE TPAMI, 37(3):583-596, 2015.
-
(2015)
IEEE TPAMI
, vol.37
, Issue.3
, pp. 583-596
-
-
Henriques, J.F.1
Caseiro, R.2
Martins, P.3
Batista, J.4
-
14
-
-
84973922889
-
Matrix backpropagation for deep networks with structured layers
-
C. Ionescu, O. Vantzos, and C. Sminchisescu. Matrix backpropagation for deep networks with structured layers. In ICCV 2015, pages 2965-2973, 2015.
-
(2015)
ICCV 2015
, pp. 2965-2973
-
-
Ionescu, C.1
Vantzos, O.2
Sminchisescu, C.3
-
15
-
-
84959251814
-
Correlation filters with limited boundaries
-
H. Kiani Galoogahi, T. Sim, and S. Lucey. Correlation filters with limited boundaries. In CVPR 2015, pages 4630-4638, 2015.
-
(2015)
CVPR 2015
, pp. 4630-4638
-
-
Kiani Galoogahi, H.1
Sim, T.2
Lucey, S.3
-
16
-
-
84996899169
-
-
M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. Čehovin, T. Vojír, G. Häger, A. Lukežič, G. Fernández, et al. The Visual Object Tracking VOT2016 challenge results. 2016.
-
(2016)
The Visual Object Tracking VOT2016 Challenge Results
-
-
Kristan, M.1
Leonardis, A.2
Matas, J.3
Felsberg, M.4
Pflugfelder, R.5
Čehovin, L.6
Vojír, T.7
Häger, G.8
Lukežič, A.9
Fernández, G.10
-
18
-
-
84928802126
-
A scale adaptive kernel correlation filter tracker with feature integration
-
Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In ECCV 2014, pages 254-265, 2014.
-
(2014)
ECCV 2014
, pp. 254-265
-
-
Li, Y.1
Zhu, J.2
-
19
-
-
84945964599
-
Encoding color information for visual tracking: Algorithms and benchmark
-
P. Liang, E. Blasch, and H. Ling. Encoding color information for visual tracking: Algorithms and benchmark. IEEE Transactions on Image Processing, 24(12):5630-5644, 2015.
-
(2015)
IEEE Transactions on Image Processing
, vol.24
, Issue.12
, pp. 5630-5644
-
-
Liang, P.1
Blasch, E.2
Ling, H.3
-
20
-
-
84945230598
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR 2015, pages 3431-3440, 2015.
-
(2015)
CVPR 2015
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
21
-
-
84973869904
-
Hierarchical convolutional features for visual tracking
-
C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang. Hierarchical convolutional features for visual tracking. In ICCV 2015, pages 3074-3082, 2015.
-
(2015)
ICCV 2015
, pp. 3074-3082
-
-
Ma, C.1
Huang, J.-B.2
Yang, X.3
Yang, M.-H.4
-
22
-
-
84959199505
-
Long-term correlation tracking
-
C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term correlation tracking. In CVPR 2015, pages 5388-5396, 2015.
-
(2015)
CVPR 2015
, pp. 5388-5396
-
-
Ma, C.1
Yang, X.2
Zhang, C.3
Yang, M.-H.4
-
23
-
-
84989338543
-
Gradientbased hyperparameter optimization through reversible learning
-
D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradientbased hyperparameter optimization through reversible learning. In ICML 2015, 2015.
-
(2015)
ICML 2015
-
-
Maclaurin, D.1
Duvenaud, D.2
Adams, R.P.3
-
25
-
-
84986296977
-
Learning multi-domain convolutional neural networks for visual tracking
-
H. Nam and B. Han. Learning multi-domain convolutional neural networks for visual tracking. In CVPR 2016, pages 4293-4302, 2016.
-
(2016)
CVPR 2016
, pp. 4293-4302
-
-
Nam, H.1
Han, B.2
-
26
-
-
84872292966
-
Maximum margin correlation filter: A new approach for localization and classification
-
A. Rodriguez, V. N. Boddeti, B. V. K. V. Kumar, and A. Mahalanobis. Maximum margin correlation filter: A new approach for localization and classification. IEEE Transactions on Image Processing, 22(2):631-643, 2013.
-
(2013)
IEEE Transactions on Image Processing
, vol.22
, Issue.2
, pp. 631-643
-
-
Rodriguez, A.1
Boddeti, V.N.2
Kumar, B.V.K.V.3
Mahalanobis, A.4
-
27
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.
-
(2015)
International Journal of Computer Vision (IJCV)
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
28
-
-
84986295247
-
Siamese instance search for tracking
-
R. Tao, E. Gavves, and A. W. M. Smeulders. Siamese instance search for tracking. In CVPR 2016, pages 1420-1429, 2016.
-
(2016)
CVPR 2016
, pp. 1420-1429
-
-
Tao, R.1
Gavves, E.2
Smeulders, A.W.M.3
-
29
-
-
85026925534
-
Learning detectors quickly with stationary statistics
-
Springer
-
J. Valmadre, S. Sridharan, and S. Lucey. Learning detectors quickly with stationary statistics. In ACCV 2014, pages 99-114. Springer, 2014.
-
(2014)
ACCV 2014
, pp. 99-114
-
-
Valmadre, J.1
Sridharan, S.2
Lucey, S.3
-
30
-
-
85018863845
-
Matching networks for one shot learning
-
O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al. Matching networks for one shot learning. In NIPS 2016, pages 3630-3638, 2016.
-
(2016)
NIPS 2016
, pp. 3630-3638
-
-
Vinyals, O.1
Blundell, C.2
Lillicrap, T.3
Wierstra, D.4
-
32
-
-
84887348427
-
Online object tracking: A benchmark
-
Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A benchmark. In CVPR 2015, pages 2411-2418, 2013.
-
(2013)
CVPR 2015
, pp. 2411-2418
-
-
Wu, Y.1
Lim, J.2
Yang, M.-H.3
-
33
-
-
84939235624
-
Object tracking benchmark
-
Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark. TPAMI, 37(9):1834-1848, 2015.
-
(2015)
TPAMI
, vol.37
, Issue.9
, pp. 1834-1848
-
-
Wu, Y.1
Lim, J.2
Yang, M.-H.3
-
34
-
-
77956001004
-
Deconvolutional networks
-
M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. Deconvolutional networks. In CVPR 2010, pages 2528-2535, 2010.
-
(2010)
CVPR 2010
, pp. 2528-2535
-
-
Zeiler, M.D.1
Krishnan, D.2
Taylor, G.W.3
Fergus, R.4
-
36
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional random fields as recurrent neural networks. In ICCV 2015, pages 1529-1537, 2015.
-
(2015)
ICCV 2015
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Storr, P.H.8
|